非线性支持向量机

非线性支持向量机
非线性支持向量机

非线性支持向量机

建立非线性支持向量机分为两步:首先将非线性数据转变到一个维数比原空间高的新的特征空间中,然后再新的特征空间中使用线性支持向量机。

我们通常将描述数据的量成为特征,而把选择随合适表达式将非线性数据转变到特征空间的任务成为特征选择。

在解决一个特征空间中的最优分类面问题时,我们只需要考虑这个空间中的内积运算。根据虽有分类面的性质,当非非线性支持向量机映射到特征空间时,在这个变幻空间中我们只需要进行内积运算即可。如果有一种方法可以在变换空间中直接计算内积,使其与原空间中的内积计算直接对应,那么久省去了通过特征选择将一个非线性支持向量机映射到特征空间的不会步骤。这样即使变换空间的维数增加许多,计算的复杂度也没增加多少。核函数方法就是这样一种方法。

核函数的定义:

定义:核是一个函数K,对所有x i,x j?X,满足:K x i,x j=,?为从X到特征空间F的映射。注意:核函数为对称函数。

因为K x i,x j=,所以在SVM算法中只需用到K,而无需考虑如何得到?。如果在算法中每处的x i?x j都由K x i,x j替代,算法就能在特征空间F中使用SVM,并且训练样本所花时间与训练原始样本所花时间相同。因此,在完成核变换后,所有操作和线性SVM一样,只不过操作进行的空间不一样。

在支持向量机中,最常用的核函数是:

多项式:

K x i,x j=(x i T x j+1)q,q>0

径向基函数:

K x i,x j=exp?(?x i?x j2σ2

)

双曲正切:

K x i,x j=tanh?(βx i T x j+γ)

下面,我们将用一个例子来说明该如何选择核函数。

假设训练数据都是R2中的向量,我们选择核函数K x i,x j=(x i?x j)2。这样我们很容易找到一个新的空间H,以及从R2→ 的特征映射?,比如说:(x i?x j)2=?x??(y)如果选择H=R3,则

? x = x 1

2 2x 1x 2x 2

2

如果H =R 4,则

? x = x 12x 1x 2x 1x 2x 2

2 Mercer 条件

在统计学习理论中,只有当运算符合mercer 条件时,才可以进行内积运算。

令x ∈X ,?是从X 到特征空间F 的映射,那么对于任意的对称函数K (x ,z ),mercer 在特征空间F 中内积运算的充分必要条件是:

对任意的g (x )≠0,有

g (x )2dx <∞

K x ,z g x g (z )dxdz ≥0

一旦引入适当的核函数,就相当于把原特征空间变化到某一个新的特征空间,此时,优化函数就成为了:

maxQ β = βi ?12m

i =1 βi βj y i y j K (x i ?x j )m i ,j =1 对应的最优分类函数也就变为:

f x =sgn (

βi y i K x i ,x +b m i =1) 这就是非线性情况下的支持向量机。

支持向量机算法

支持向量机算法 [摘要] 本文介绍统计学习理论中最年轻的分支——支持向量机的算法,主要有:以SVM-light为代表的块算法、分解算法和在线训练法,比较了各自的优缺点,并介绍了其它几种算法及多类分类算法。 [关键词] 块算法分解算法在线训练法 Colin Campbell对SVM的训练算法作了一个综述,主要介绍了以SVM为代表的分解算法、Platt的SMO和Kerrthi的近邻算法,但没有详细介绍各算法的特点,并且没有包括算法的最新进展。以下对各种算法的特点进行详细介绍,并介绍几种新的SVM算法,如张学工的CSVM,Scholkopf的v-SVM分类器,J. A. K. Suykens 提出的最小二乘法支持向量机LSSVM,Mint-H suan Yang提出的训练支持向量机的几何方法,SOR以及多类时的SVM算法。 块算法最早是由Boser等人提出来的,它的出发点是:删除矩阵中对应于Lagrange乘数为零的行和列不会对最终结果产生影响。对于给定的训练样本集,如果其中的支持向量是已知的,寻优算法就可以排除非支持向量,只需对支持向量计算权值(即Lagrange乘数)即可。但是,在训练过程结束以前支持向量是未知的,因此,块算法的目标就是通过某种迭代逐步排除非支持向时。具体的做法是,在算法的每一步中块算法解决一个包含下列样本的二次规划子问题:即上一步中剩下的具有非零Lagrange乘数的样本,以及M个不满足Kohn-Tucker条件的最差的样本;如果在某一步中,不满足Kohn-Tucker条件的样本数不足M 个,则这些样本全部加入到新的二次规划问题中。每个二次规划子问题都采用上一个二次规划子问题的结果作为初始值。在最后一步时,所有非零Lagrange乘数都被找到,因此,最后一步解决了初始的大型二次规划问题。块算法将矩阵的规模从训练样本数的平方减少到具有非零Lagrange乘数的样本数的平方,大减少了训练过程对存储的要求,对于一般的问题这种算法可以满足对训练速度的要求。对于训练样本数很大或支持向量数很大的问题,块算法仍然无法将矩阵放入内存中。 Osuna针对SVM训练速度慢及时间空间复杂度大的问题,提出了分解算法,并将之应用于人脸检测中,主要思想是将训练样本分为工作集B的非工作集N,B中的样本数为q个,q远小于总样本个数,每次只针对工作集B中的q个样本训练,而固定N中的训练样本,算法的要点有三:1)应用有约束条件下二次规划极值点存大的最优条件KTT条件,推出本问题的约束条件,这也是终止条件。2)工作集中训练样本的选择算法,应能保证分解算法能快速收敛,且计算费用最少。3)分解算法收敛的理论证明,Osuna等证明了一个定理:如果存在不满足Kohn-Tucker条件的样本,那么在把它加入到上一个子问题的集合中后,重新优化这个子问题,则可行点(Feasible Point)依然满足约束条件,且性能严格地改进。因此,如果每一步至少加入一个不满足Kohn-Tucker条件的样本,一系列铁二次子问题可保证最后单调收敛。Chang,C.-C.证明Osuna的证明不严密,并详尽地分析了分解算法的收敛过程及速度,该算法的关键在于选择一种最优的工

