PDE静电场仿真

PDE静电场仿真
PDE静电场仿真

问题1

截面为正方形的无限长线电荷如下图所示。设电荷面密度为02πε;边长2a =。

请采用Matlab 的PDETool 工具箱仿真区域oABC 的电磁场分布。说明场的边值问题,给出边界oA 、AB 、BC 、Co 上的边界条件。

问题1求解

由对称性知,边界Co 上的边界条件是0?=,边界oA 上的边界条件是0n

??=? 。当区域oABC 足够大时,边界AB 、BC 可视为距离线电荷无穷远,边界条件也是0?=。因此可以根据边界条件利用Matlab 的PDETool 工具箱仿真区域oABC 的电场分布。

如图,矩形R1表示处于区域oABC中的部分线电荷,以20×20的矩形R2表示区域oABC。则R1内有电荷,设为泊松方程:

R2-R1内无电荷,设为拉普拉斯方程:

再分别设置AB 、BC 、Co 上的边界条件为0?=:

设置oA 上的边界条件为0n

?

?=? :

再经过剖分求解,得到以下仿真结果。

以上结果是假设区域oABC的大小为20×20得出的,可以看出Co、oA上的电场线分布是符合实际的,但不能确定在20×20的大小内AB、BC是否已经距离线电荷足够远以至可以?=,因此,再仿真一个大小为100×100的结果进行对比:

认为0

可以看出,在20×20的范围内AB 、BC 上的边界条件并不满足0?=的条件。所以对于本题,区域oABC 越大,仿真结果与实际越相符。 问题2

请采用Matlab 的PDETool 工具箱对下列场进行仿真。

问题2求解

(a).

左边界和下边界的边界条件都是0?=。当上边界和右边界无穷大时,边界条件也是0?=。无限长导体棒的边界条件为10?=。区域内无电荷,应用拉普拉斯方程。

仿真结果如下:

(b).

两个直角壁的边界条件已知,右上方的为10?=,左下方的为0?=。当直角壁趋于无穷远时,上方和右方都相当于两个无限大平板,故上边界和右边界的条件都为0n

??=? 。区域内无电荷,应用拉普拉斯方程。

仿真结果如下:

(c).

外边界条件为0?=,内边界条件为10?=。区域内无电荷,应用拉普拉斯方程。 仿真结果如下:

仿真收获

PDEtool工具箱是一个比较方便工具,在求解电场分布问题方面可以很简便地得到比较形象具体的结果。在以后的电磁场学习过程中,它是一个十分有用的工具。

但是由于PDEtool工具箱的基本原理是数学上的数值法求解偏微分方程,因此必须有确定的边界条件和微分方程。从理论上来说,它是无法求解无穷大区域的电场问题的。但当区域无穷大时,在无穷远处电势为0,因此我们可以设定一个比较大的有限区域,边界条件设为电势为0,由此得到近似解。只要仿真区域足够大,结果就越接近实际。而选取合适的边界条件,可以减小仿真区域,这主要考虑的是我们需要多大的求解范围(如问题1,如果我们需要的准确求解范围是20×20,就应该设一个100×100的或合适大的仿真区域)。

同轴电缆的电场3D仿真

同轴电缆的电场3D仿真 目录 1.课程设计的目的与作用 (1) 1.1设计目的 (1) 2.设计任务及所用Maxwell软件环境介绍 (1) 2.1设计任务 (1) 2.2 Maxwell软件环境 (2) 3.电磁模型的建立 (2) 3.1建模并设计模型属性 (2) 3.2选择求解器类型 (2) 3.3建立内心圆柱模型 (3) 3.4设置材料属性 (5) 3.5设定激励源 (5) 3.6设置计算参数 (6) 3.7检验所有设置是否正确并求解 (8) 4.电磁模型计算及仿真结果后处理分析 (8) 4.1电场强度分布 (8) 4.2电通密度分布 (10) 4.3电位分布 (11) 4.4电能量的计算 (12) 5.设计总结和体会 (14) 6.参考文献 (14)

1.课程设计的目的与作用 1.1设计目的: 本次课设是同轴电缆的电场仿真,通过设计与仿真验证理论的真实性,以便使我们更好的理解实体的理论,才能更好的深度学习电磁场的知识。通过对典型电磁产品的仿真设计,并模拟电磁场的特性,将理论与实践有效结合,强化学生对电磁场与电磁波的理解和应用,提高教学质量。 1.2设计作用:总体要求:熟练使用 Ansoft Maxwell 仿真软件,对电场,磁场进行分析,了解所做题目的原理。利用 Ansoft Maxwell 软件仿真简单的电场以及磁场分布,画出电场矢量E线图,磁感应强度B线图。并对仿真结果进行分析,总结。将所做步骤详细写出,并配有相应图片说明。 2.设计任务及所用Maxwell软件环境介绍 2.1设计任务:同轴电缆的电场仿真 如图2所示,同轴电缆模型。内导体半径为20mm,外导体半径为160mm,外导体厚度为20mm。内导体和外导体均用银(silver),内外导体间填充树脂玻璃(Plexiglass)(3.40,0.0051)。 (1)内导体电势为380V,外导体电势为0。

矩形谐振腔电磁场的FDTD分析和Matlab仿真

矩形谐振腔电磁场的FDTD分析和Matlab仿真 摘要:目前,电磁场的时域计算方法越来越引人注目。这种方法已经广泛应用到各种电磁问题的分析之中。而将Matlab作为一种仿真工具,用于时域有限差分法,可以简化编程,使研究者重心放在FDTD本身上,而不必在编程上花费过多的时间。本课题通过用FDTD方法计算矩形谐振腔电磁场分布,并用Matlab 进行仿真。 关键词:时域有限差分法,Matlab仿真,矩形谐振腔 1.引言 时域有限差分法(Finite-Dfference Time-Domain Method)是求解电磁问题的一种数值技术,是在1966年由K.S.Yee第一次提出的。FDTD法直接将有限差分式代替麦克斯韦时域场旋度方程中的微分式,得到关于场分量的有限差分式,用具有相同电参量的空间网格去模拟被研究体,选取合适的场始值和计算空间的边界条件,可以得到包括时间变量的麦克斯韦方程的四维数值解,通过傅里叶变换可求得三维空间的频域解。时域有限差分法突出的优点是所需的存储量及计算时间与N成正比,使得很多复杂的电磁场计算问题成为可能,用时域有限差分法容易模拟各种复杂的结构,使得用其他方法不能解决的问题有了新的处理方法。 本文主要讨论如何用Matlab语言来编写FDTD的吸收边界条件以及编程时应注意的问题。 2时域有限差分法的基本理论 2.1 时域有限差分法的简介 1966年K.S.Yee首次提出了一种电磁场数值计算的新方法——时域有限差分(Finite-Dfference Time-Domain Method)方法。对电磁场E、H分量在时间和空间上采取交替抽样的离散方式,每一个E(或H)场分量四周有四个H(或E)场分量环绕,应用这种离散方式将含时间变量的麦克斯韦旋度方程转化为一组差分方程,并在时间轴上逐步推进地求解空间电磁场。Yee提出的这种抽样方式后来被称为Yee元胞。 FDTD方法是求解麦克斯韦方程的直接时域方法。在计算中将空间某一样本点的电场(或磁场)与周围格点的磁场(或电场)直接相关联,且介质参数已赋值给空间每一个元胞,因此这一方法可以处理复杂形状目标和非均匀介质物体的电磁散射、辐射等问题。同时FDTD的随时间推进可以方便地给出电磁场的时间演化过程,在计算机上以伪彩色方式显示,这种电磁场可视化结果清楚的显示了物理过程,便于分析和设计。 2.2 FDTD数值计算的优势 FDTD算法,其空间节点采用Yee元胞的方法,电场和磁场节点空间与时间上都采用交错抽样,因而使得麦克斯韦旋度方程离散后构成显示差分方程,相比较宇前面的波动方程求解,计算等到大大简化。由于FDTD采用吸收边界条件的

电磁场的Matlab仿真.

Matlab 与电磁场模拟 一单电荷的场分布: 单电荷的外部电位计算公式: q φ= 4πε0r 等位线就是连接距离电荷等距离的点,在图上表示就是一圈一圈的圆,而电力线就是由点向 外辐射的线。 MATLAB 程序: theta=[0:.01:2*pi]'; r=0:10; x=sin(theta*r; y=cos(theta*r; plot(x,y,'b' x=linspace(-5,5,100; for theta=[-pi/4 0 pi/4] y=x*tan(theta; hold on ; plot(x,y; end grid on 单电荷的等位线和电力线分布图: 二多个点电荷的电场情况: 模拟一对同号点电荷的静电场 设有两个同号点电荷, 其带电量分别为 +Q1和+Q2(Q1、Q2>0 距离为 2a 则两 电荷在点P(x, y处产生的电势为: 由电场强度可得E = -?U, 在xOy 平面上, 电场强度的公式为: 为了简单起见, 对电势U 做如下变换:

。 Matlab 程序: q=1; xm=2.5; ym=2; x=linspace(-xm,xm; y=linspace(-ym,ym; [X,Y]=meshgrid(x,y; R1=sqrt((X+1.^2+Y.^2; R2=sqrt((X-1.^2+Y.^2; U=1./R1+q./R2; u=1:0.5:4; figure contour(X,Y,U,u grid on legend(num2str(u' hold on

plot([-xm;xm],[0;0] plot([0;0],[-ym;ym] plot(-1,0,'o' , 'MarkerSize' ,12 plot(1,0,'o' , 'MarkerSize' ,12 [DX,DY] = gradient(U; quiver(X,Y,-DX,-DY; surf(X,Y,U; 同号电荷的静电场图像为: 50 40 30 20 10 0-2 2

ansys大作业ANSYS电磁场分析及与ansoft仿真分析结果比较.