机器学习算法优缺点改进总结

Lecture 1 Introduction to Supervised Learning (1)Expectatin Maximization(EM) Algorithm (期望值最大) (2)Linear Regression Algorithm(线性回归) (3)Local Weighted Regression(局部加权回归) (4)k-Nearest Neighbor Algorithm for Regression(回归k近邻) (5)Linear Classifier(线性分类) (6)Perceptron Algorithm (线性分类) (7)Fisher Discriminant Analysis or Linear Discriminant Analysis(LDA) (8)k-NN Algorithm for Classifier(分类k近邻) (9)Bayesian Decision Method(贝叶斯决策方法) Lecture 2 Feed-forward Neural Networks and BP Algorithm (1)Multilayer Perceptron(多层感知器) (2)BP Algorithm Lecture 3 Rudiments of Support Vector Machine (1)Support Vector Machine(支持向量机) (此算法是重点,必考题) 此处有一道必考题 Lecture 4 Introduction to Decision Rule Mining (1)Decision Tree Algorithm (2)ID3 Algorithm (3)C4.5 Algorithm (4)粗糙集…… Lecture 5 Classifier Assessment and Ensemble Methods (1)Bagging (2)Booting (3)Adaboosting Lecture 6 Introduction to Association Rule Mining (1)Apriori Algorithms (2)FP-tree Algorithms Lecture 7 Introduction to Custering Analysis (1)k-means Algorithms (2)fuzzy c-means Algorithms (3)k-mode Algorithms (4)DBSCAN Algorithms Lecture 8 Basics of Feature Selection (1)Relief Algorithms (2)ReliefF Algorithms

支持向量回归简介

支持向量回归简介 人类通过学习,从已知的事实中分析、总结出规律,并且根据规律对未来 的现象或无法观测的现象做出正确的预测和判断,即获得认知的推广能力。在对智能机器的研究当中,人们也希望能够利用机器(计算机)来模拟人的良好学习能力,这就是机器学习问题。基于数据的机器学习是现代智能技术中的重要方面,机器学习的目的是通过对已知数据的学习,找到数据内在的相互依赖关系,从而获得对未知数据的预测和判断能力,在过去的十几年里,人工神经网络以其强大的并行处理机制、任意函数的逼近能力,学习能力以及自组织和自适应能力等在模式识别、预测和决策等领域得到了广泛的应用。但是神经网络受到网络结构复杂性和样本复杂性的影响较大,容易出现“过学习”或低泛化能力。特别是神经网络学习算法缺乏定量的分析与完备的理论基础支持,没有在本质上推进学习过程本质的认识。 现有机器学习方法共同的重要理论基础之一是统计学。传统统计学研究的是样本数目趋于无穷大时的渐近理论,现有学习方法也多是基于此假设。但在实际问题中,样本数往往是有限的,因此一些理论上很优秀的学习方法实际中表现却可能不尽人意。 与传统统计学相比, 统计学习理论(Statistical Learning Theory 或SLT ) 是一种专门研究小样本情况下机器学习规律的理论Vladimir N. Vapnik 等人从六、七十年代开始致力于此方面研究,到九十年代中期,随着其理论的不断发展和成熟[17] ,也由于神经网络等学习方法在理论上缺乏实 质性进展, 统计学习理论开始受到越来越广泛的重视。 统计学习理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。它能将很多现有方法纳入其中,有望帮助解决许多原来难以解决的问题(比如神经网络结构选择问题、局部极小点问题)等;同时, 在这一理论基础上发展了一种新的通用学习方法—支持向量机(Support Vector Machine 或SVM ) ,它已初步表现出很多优于已有方法的性能。一些学者认为,SVM 正在成为继神经网络研究之后新的研究热点,并将有力地推动机 器学习理论和技术的发展。 支持向量机(SVM )是一种比较好的实现了结构风险最小化思想的方法。它的机器学习策略是结构风险最小化原则为了最小化期望风险,应同时最小化经验风险和置信范围) 支持向量机方法的基本思想: (1 )它是专门针对有限样本情况的学习机器,实现的是结构风险最小化:在对给定的数据逼近的精度与逼近函数的复杂性之间寻求折衷,以期获得最好的推广能力; (2 )它最终解决的是一个凸二次规划问题,从理论上说,得到的将是全局最优解,解决了在神经网络方法中无法避免的局部极值问题; (3 )它将实际问题通过非线性变换转换到高维的特征空间,在高维空间中构造线性决策函数来实现原空间中的非线性决策函数,巧妙地解决了维数问题,并保证了有较好的推广能力,而且算法复杂度与样本维数无关。 目前,SVM 算法在模式识别、回归估计、概率密度函数估计等方面都有应用,且算法在效率与精度上已经超过传统的学习算法或与之不相上下。