期末大作业 题目:简单直流致动器 ANSYS电磁场分析及与ansoft仿真分析结果比较作者姓名:柴飞龙 学科(专业):机械工程 学号:21225169 所在院系:机械工程学系 提交日期2013 年 1 月

1、 背景简述: ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用软件有限元分析软件,是现代产品设计中的高级CAE 工具之一。而ansoft Maxwell 软件是一款专门分析电磁场的分析软件,如传感器、调节器、电动机、变压器等。 本人在实验室做的课题涉及到电机仿真,用的较多的是ansoft 软件,因为其对电机仿真的功能更强大,电机功能模块更多,界面友好。 现就对一电磁场应用实例,用ANSYS 进行仿真分析,得到的结果与ansoft 得到的结果进行简单核对比较。 2、 问题描述: 简单直流致动器由2个实体圆柱铁芯,中间被空气隙分开的部件组成,线圈中心点处于空气隙中心。衔铁是导磁材料,导磁率为常数(即线性材料,r μ=1000),线圈是可视为均匀材料,空气区为自由空间(1=r μ),匝数为2000,线圈励磁为直流电流:2A 。模型为轴对称。 3、 ANSYS 仿真操作步骤: 第一步:Main menu>preferences

第二步:定义所有物理区的单元类型为PLANE53 Preprocessor>Element type>Add/Edit/Delete 第三步:设置单元行为 模拟模型的轴对称形状,选择Options(选项) 第四步:定义材料 Preprocessor>Material Props> ?定义空气为1号材料(MURX = 1) ?定义衔铁为2号材料(MURX = 1000) ?定义线圈为3号材料(自由空间导磁率,MURX=1)

圆极化波及其MATLAB仿真-西电电子教案

电磁场与电磁波大作业圆极化波及其MATLAB仿真 专业:信息对抗技术班级:021231 学生姓名: 指导教师:黄丘林

一、引言 电磁波电场强度的取向和幅值随时间而变化的性质,在光学中称为偏振。如果这种变化具有确定的规律,就称电磁波为极化电磁波(简称极化波)。如果极化电磁波的电场强度始终在垂直于传播方向的(横)平面内取向,其电场矢量的端点沿一闭合轨迹移动,则这一极化电磁波称为平面极化波。电场的矢端轨迹称为极化曲线,并按极化曲线的形状对极化波命名,其主要分类有线极化波,圆极化波和椭圆极化波。 二、原理详解 下面我们详细分析圆极化波的产生条件。 假设均匀平面电磁波沿+Z 方向传播,电场强度矢量E 频率和传播方向均相同的两个分量 x E 和 y E ,电场强度矢量的表达式为 -00()(1)()y x x X y y jkz x x y y j j jkz x xm y ym E E E E e E e E e e φ φ-=+=+=+E a a a a a a 电场强度矢量的两个分量的瞬时值为 cos()(2)cos() (3) x xm x y ym y E E t kz E E t kz ωφωφ=-+=-+ 设,,0, 2 xm ym m x y E E E z π φφ==-=± = 那么式(2)式(3)变为 cos()cos() 2 x m x y y y E E t E E t ωφπωφ=+=+m 消去t 得 22 ()()1y x m m E E E E += 此方程就是圆方程。电磁波的两正交电场强度分量的合成电场强度矢量E

的模和幅角分别依次为 (4)sin(t )arctan[](t ) (5)cos(t ) m x x x E E ωφαωφωφ==±+==±++ 由式(4)和式(5)可见,电磁波的合成电场强度矢量的大小不随时间变化,而其余x 轴正向夹角α将随时间变化。因此合成的电场强度矢量的矢端轨迹为圆,故称为圆极化。 三、仿真分析 下面我们用MATLAB 进行仿真分析。 假设电磁波为圆极化波,且沿+z 方向传播,则其电场强度矢量轨迹如下图一所示: x 电场强度矢量 y z 图一 而当固定位置观察圆极化波的矢端轨迹,其结果如下图二:

Maxwell静电场中同轴电缆的3D仿真

Maxwell 静电场中同轴电缆的3D 仿真 电气1008班 研究题目: 单心电缆有两层绝缘体,分界面为同轴圆柱面。 已知R 1=10mm,R 2=20mm,R 3=30mm,R 4=31mm,内导体为copper ,外导体为lead ,中间的介质ε1=5ε0, ε2=3ε0, ,内导体U=100V ,外导体为0V 求:电位,电场强度,电位移随半径的变化,单位长度电容和电场能量。 用解析法计算电位,电场强度,电位移随半径的变化,计算单位长度电容和 电场能量。 解: 设同轴电缆内、外层导体分别带电+τ、-τ。 由高斯定理:在介质中?=?S d S D τL 所以D= πρ τ 2 2 32 1 21 21ln 2ln 23 2 2 1 ρρπε τ ρρπε τ ρρρρρρ+ = + = ? ? d E d E U 所以2 32 1 21 ln 1 ln 1 2ρρερρεπτ+ = U R1 R2 R4 R3 ε1 ε2 (2)D l l πρτ=111 22222D E D E τεπρετεπρε== ==

代入E 1,E 2 ρρεερρρ+ = U E ) ln ln (2 31 21 22ρρρρεερ+= U E 代入具体数值,得到E 1 = ρ 05 .73,E 2 = ρ 75 .121 由?=?3 ρρ EdL 可得电位?1 =268.1-73 ln ρ,?2 =414.1-121.8 ln ρ 电场能量:W=DEdv V ?2 1 =5.0775×10-7 J/m D= πρ τ 2= ) ln 1 ln 1 ( 2 32 1 21 ρρερρερ+ U = ρ -9 10 ×3.23(ρ单位为m) C= =U τ L L =+ 2 32 1 21 ln 1 ln 1 2ρρερρεπ 1.0155×10 -10 F 用ansfot 软件计算上述物理量随半径的变化曲线,并画出电压分布图,计 算出单位长度电容,和电场能量 一、建模并设置模型属性 1,打开Ansoft Maxwell ,单击project ,选择Insert Maxwell 3D Design 建立一个3D 模型 2,选择求解器类型:选择电场—静电场(Maxwell 3D > Solution Type>Electrostatic )

电磁场的Matlab仿真

Matlab 与电磁场模拟 一 单电荷的场分布: 单电荷的外部电位计算公式: 等位线就是连接距离电荷等距离的点,在图上表示就是一圈一圈的圆,而电力线就是由点向外辐射的线。 MATLAB 程序: theta=[0:.01:2*pi]'; r=0:10; x=sin(theta)*r; y=cos(theta)*r; plot(x,y,'b') x=linspace(-5,5,100); for theta=[-pi/4 0 pi/4] y=x*tan(theta); hold on ; plot(x,y); end grid on 单电荷的等位线和电力线分布图: r q 04πεφ=

二多个点电荷的电场情况: 模拟一对同号点电荷的静电场 设有两个同号点电荷,其带电量分别为+Q1和+Q2(Q1、Q2>0 )距离为2a则两电荷在点P(x, y)处产生的电势为: 由电场强度可得E = -?U,在xOy平面上,电场强度的公式为: 为了简单起见,对电势U做如下变换: 。 Matlab程序:

q=1; xm=; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1+q./R2; u=1::4; figure contour(X,Y,U,u) grid on legend(num2str(u')) hold on plot([-xm;xm],[0;0]) plot([0;0],[-ym;ym]) plot(-1,0,'o','MarkerSize',12) plot(1,0,'o','MarkerSize',12) [DX,DY] = gradient(U); quiver(X,Y,-DX,-DY); surf(X,Y,U); 同号电荷的静电场图像为:

用Matlab仿真带电粒子在电磁场中的运动

用Matlab 仿真带电粒子在电磁场中的运动 摘要:如果一个带电粒子在既有电场又有磁场的区域里运动,则其会受到相应的电磁力。这里,运用MATLAB 仿真带电粒子在电场中的运动,进一步讨论带电粒子在E ≠0,B ≠0;E=0,B ≠O 和E ≠0,B=O 并用该软件仿真出以上三种轨迹曲线。 关键字:Matlab ;电磁学;仿真;电荷 0 引言 Matlab 是美国MathWorks 公司开发的一套高性能的数值计算和可视化软件。它是一种以矩阵运算为基础的交互式程序语言,其应用范围涵盖了当今几乎所有的工业应用与科学研究领域,集数值分析、矩阵运算、信号处理和图形显示于一体。其丰富的库函数和各种专用工具箱,将使用者从繁琐的底层编程中解放出来。此外Matlab 更强大的功能还表现在其有大量的工具箱(Toolbox),如:控制系统、数值模拟、信号处理及偏微分方程等工具箱。因此Matlab 已成为大学科学研究中必不可少的工具。 Matlab 具有丰富的计算功能和科学计算数据的可视化能力,特别是应用偏微分方程工具箱在大学物理电磁场的数值仿真中具有无比的优势。下文是在利用Matlab 软件仿真带电粒子在不同电磁场中的运动轨迹。 1 带电粒子在均匀电磁场中的运动理论分析 设带电粒子质量为m ,带电量为q ,电场强度E 沿y 方向,磁感应强度B 沿z 方向. 则带电粒子在均匀电磁场中的运动微分方程为 y m qB v m qB x y == x m qB E m q v m qB E m q y x -=-= 0=z ()()()()()()z y z y y y y y x y x y ======6,5,4,3,2,1 则上面微分方程可化作:

ANSYS与ansoft电机仿真步骤

A N S O F T建模 1、在ANSOFT软件中建立电机模型 第一步、在ANSOFT绘制电机模型 第二步、选择“Modeler”菜单下的“Export”项会出现下面的窗口 选择保存为“step”格式的文件。这时可以退出ANSOFT软件。 ANSYS仿真 一、稳态温度仿真 第一步创建稳态温度仿真模型 第二步、添加材料及属性,属性主要为“导热系数” 选择“Engineering data”→”Edit” 开始添加材料 第三步、添加完材料后,导入在ANSOFT下创建的电机模型,选择“Geometry”按下面选项选择 选择ANSOFT下保存的“step”格式的电机模型 第四步、导入模型后,给模型添加材料。选择“Model”→”Edit” 进入下面的窗口,按下面的步骤给电机的各个部分选择对应的材料。 第五步、添加完材料后,返回主窗口,更新修改后的工程文件 如果没有问题, 会变为 第六步、添加热载荷 首先添加自由度,在温度场分析中选择为温度,按下面窗口选择。 接下来,编辑温度,并选择应用区域,这儿定义整个模型的初始温度相同。 下面添加热载荷,按下面的窗口选择,这里选择“热生成率”。 编辑添加的热生成率数值,并选择应用区域,这儿选择所有的绕组。 添加完载荷后,更新一下工程文件,通过后,可以选择“Solve”进行求解。 如果求解成功后,左边的窗口会变成右边的窗口。 第七步、查看仿真结果。按下面的窗口选择观察变量。 二、瞬态温度仿真 第一步、建立瞬态温度分析模型 第二步、添加材料及属性,方法与稳态时相同。但材料的属性不同,这里需要添加材料的“密度”、“导热系数“、“比热容”。“Toolbar”窗口如下。 按照各个选项添加数据。 除了添加载荷不同,接下来的步骤与稳态时相同。 设置仿真步数为多步。 按下窗口设置载荷数据,设置为“阶梯数据”。 1 / 1