机器学习SVM(支持向量机)实验报告

实验报告 实验名称:机器学习:线性支持向量机算法实现 学员:张麻子学号: *********** 培养类型:硕士年级: 专业:所属学院:计算机学院 指导教员: ****** 职称:副教授 实验室:实验日期:

一、实验目的和要求 实验目的:验证SVM(支持向量机)机器学习算法学习情况 要求:自主完成。 二、实验内容和原理 支持向量机(Support V ector Machine, SVM)的基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大。SVM是用来解决二分类问题的有监督学习算法。通过引入了核方法之后SVM也可以用来解决非线性问题。 但本次实验只针对线性二分类问题。 SVM算法分割原则:最小间距最大化,即找距离分割超平面最近的有效点距离超平面距离和最大。 对于线性问题: 假设存在超平面可最优分割样本集为两类,则样本集到超平面距离为: 需压求取: 由于该问题为对偶问题,可变换为: 可用拉格朗日乘数法求解。 但由于本实验中的数据集不可以完美的分为两类,即存在躁点。可引入正则化参数C,用来调节模型的复杂度和训练误差。

作出对应的拉格朗日乘式: 对应的KKT条件为: 故得出需求解的对偶问题: 本次实验使用python 编译器,编写程序,数据集共有270个案例,挑选其中70%作为训练数据,剩下30%作为测试数据。进行了两个实验,一个是取C值为1,直接进行SVM训练;另外一个是利用交叉验证方法,求取在前面情况下的最优C值。 三、实验器材 实验环境:windows7操作系统+python 编译器。 四、实验数据(关键源码附后) 实验数据:来自UCI 机器学习数据库,以Heart Disease 数据集为例。 五、操作方法与实验步骤 1、选取C=1,训练比例7:3,利用python 库sklearn 下的SVM() 函数进

支持向量机及支持向量回归简介

3.支持向量机(回归) 3.1.1 支持向量机 支持向量机(SVM )是美国Vapnik 教授于1990年代提出的,2000年代后成为了很受欢迎的机器学习方法。它将输入样本集合变换到高维空间使得其分离性状况得到改善。它的结构酷似三层感知器,是构造分类规则的通用方法。SVM 方法的贡献在于,它使得人们可以在非常高维的空间中构造出好的分类规则,为分类算法提供了统一的理论框架。作为副产品,SVM 从理论上解释了多层感知器的隐蔽层数目和隐节点数目的作用,因此,将神经网络的学习算法纳入了核技巧范畴。 所谓核技巧,就是找一个核函数(,)K x y 使其满足(,)((),())K x y x y φφ=,代 替在特征空间中内积(),())x y φφ(的计算。因为对于非线性分类,一般是先找一个非线性映射φ将输入数据映射到高维特征空间,使之分离性状况得到很大改观,此时在该特征空间中进行分类,然后再返会原空间,就得到了原输入空间的非线性分类。由于内积运算量相当大,核技巧就是为了降低计算量而生的。 特别, 对特征空间H 为Hilbert 空间的情形,设(,)K x y 是定义在输入空间 n R 上的二元函数,设H 中的规范正交基为12(),(),...,(), ...n x x x φφφ。如果 2 2 1 (,)((),()), {}k k k k k K x y a x y a l φφ∞ == ∈∑ , 那么取1 ()() k k k x a x φφ∞ ==∑ 即为所求的非线性嵌入映射。由于核函数(,)K x y 的定义 域是原来的输入空间,而不是高维的特征空间。因此,巧妙地避开了计算高维内 积 (),())x y φφ(所需付出的计算代价。实际计算中,我们只要选定一个(,)K x y ,