电磁场的matlab仿真实验--m语言1

实验三:等量异号点电荷的电势分布 一、实验目的与要求 1.掌握命令窗口中直接输入语句,进行编程绘制等量异号点电荷的电势分布图; 2.掌握二维网格和三维曲面绘图的语句。 二、实验类型 设计 三、实验原理及说明 这里在命令窗口中直接输入简单的语句进行编程设计。MATLAB有几千个通用和专用 五、实验内容和步骤 (一)建立等量异号点电荷的电势方程

物理情景是oxy平面上在x=2,y=0处有一正电荷,x= -2,y=0处有一负电荷,根据 计算两点电荷电场中电势的分布,由于 (二)利用MA TLAB的函数, 绘制等量异号点电荷的电势分布图 首先选定一系列的x和y后,组成了平面上的网络点,再计算对应每一点上的z值。例如-5:0.2:5,-4:0.2:4分别是选取横坐标与纵坐标的一系列数值,meshgrid是生成数据网格的命令,[x,y]是xy平面上的坐标网格点。z是场点(x ,y)的电势,要求写出z的表达式。这里用到MA TLAB的函数mesh()描绘3D网格图,meshgrid()描绘在3D图形上加坐标网格,sqrt()求变量的平方根。mesh()是三维网格作图命令,mesh(x,y,z)画出了每一个格点(x,y)上对应的z值(电势)。在命令窗口中直接输入简单的语句,如下。 解1

解2

当场点即在电荷处时,会出现分母为零的情况,因此在r里加了一个小量0.01,这样既可以完成计算,又不会对结果的正确性造成太大影响。 另外需要注意的是表达式中的“./ ”、“.^ ”是对数组运算的算符,含义与数值运算中的“./ ”、“.^ ”相同,不同之处是后者只对单个数值变量进行运算,而前者对整个数组变量中的所有元素同时进行运算。 解2为了减少计算量,增加精确度,与先前的示例相比,计算范围由原先的-5

电磁场仿真作业ansoft

电磁场ansoft软件应用作业 ——静电场部分 TYP 电气0906 09291183

一、题目 单心电缆有两层绝缘体,分界面为同轴圆柱面。已知,R1=10mm,R2=20mm,R3=30mm,R4=31mm,内导体为copper,外导体为lead,中间的介质ε1=5ε0, ε2=3ε0, ,内导体U=100V,外导体为0V 求 1用解析法计算电位,电场强度,电位移随半径的变化,计算单位长度电容和电场能量。 2用ansfot软件计算上述物理量随半径的变化曲线,并画出电压分布图,计算出单位长度电容,和电场能量

二、解答 1、解析法: 在介质中取任意点P ,设它到电缆中心距离为r 。过P 点作同轴圆柱面,高为l 。该面加上上下两底面作为高斯面S 。 D rl S d D S )2(π=?? ε 1 1D E = ε 2 2D E = ??+=R R dr R R dr U E E 322121 将方程联立,代入数据解得: m V r E /05.731≈ ,m V r E /75 .1212≈ 所以 12 9 2 1158.8573.05 3.23/1010D C r r m E ε--???=?== 电位 r R R R dr dr l d E r r E E ln 05.7341.236232211 --=?+?=?=??? ∞ ? V r R dr l d E r r E ln 75.12192.426322 --=?=?=?? ∞ ? V 电场能量 9 7 2 11 3.23 1.181173.05221010e D r r E r ω--??=?=??=3 J m 9 7 2 22 3.23 1.9711121.752210 10e D r r E r ω--??=?=??=3 J m 单位长度电场能量 231277632 12 12 222(1.18ln 1.97ln ) 1.02101010e e e R R rdr rdr J m R R R R W R R πππωω---=+=???+??=???单位长度电容 6 1022 22 1.0210 2.0410100e W C F m U --??===?

同轴电缆电场的仿真---2D仿真器

同轴电缆电场的仿真---2D仿真器同轴电缆电场的 仿真---2D仿真器 目录 同轴电缆电场的仿真---2D仿真器同轴电缆电场的仿真---2D仿真器 (1) 1.题目概述 (2) 1.1题目:同轴电缆电场的仿真---2D仿真器 (2) 1.2 设计目的: (2) 1.3设计作用: (2) 1.4 Maxwell软件环境: (3) 2.设计与仿真 (3) 2.1绘制过程与参数设置: (4) 2.2仿真过程 (8) 2.2.1电位,电场强度,电位移分布 (8) 2.2.2计算电容 (15) 2.2.3计算电场能量 (17) 3.计算结果处理分析 (18) 4. 设计总结和体会 (19) 5.参考文献 (19)