支持向量机非线性回归通用MATLAB源码

支持向量机非线性回归通用MA TLAB源码 支持向量机和BP神经网络都可以用来做非线性回归拟合,但它们的原理是不相同的,支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。大量仿真证实,支持向量机的泛化能力强于BP网络,而且能避免神经网络的固有缺陷——训练结果不稳定。本源码可以用于线性回归、非线性回归、非线性函数拟合、数据建模、预测、分类等多种应用场合,GreenSim团队推荐您使用。 function [Alpha1,Alpha2,Alpha,Flag,B]=SVMNR(X,Y,Epsilon,C,TKF,Para1,Para2) %% % SVMNR.m % Support Vector Machine for Nonlinear Regression % All rights reserved %% % 支持向量机非线性回归通用程序 % GreenSim团队原创作品,转载请注明 % GreenSim团队长期从事算法设计、代写程序等业务 % 欢迎访问GreenSim——算法仿真团队→https://www.360docs.net/doc/6b4559638.html,/greensim % 程序功能: % 使用支持向量机进行非线性回归,得到非线性函数y=f(x1,x2,…,xn)的支持向量解析式,% 求解二次规划时调用了优化工具箱的quadprog函数。本函数在程序入口处对数据进行了% [-1,1]的归一化处理,所以计算得到的回归解析式的系数是针对归一化数据的,仿真测 % 试需使用与本函数配套的Regression函数。 % 主要参考文献: % 朱国强,刘士荣等.支持向量机及其在函数逼近中的应用.华东理工大学学报 % 输入参数列表 % X 输入样本原始数据,n×l的矩阵,n为变量个数,l为样本个数 % Y 输出样本原始数据,1×l的矩阵,l为样本个数 % Epsilon ε不敏感损失函数的参数,Epsilon越大,支持向量越少 % C 惩罚系数,C过大或过小,泛化能力变差 % TKF Type of Kernel Function 核函数类型 % TKF=1 线性核函数,注意:使用线性核函数,将进行支持向量机的线性回归 % TKF=2 多项式核函数 % TKF=3 径向基核函数 % TKF=4 指数核函数 % TKF=5 Sigmoid核函数 % TKF=任意其它值,自定义核函数 % Para1 核函数中的第一个参数 % Para2 核函数中的第二个参数 % 注:关于核函数参数的定义请见Regression.m和SVMNR.m内部的定义 % 输出参数列表 % Alpha1 α系数 % Alpha2 α*系数 % Alpha 支持向量的加权系数(α-α*)向量

支持向量机优缺点

SVM有如下主要几个特点: (1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射; (2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心; (3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。 (4)SVM 是一种有坚实理论基础的新颖的小样本学习方法。它基本上不涉及概率测度及大数定律等,因此不同于现有的统计方法。从本质上看,它避开了从归纳到演绎的传统过程,实现了高效的从训练样本到预报样本的“转导推理”,大大简化了通常的分类和回归等问题。 (5)SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。 (6)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。这种“鲁棒”性主要体现在: ①增、删非支持向量样本对模型没有影响; ②支持向量样本集具有一定的鲁棒性; ③有些成功的应用中,SVM 方法对核的选取不敏感 两个不足: (1) SVM算法对大规模训练样本难以实施 由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。针对以上问题的主要改进有有J.Platt的SMO算法、T.Joachims的SVM、C.J.C.Burges等的PCGC、张学工的CSVM以及O.L.Mangasarian等的SOR算法 (2) 用SVM解决多分类问题存在困难 经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器。

机器学习十大算法的每个算法的核心思想、工作原理、适用情况及优缺点

5-1简述机器学习十大算法的每个算法的核心思想、工作原理、适用情况及优缺点等。 1)C4.5算法: ID3算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定的测试属性。 C4.5算法核心思想是ID3算法,是ID3算法的改进,改进方面有: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2)在树构造过程中进行剪枝 3)能处理非离散的数据 4)能处理不完整的数据 C4.5算法优点:产生的分类规则易于理解,准确率较高。 缺点: 1)在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算 法的低效。 2)C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程 序无法运行。 2)K means 算法: 是一个简单的聚类算法,把n的对象根据他们的属性分为k个分割,k < n。算法的核心就是要优化失真函数J,使其收敛到局部最小值但不是全局最小值。 ,其中N为样本数,K是簇数,r nk b表示n属于第k个 簇,u k是第k个中心点的值。

然后求出最优的u k 优点:算法速度很快 缺点是,分组的数目k是一个输入参数,不合适的k可能返回较差的结果。 3)朴素贝叶斯算法: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。算法的基础是概率问题,分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。朴素贝叶斯假设是约束性很强的假设,假设特征条件独立,但朴素贝叶斯算法简单,快速,具有较小的出错率。 在朴素贝叶斯的应用中,主要研究了电子邮件过滤以及文本分类研究。 4)K最近邻分类算法(KNN) 分类思想比较简单,从训练样本中找出K个与其最相近的样本,然后看这k个样本中哪个类别的样本多,则待判定的值(或说抽样)就属于这个类别。 缺点: 1)K值需要预先设定,而不能自适应 2)当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法适用于对样本容量比较大的类域进行自动分类。 5)EM最大期望算法 EM算法是基于模型的聚类方法,是在概率模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量。E步估计隐含变量,M步估计其他参数,交替将极值推向最大。 EM算法比K-means算法计算复杂,收敛也较慢,不适于大规模数据集和高维数据,但比K-means算法计算结果稳定、准确。EM经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 6)PageRank算法 是google的页面排序算法,是基于从许多优质的网页链接过来的网页,必定还是优质网页的回归关系,来判定所有网页的重要性。(也就是说,一个人有着越多牛X朋友的人,他是牛X的概率就越大。) 优点: 完全独立于查询,只依赖于网页链接结构,可以离线计算。 缺点: 1)PageRank算法忽略了网页搜索的时效性。 2)旧网页排序很高,存在时间长,积累了大量的in-links,拥有最新资讯的新网页排名却很低,因为它们几乎没有in-links。