1.题目概述 1.1题目:同轴电缆电场的仿真---2D仿真器 同轴电缆描述:单心电缆有两层绝缘体,分界面为同轴圆柱面。已知 R 1=10mm,R 2 =20mm,R 3 =30mm,R 4 =31mm,内导体为copper,外导体为lead,中间的介质ε 1 =5ε 0, ε 2 =3ε 0, , 内导体外导体的电位分别为:内导体U=380V,外导体为-380V。 求: 1用解析法计算电位,电场强度,电位移随半径的变化,计算单位长度电容和电场能量。 2用Ansoft Maxwell软件计算上述物理量随半径的变化曲线,并画出电压分布图,计算出单位长度电容,和电场能量 图1.1 同轴电缆 1.2 设计目的: 电磁场与电磁波课程理论抽象、数学计算繁杂,将Maxwell软件引入教学中,通过对典型电磁产品的仿真设计,并模拟电磁场的特性,将理论与实践有效结合,强化学生对电磁场与电磁波的理解和应用,提高教学质量。 1.3设计作用: 总体要求:熟练使用Ansoft Maxwell 仿真软件,对电场、磁场进行分析,了解所做题目的原理。利用Ansoft Maxwell软件仿真简单的电场以及磁场分布,画出电场矢量E 线图、磁感应强度B线图,并对仿真结果进行分析、总结。将所做步骤详细写出,并配有相应图片说明。

华科电磁场matlab仿真作业

华科电磁场m a t l a b仿真作 业 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

电磁场作业 电气1202 XXX U201200000一.作业一 1.程序框图

2.程序 clear; col = 61; %第一行点数 row = col; %行数 span = 0.3/(col-1); %步长 End = ones(1,col)*col; %每一行的终止点 Start = ones(1,col); %每一行的起始点 A = zeros(row,col); %A矩正存储每点电势 for i = (col-1)/3+1:(col-1)*2/3+1

for j = (col-1)/3+1:(col-1)*2/3+1 A(i,j) =100; end end %初始化电势完毕 temp = A; for n= 1:500 %迭代次数 for i = 2:row-1 if ( i<((col-1)/3+1)||i>( (col-1)*2/3+1 ) ) for j = Start(i)+1:End(i)-1 temp(i,j)=(A(i-1,j) +A(i+1,j) +A(i,j-1) +A(i,j+1))/4; end else for j = 2:(col-1)/3 temp(i,j)=(A(i-1,j) +A(i+1,j) +A(i,j-1) +A(i,j+1))/4; end for j = 2*(col-1)/3+2:col-1 temp(i,j)=(A(i-1,j) +A(i+1,j) +A(i,j-1) +A(i,j+1))/4; end end A = temp; end end X = row:-1:1; Y = col:-1:1; [X,Y] = meshgrid(X,Y); figure(1); surf(rot90(A,2)); figure(2); contour(rot90(A,2)); hold on; [Gx,Gy] = gradient(A,1,1); quiver(Gx,Gy); 3.计算机绘图

MATLAB仿真平面电磁波在不同媒介分界面上的入射

MATLAB 仿真平面电磁波在不同媒介分界面上的入射、反射和折射 一、实验目的: 1、进一步学习MATLAB ,初步掌握GUI 界面的编程。 2、通过编程实现电磁波仿真效果图。 3、进一步理解平面电磁波的入射、反射和折射现象 二、实验要求: 1、以电场为例,动态演示平面电磁波的传播情况。 2、可以任意设置媒介的介电常数和入射角。 3、考虑金属导体和空气的分界面平面电磁波的入射、反射情况。 三、实验原理: 电磁波从一种媒质入射到第二种媒质时,分界面使一部分能量反射回第一种媒质,另一部分能量折射到第二种媒质中,反射波和折射波得大小和相位取决于分界面两侧的媒质特性、极化方向和入射角大小等,当电磁波入射到理想导体表面时,会发生全反射。这一过程中包括的主要原理有以下三点。 1、正弦平面波在媒质分界面的反射和折射规律 波对分界面的入射是任意的,但为了方便,我们假设入射面与zox 面重合。 波在z>0时发生入射和反射,在z<0时发生折射并令空间任意一点r r 处 的 入 射 波、反射波和折射波场强为: 11 1(sin cos )00(sin cos )00(sin cos ) 00i i i i r r i t t jK r jK x z i i i jK r jK x z r r r jK r jK x z t t t E E e E e E E e E e E E e E e θθθθθθ--+--+--+?==?==??==? 图表 1 正弦波斜入射示意图 根据在z=0的界面上电场强度的切线分量相等的边界条件,有 (,,0)(,,0)(,,0)i r t E x y E x y E x y == 故必有 112sin sin sin i r t k k k θθθ== 反射定律: i r θθ= 折射定律: 12sin sin i r k k θθ= 2、 正弦平面波对理想介质的斜入射 ① 垂直极化波 垂直极化波对理想介质斜入射如图所示,由折射和反射定律,我们可以得到在任意媒质中的场强。 在第一煤质中