(完整版)支持向量回归机

3.3 支持向量回归机 SVM 本身是针对经典的二分类问题提出的,支持向量回归机(Support Vector Regression ,SVR )是支持向量在函数回归领域的应用。SVR 与SVM 分类有以下不同:SVM 回归的样本点只有一类,所寻求的最优超平面不是使两类样本点分得“最开”,而是使所有样本点离超平面的“总偏差”最小。这时样本点都在两条边界线之间,求最优回归超平面同样等价于求最大间隔。 3.3.1 SVR 基本模型 对于线性情况,支持向量机函数拟合首先考虑用线性回归函数 b x x f +?=ω)(拟合n i y x i i ,...,2,1),,(=,n i R x ∈为输入量,R y i ∈为输出量,即 需要确定ω和b 。 图3-3a SVR 结构图 图3-3b ε不灵敏度函数 惩罚函数是学习模型在学习过程中对误差的一种度量,一般在模型学习前己经选定,不同的学习问题对应的损失函数一般也不同,同一学习问题选取不同的损失函数得到的模型也不一样。常用的惩罚函数形式及密度函数如表3-1。 表3-1 常用的损失函数和相应的密度函数 损失函数名称 损失函数表达式()i c ξ% 噪声密度 ()i p ξ ε -不敏感 i εξ 1 exp()2(1) i εξε-+ 拉普拉斯 i ξ 1 exp()2 i ξ- 高斯 212 i ξ 21 exp()22i ξπ -

标准支持向量机采用ε-不灵敏度函数,即假设所有训练数据在精度ε下用线性函数拟合如图(3-3a )所示, ** ()()1,2,...,,0 i i i i i i i i y f x f x y i n εξεξξξ-≤+??-≤+=??≥? (3.11) 式中,*,i i ξξ是松弛因子,当划分有误差时,ξ,*i ξ都大于0,误差不存在取0。这时,该问题转化为求优化目标函数最小化问题: ∑=++?=n i i i C R 1 ** )(21 ),,(ξξωωξξω (3.12) 式(3.12)中第一项使拟合函数更为平坦,从而提高泛化能力;第二项为减小误差;常数0>C 表示对超出误差ε的样本的惩罚程度。求解式(3.11)和式(3.12)可看出,这是一个凸二次优化问题,所以引入Lagrange 函数: * 11 ****1 1 1()[()] 2[()]() n n i i i i i i i i n n i i i i i i i i i i L C y f x y f x ωωξξαξεαξεξγξγ=====?++-+-+-+-+-+∑∑∑∑ (3.13) 式中,α,0*≥i α,i γ,0*≥i γ,为Lagrange 乘数,n i ,...,2,1=。求函数L 对ω, b ,i ξ,*i ξ的最小化,对i α,*i α,i γ,*i γ的最大化,代入Lagrange 函数得到对偶形式,最大化函数:

回归分析的优缺点等

21、回归分析法有何优点在使用该法时,应注意哪些问题 答:优点:1、回归分析法在分析多因素模型时,更加简单和方便; 2、运用回归模型,只要采用的模型和数据相同,通过标准的统计方法可以计算出唯一的结果,但在图和表的形式中,数据之间关系的解释往往因人而异,不同分析者画出的拟合曲线很可能也是不一样的;3、回归分析可以准确地计量各个因素之间的相关程度与回归拟合程度的高低,提高预测方程式的效果;在回归分析法时,由于实际一个变量仅受单个因素的影响的情况极少,要注意模式的适合范围,所以一元回归分析法适用确实存在一个对因变量影响作用明显高于其他因素的变量是使用。多元回归分析法比较适用于实际经济问题,受多因素综合影响时使用。 缺点: 有时候在回归分析中,选用何种因子和该因子采用何种表达 式只是一种推测,这影响了用电因子的多样性和某些因子的不可测性,使得回归分析在某些 情况下受到限制。

支持向量机能非常成功地处理回归问题(时间序列分析)和模式识别(分类问题、判别分析)等诸多问题,并可推广于预测和综合评价等领域,因此可应用于理科、工科和管理等多种学科.目前国际上支持向量机在理论研究和实际应用两方面都正处于飞速发展阶段 两个不足: (1) SVM算法对大规模训练样本难以实施 由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。针对以上问题的主要改进有有的SMO算法、的SVM、等的PCGC、张学工的CSVM以及等的SOR算法 (2) 用SVM解决多分类问题存在困难 经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要

支持向量机等各种算法和模型的优点和缺点

1决策树(Decision Trees)的优缺点 决策树的优点: 一、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 二、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 三、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 四、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 五、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 六、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 七、可以对有许多属性的数据集构造决策树。 八、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 一、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 二、决策树处理缺失数据时的困难。 三、过度拟合问题的出现。 四、忽略数据集中属性之间的相关性。 2 人工神经网络的优缺点 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。 3 遗传算法的优缺点 遗传算法的优点: 一、与问题领域无关切快速随机的搜索能力。 二、搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,鲁棒性好。 三、搜索使用评价函数启发,过程简单。 四、使用概率机制进行迭代,具有随机性。 五、具有可扩展性,容易与其他算法结合。 遗传算法的缺点: 一、遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码, 二、另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.没有能够及时利用网络的反馈信息,故算法的搜索速度比较慢,要得要较精确的解需要较多的训练时间。 三、算法对初始种群的选择有一定的依赖性,能够结合一些启发算法进行改进。 4 KNN算法(K-Nearest Neighbour) 的优缺点

支持向量机常见问题

支持向量机常见问题 1.支持向量机的关键技术是什么? 答: 支持向量机性能的优劣主要取决于核函数的选取,所以对于一个实际问题而言,如何根据实际的数据模型选择合适的核函数从而构造SVM算法.目前比较成熟的核函数及其参数的选择都是人为的,根据经验来选取的,带有一定的随意性.在不同的问题领域,核函数应当具有不同的形式和参数,所以在选取时候应该将领域知识引入进来,但是目前还没有好的方法来解决核函数的选取问题. 2.支持向量机的优缺点? 答:优点:SVM理论提供了一种避开高维空间的复杂性,直接用此空间的内积函数(既是核函数),再利用在线性可分的情况下的求解方法直接求解对应的高维空间的决策问题.当核函数已知,可以简化高维空间问题的求解难度.同时SVM是基于小样本统计理论的基础上的,这符合机器学习的目的.而且支持向量机比神经网络具有较好的泛化推广能力. 缺点:对于每个高维空间在此空间的映射F,如何确定F也就是核函数,现在还没有合适的方法,所以对于一般的问题,SVM只是把高维空间的复杂性的困难转为了求核函数的困难.而且即使确定核函数以后,在求解问题分类时,要求解函数的二次规划,这就需要大量的存储空间.这也是SVM的一个问题. 3.支持向量机的主要应用和研究的热点? 答:目前支持向量机主要应用在模式识别领域中的文本识别,中文

分类,人脸识别等;同时也应用到许多的工程技术和信息过滤等方面. 当前研究的热点主要是对支持向量机中算法的优化,包括解决SVM中二次规划求解问题,对大规模SVM的求解问题,对SVM中QP问题的求解问题等.另外就是如何更好的构造基于SVM的多类分类器,如何提高SVM的归纳能力和分类速度等.如何根据实际问题确定核函数也是一个重要的研究热点.

回归分析的优缺点等

回归分析的优缺点等 21、回归分析法有何优点?在使用该法时,应注意哪些问题? 答:优点: 1、回归分析法在分析多因素模型时,更加简单和方便; 2、运用回归模型,只要采用的模型和数据相同,通过标准的统计方法可以计算出唯一的结果,但在图和表的形式中,数据之间关系的解释往往因人而异,不同分析者画出的拟合曲线很可能也是不一样的; 3、回归分析可以准确地计量各个因素之间的相关程度与回归拟合程度的高低,提高预测方程式的效果;在回归分析法时,由于实际一个变量仅受单个因素的影响的情况极少,要注意模式的适合范围,所以一元回归分析法适用确实存在一个对因变量影响作用明显高于其他因素的变量是使用。多元回归分析法比较适用于实际经济问题,受多因素综合影响时使用。缺点:有时候在回归分析中,选用何种因子和该因子采用何种表达式只是一种推测,这影响了用电因子的多样性和某些因子的不可测性,使得回归分析在某些情况下受到限制。支持向量机能非常成功地处理回归问题(时间序列分析)和模式识别(分类问题、判别分析)等诸多问题,并可推广于预测和综合评价等领域,因此可应用于理科、

工科和管理等多种学科.目前国际上支持向量机在理论研究和实际应用两方面都正处于飞速发展阶段两个不足:(1) SVM算法对大规模训练样本难以实施由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。针对以上问题的主要改进有有J、Platt的SMO算法、T、Joachims的SVM、 C、J、 C、Burges等的PCG C、张学工的CSVM以及O、L、Mangasarian等的SOR算法(2) 用SVM解决多分类问题存在困难经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器。

非线性支持向量机

非线性支持向量机 建立非线性支持向量机分为两步:首先将非线性数据转变到一个维数比原空间高的新的特征空间中,然后再新的特征空间中使用线性支持向量机。 我们通常将描述数据的量成为特征,而把选择随合适表达式将非线性数据转变到特征空间的任务成为特征选择。 在解决一个特征空间中的最优分类面问题时,我们只需要考虑这个空间中的内积运算。根据虽有分类面的性质,当非非线性支持向量机映射到特征空间时,在这个变幻空间中我们只需要进行内积运算即可。如果有一种方法可以在变换空间中直接计算内积,使其与原空间中的内积计算直接对应,那么久省去了通过特征选择将一个非线性支持向量机映射到特征空间的不会步骤。这样即使变换空间的维数增加许多,计算的复杂度也没增加多少。核函数方法就是这样一种方法。 核函数的定义: 定义:核是一个函数K,对所有x i,x j?X,满足:K x i,x j=,?为从X到特征空间F的映射。注意:核函数为对称函数。 因为K x i,x j=,所以在SVM算法中只需用到K,而无需考虑如何得到?。如果在算法中每处的x i?x j都由K x i,x j替代,算法就能在特征空间F中使用SVM,并且训练样本所花时间与训练原始样本所花时间相同。因此,在完成核变换后,所有操作和线性SVM一样,只不过操作进行的空间不一样。 在支持向量机中,最常用的核函数是: 多项式: K x i,x j=(x i T x j+1)q,q>0 径向基函数: K x i,x j=exp?(?x i?x j2σ2 ) 双曲正切: K x i,x j=tanh?(βx i T x j+γ) 下面,我们将用一个例子来说明该如何选择核函数。 假设训练数据都是R2中的向量,我们选择核函数K x i,x j=(x i?x j)2。这样我们很容易找到一个新的空间H,以及从R2→ 的特征映射?,比如说:(x i?x j)2=?x??(y)如果选择H=R3,则