电磁场仿真软件简介

电磁场仿真软件简介 随着电磁场和微波电路领域数值计算方法的发展,在最近几年出现了大量的电磁场和微波电路仿真软件。在这些软件中,多数软件都属于准3维或称为维电磁仿真软件。例如,Agilent公司的ADS(Advanced Design System)、AWR公司的Microwave Office、Ansoft公司的Esemble、Serenade和CST公司的CST Design Studio等。目前,真正意义上的三维电磁场仿真软件只有Ansoft公司的HFSS、CST公司的Mafia、CST Microwave Studio、Zeland公司的Fidelity和IMST GmbH公司的EMPIRE。从理论上讲,这些软件都能仿真任意三维结构的电磁性能。其中,HFSS (HFSS是英文高频结构仿真器(High Frequency Structure Simulator)的缩写)是一种最早出现在商业市场的电磁场三维仿真软件。因此,这一软件在全世界有比较大的用户群体。由于HFSS进入中国市场较早,所以目前国内的电磁场仿真方面HFSS的使用者众多,特别是在各大通信技术研究单位、公司、高校非常普及。 德国CST公司的MicroWave Studio(微波工作室)是最近几年该公司在Mafia软件基础上推出的三维高频电磁场仿真软件。它吸收了Mafia软件计算速度快的优点,同时又对软件的人机界面和前、后处理做了根本性的改变。就目前发行的版本而言,CST 的MWS的前后处理界面及操作界面比HFSS好。Ansoft也意识到了自己的缺点,在刚刚推出的新版本HFSS(定名为Ansoft HFSS )中,人机界面及操作都得到了极大的改善。在这方面完全可以和CST媲美。在性能方面,两个软件各有所长。在速度和计算的精度方面CST和ANSOFT成绩相差不多。值得注意的是,MWS采用的理论基础是FIT(有限积分技术)。与FDTD(时域有限差分法)类似,它是直接从Maxwell方程导出解。因此,MWS可以计算时域解。对于诸如滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而HFSS采用的理论基础是有限元方法(FEM),这是一种微分方程法,其解是频域的。所以,HFSS如果想获得频域的解,它必须通过频域转换到时域。由于,HFSS是用的是微分方法,所以它对复杂结构的计算具有一定的优势。 另外,在高频微波波段的电磁场仿真方面也应当提及另一个软件:ANSYS 。ANSYS 是一个基于有限元法(FEM)的多功能软件。该软件可以计算工程力学、材料力学、热力学和电磁场等方面的问题。它也可以用于高频电磁场分析(应用例如:微波辐射和散射分析、电磁兼容、电磁场干扰仿真等)。其功能与HFSS和CST MWS类似。但由于该软件在建模和网格划分过程中需要对该软件的使用规则有详细的了解,因此,对一般的工程技术人员来讲使用该软件有一定困难。对于高频微波波段通信、天线、器件封装、电磁干扰及光电子设计中涉及的任意形状三维电磁场仿真方面不如HFSS更专业、更理想。实际上,ANSYS软件的优势并不在电磁场仿真方面,而是结构静力/动力分析、热分析以及流体动力学等。但是,就其电磁场部分而言,它也能对任意三维结构的电磁特性进

PDE静电场仿真

问题1 截面为正方形的无限长线电荷如下图所示。设电荷面密度为02πε;边长2a =。 请采用Matlab 的PDETool 工具箱仿真区域oABC 的电磁场分布。说明场的边值问题,给出边界oA 、AB 、BC 、Co 上的边界条件。 问题1求解 由对称性知,边界Co 上的边界条件是0?=,边界oA 上的边界条件是0n ??=? 。当区域oABC 足够大时,边界AB 、BC 可视为距离线电荷无穷远,边界条件也是0?=。因此可以根据边界条件利用Matlab 的PDETool 工具箱仿真区域oABC 的电场分布。

如图,矩形R1表示处于区域oABC中的部分线电荷,以20×20的矩形R2表示区域oABC。则R1内有电荷,设为泊松方程: R2-R1内无电荷,设为拉普拉斯方程:

再分别设置AB 、BC 、Co 上的边界条件为0?=: 设置oA 上的边界条件为0n ? ?=? : 再经过剖分求解,得到以下仿真结果。

以上结果是假设区域oABC的大小为20×20得出的,可以看出Co、oA上的电场线分布是符合实际的,但不能确定在20×20的大小内AB、BC是否已经距离线电荷足够远以至可以?=,因此,再仿真一个大小为100×100的结果进行对比: 认为0

可以看出,在20×20的范围内AB 、BC 上的边界条件并不满足0?=的条件。所以对于本题,区域oABC 越大,仿真结果与实际越相符。 问题2 请采用Matlab 的PDETool 工具箱对下列场进行仿真。 问题2求解 (a). 左边界和下边界的边界条件都是0?=。当上边界和右边界无穷大时,边界条件也是0?=。无限长导体棒的边界条件为10?=。区域内无电荷,应用拉普拉斯方程。 仿真结果如下:

电磁场仿真实验-用超松弛法求二维静电场域的电位分布

姓名:梁鸿宇学号:19 班级:10通信 实验目的: 通过用MATLAB等软件编程计算电磁场问题,掌握有限差分法的基本思想,掌握电磁场数值计算的基本思想和方法,掌握MATLAB等软件编程技巧,学会用MATLAB等软件应用于有限差分法的数值解。实验内容: 用MATLAB等软件编程计算电磁场问题,给出有关波形和图表。分析数值解和解析解的优缺点。题目如下: 实验程序与结果分析: 程序(MATLAB) %电位函数为φ(x,y) ,边界条件φ(x,y)=0(x=0);φ(x,y)=50(y=0); % φ(x,y)=100(x=a);φ(x,y)=100(y=a); hx=11;hy=11; %设置网格节点数 v1=ones(hy,hx); %设置行列二维数组 m=10;n=10; %横纵向网格数 %上下两行的Dirichlet条件边界值: v1(1,:)=ones(1,hx)*50; v1(hy,:)=ones(1,hx)*100; %左右两列的Dirichlet条件边界值: for i=1:hy