机器学习算法之一:Logistic 回归算法的优缺点

机器学习算法之一:Logistic 回归算法的优缺点 LogisTIc 回归是二分类任务中最常用的机器学习算法之一。它的设计思路简单,易于实现,可以用作性能基准,且在很多任务中都表现很好。 因此,每个接触机器学习的人都应该熟悉其原理。LogisTIc 回归的基础原理在神经网络中也可以用到。在这篇文章中,你将明白什么是LogisTIc 回归、它是如何工作的、有哪些优缺点等等。 什么是LogisTIc 回归?和很多其他机器学习算法一样,逻辑回归也是从统计学中借鉴来的,尽管名字里有回归俩字儿,但它不是一个需要预测连续结果的回归算法。 与之相反,Logistic 回归是二分类任务的首选方法。它输出一个0 到1 之间的离散二值结果。简单来说,它的结果不是1 就是0。 癌症检测算法可看做是Logistic 回归问题的一个简单例子,这种算法输入病理图片并且应该辨别患者是患有癌症(1)或没有癌症(0)。 它是如何工作的?Logistic 回归通过使用其固有的logistic 函数估计概率,来衡量因变量(我们想要预测的标签)与一个或多个自变量(特征)之间的关系。 然后这些概率必须二值化才能真地进行预测。这就是logistic 函数的任务,也称为sigmoid 函数。Sigmoid 函数是一个S 形曲线,它可以将任意实数值映射到介于0 和 1 之间的值,但并不会取到0/1。然后使用阈值分类器将0 和1 之间的值转换为0 或1。 下面的图片说明了logistic 回归得出预测所需的所有步骤。 下面是logistic 函数(sigmoid 函数)的图形表示: 我们希望随机数据点被正确分类的概率最大化,这就是最大似然估计。最大似然估计是统计模型中估计参数的通用方法。 你可以使用不同的方法(如优化算法)来最大化概率。牛顿法也是其中一种,可用于查找

常见机器学习算法优缺点小结

常见机器学习算法 一、最近邻算法(KNN) 1. 概述 KNN的主要过程如下: Step 1: 计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等); Step 2: 对上面所有的距离值进行排序; Step 3: 选前k个最小距离的样本; Step 4: 根据这k个样本的标签进行投票,得到最后的分类类别; 如何选择一个最佳的K值,这取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响。但会使类别之间的界限变得模糊。一个较好的K值可通过各种启发式技术来获取,比如,交叉验证。另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。 近邻算法具有较强的一致性结果。随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。对于一些好的K值,K近邻保证错误率不会超过贝叶斯理论误差率。 2. 优点 (1) 理论成熟,思想简单,既可以用来做分类也可以用来做回归; (2) 可用于非线性分类; (3) 训练时间复杂度为O(n); (4) 对数据没有假设,准确度高,对outlier不敏感; (5) KNN是一种在线技术,新数据可以直接加入数据集而不必进行重新训练 3. 缺点 (1) 对于样本容量大的数据集计算量比较大。 (2) 样本不平衡时,预测偏差比较大。如:某一类的样本比较少,而其它类样本比较多。 (3) KNN每一次分类都会重新进行一次全局运算。 (4) k值大小的选择。 (5) 需要大量的内存; 4. 应用领域 文本分类、模式识别、聚类分析,多分类领域 二、朴素贝叶斯(Na?ve Bayes, NB) 1. 概述 朴素贝叶斯属于生成式模型(关于生成模型和判别式模型,主要还是在于是否是要求联合分布),非常简单,你只是做了一堆计数。 如果注有条件独立性假设(一个比较严格的条件),朴素贝叶斯分类器的收敛速度将快于判别模型,如逻辑回归,所以你只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用,用mRMR中R来讲,就是特征冗余。引用一个比较经典的例子,比如,虽然你喜欢Brad Pitt

支持向量回归机

支持向量回归机 SVM 本身是针对经典的二分类问题提出的,支持向量回归机(Support Vector Regression ,SVR )是支持向量在函数回归领域的应用。SVR 与SVM 分类有以下不同:SVM 回归的样本点只有一类,所寻求的最优超平面不是使两类样本点分得“最开”,而是使所有样本点离超平面的“总偏差”最小。这时样本点都在两条边界线之间,求最优回归超平面同样等价于求最大间隔。 3.3.1 SVR 基本模型 对于线性情况,支持向量机函数拟合首先考虑用线性回归函数 b x x f +?=ω)(拟合n i y x i i ,...,2,1),,(=,n i R x ∈为输入量,R y i ∈为输出量,即 需要确定ω和b 。 图3-3a SVR 结构图 图3-3b ε不灵敏度函数 惩罚函数是学习模型在学习过程中对误差的一种度量,一般在模型学习前己经选定,不同的学习问题对应的损失函数一般也不同,同一学习问题选取不同的损失函数得到的模型也不一样。常用的惩罚函数形式及密度函数如表3-1。 表3-1 常用的损失函数和相应的密度函数 损失函数名称 损失函数表达式()i c ξ 噪声密度 ()i p ξ ε -不敏感 i εξ 1 exp()2(1) i εξε-+ 拉普拉斯 i ξ 1 exp()2 i ξ- 高斯 212 i ξ 21 exp()22i ξπ -

标准支持向量机采用ε-不灵敏度函数,即假设所有训练数据在精度ε下用线性函数拟合如图(3-3a )所示, ** ()()1,2,...,,0 i i i i i i i i y f x f x y i n εξεξξξ-≤+??-≤+=??≥? () 式中,*,i i ξξ是松弛因子,当划分有误差时,ξ,*i ξ都大于0,误差不存在取0。这时,该问题转化为求优化目标函数最小化问题: ∑=++?=n i i i C R 1 ** )(21 ),,(ξξωωξξω () 式()中第一项使拟合函数更为平坦,从而提高泛化能力;第二项为减小误差;常数0>C 表示对超出误差ε的样本的惩罚程度。求解式()和式()可看出,这是一个凸二次优化问题,所以引入Lagrange 函数: * 11 ****1 1 1()[()] 2[()]() n n i i i i i i i i n n i i i i i i i i i i L C y f x y f x ωωξξαξεαξεξγξγ=====?++-+-+-+-+-+∑∑∑∑ () 式中,α,0*≥i α,i γ,0*≥i γ,为Lagrange 乘数,n i ,...,2,1=。求函数L 对ω, b ,i ξ,*i ξ的最小化,对i α,*i α,i γ,*i γ的最大化,代入Lagrange 函数得到对偶形式,最大化函数:

SVM(支持向量机)算法在项目实践中的应用

支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年 首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的 优势,并能够推广应用到函数拟合等其他机器学习问题中。 正是由于SVM具有很多独特的优势,基于SVM分类器在很多时候都具有 较好的拟合作用。本文对SVM算法在行人检测项目实践中的应用进行详细讲解,同时给出调用OpenCV分类器及可视化的代码实现,便于大家学习实践。 目前的行人检测基本上都是基于法国研究人员Dalal在2005的CVPR发 表的HOG+SVM的行人检测算法(Histograms of Oriented Gradients for Human Detection, Navneet Dalel,Bill Triggs, CVPR2005)。HOG+SVM作 为经典算法也集成到OpenCV里面去了,可以直接调用实现行人检测。 一、HOG特征描述符 HOG(Histogram of Oriented Gradients)HOG特征在对象检测与模式 匹配中是一种常见的特征提取技术(深度学习之前),是基于本地像素块进 行特征直方图提取的一种算法,对像局部的变形与光照影响有很好的稳定性,最初是用HOG特征来识别人像,通过HOG特征提取+SVM训练,可以得到很好 的效果,OpenCV已经有相应的接口。 HOG特征是在2005年CVPR的会议发表,在图像手工特征提取方面具有里 程碑式的意义,当时在行人检测领域获得了极大成功。 1.1 主要思想 局部目标的外表和形状可以被局部梯度的分布很好的描述,即使我们不知 道对应的梯度和边缘的位置。(本质:梯度的统计信息,梯度主要存在于边缘edge或角落corner的地方) 1.2 宏观 特征描述符就是通过提取图像的有用信息,并且丢弃无关信息来简化图像 的表示。HOG特征描述符可以将3通道的彩色图像转换成一定长度的特征向量。那么我们就需要定义什么是“有用的”,什么是“无关的”。这里的“有用”,是指对于什么目的有用,显然特征向量对于观察图像是没有用的,但是它对于 像图像识别和目标检测这样的任务非常有用。当将这些特征向量输入到类似支 持向量机(SVM)这样的图像分类算法中时,会得到较好的结果。那什么样的 “特征”对分类任务是有用,比如我们想检测出马路上的车道线,那么我们可 以通过边缘检测来找到这些车道线,在这种情况下,边缘信息就是“有用的”,而颜色信息是无关的。 方向梯度直方图(HOG)特征描述符常和线性支持向量机(SVM)配合使用, 用于训练高精度的目标分类器。 1.3 微观(硬核) 在HOG特征描述符中,梯度方向的分布,也就是梯度方向的直方图被视作 特征。图像的梯度(x和y导数)非常有用,因为边缘和拐角(强度突变的区域) 周围的梯度幅度很大,并且边缘和拐角比平坦区域包含更多关于物体形状的信息。HOG特征是一种图像局部特征,基本思路是将图像划分为很多小的连通区域,即细胞单元Cell,然后对Cell的梯度幅值和方向进行投票统计,形成基 于梯度特性的直方图。把直方图在图像更大的范围内(又名区间或者Block)进 行归一化。归一化的块描述符叫做HOG描述子feature descriptor。将检测窗

相关文档
最新文档