v1(i,1)=0; v1(i,hx)=100; end %计算松弛因子 t1=(cos(pi/m)+cos(pi/n))/2; w=2/(1+sqrt(1-t1^2)); v2=v1;maxt=1;t=0; %初始化 k=0 while(maxt>1e-6) %由V1迭代V2.迭代精度为k=k+1 %计算迭代次数maxt=0; for i=2:hy-1 %从2到hy-1行循环for j=2:hx-1 %从2到hx-1列循环 v2(i,j)=v1(i,j)+(v1(i,j+1)+v1(i+1,j)+v2(i-1,j)+v2(i,j-1)-4*v1(i,j))*w/4; % 拉普拉斯方程差分式 t=abs(v2(i,j)-v1(i,j)); if(t>maxt) maxt=t;end end end v1=v2 end contour(v2,20) %画等电位线图 hold on x=1:1:hx;y=1:1:hy [xx,yy]=meshgrid(x,y); %形成栅格 [Ex,Ey]=gradient(v2,,; %计算梯度 AE=sqrt(Ex.^2+Ey.^2);Ex=Ex./AE;Ey=Ey./AE; % 场强归一化,使箭头等长quiver(xx,yy,Ex,Ey, %根据梯度数据画箭头 axis([,hx+,-2,13]) %设置坐标边框 plot([1,1,hx,hx,1],[1,hy,hy,1,1],'k') %画导体边框 text(hx/,hy+,'100V','fontsize',11); %上标注 text(hx/2,,'50V','fontsize',11); %下标注 text,hy/2,'0V','fontsize',11); %左标注

基于Matlab的电磁场图示化教学

目录 摘要 (1) 关键词 (1) Abstract (1) Key Words (1) 引言 (2) 1 Matlab的图示化技术 (2) 1.1 几个常用的绘图指令 (2) 1.2 具有两个纵坐标标度的图形 (2) 1.3 三维曲线 (3) 2 Matlab在静电场图示化中的应用 (3) 2.1 基本原理 (3) 2.2 等量同号点电荷的电场线的绘制 (4) 2.3 静电场中的导体 (6) 3 Matlab在恒定磁场图示化中的应用 (6) 3.1 电偶极子电磁场的Matlab图示与应用 (6) 3.2 两根载流长直导线在电磁场中的Matlab图示 (8) 3.3 运动的带电粒子在均匀电磁场中的Matlab图示 (9) 3.4 电磁波的Matlab图示 (11) 4 Matlab在时变电磁场仿真分析中的应用 (12) 4.1 Matlab图示化分析均匀平面波在理想介质中的传播 (12) 4.2 Matlab图示化分析矩形波导的场量分布 (14) 5 结语 (19) 致谢 (19) 参考文献 (20)

基于Matlab的电磁场图示化教学 自动化王丽洁 指导教师王庆兰 摘要:Matlab是由美国Mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。Matlab具有丰富的计算功能和科学计算数据的可视化能力,特别是应用偏微分方程工具箱在大学物理电磁学等各类物理场的数值仿真中具有无比的优势。本文将主要介绍Matlab在静电场图示化中的应用、Matlab在恒定磁场图示化中的应用以及Matlab在时变电磁场仿真分析中的应用。利用Matlab的图示化技术、利用Matlab分析电磁学,能够更为方便的实现电磁场图示化教学,能使复杂的问题大大简化,对阐述相关原理能起到很大的作用。 关键词:Matlab 图示化教学电磁场时变电磁场 The electromagnetic field of graphical teaching based on Matlab Student majoring in automation Wang Lijie Tutor Wang Qinglan Abstract:Matlab is published by the United States, the main face of the company Mathworks scientific computing, visualization and interactive program designed for high-tech computing environment. Matlab has a computing functions and rich scientific computing visualization capability of data, especially the application of partial differential equation toolbox has incomparable advantages in numerical simulation of university physics electromagnetism and other types of physical field. Mainly introduces the application of Matlab in electrostatic field, the graphic in Matlab in a constant magnetic field of graphical applications and Matlab application of electromagnetic simulation in the analysis of time. Using Matlab graphic technology, using the Matlab analysis of electromagnetism, can more convenient teaching, the implementation of the electromagnetic field shown can greatly simplify the complex problems, the paper related principle can play a big role. Key Words:Matlab; graphic teaching; electromagnetic field; time-varying electromagnetic field

Maxwell基础教程仿真实例

说明:部分操作因版本不同存在差异 1. 静电场问题实例:平板电容器电容计算仿真 平板电容器模型描述: 上下两极板尺寸:25mm×25mm×2mm,材料:pec(理想导体) 介质尺寸:25mm×25mm×1mm,材料:mica(云母介质) 激励:电压源,上极板电压:5V,下极板电压:0V。 要求计算该电容器的电容值 1.建模(Model) Project > Insert Maxwell 3D Design File>Save as>Planar Cap(工程命名为“Planar Cap”) 选择求解器类型:Maxwell > Solution Type> Electric> Electrostatic(静电的) 创建下极板六面体 Draw > Box(创建下极板六面体) 下极板起点:(X,Y,Z)>(0, 0, 0) 坐标偏置:(dX,dY,dZ)>(25, 25,0) 坐标偏置:(dX,dY,dZ)>(0, 0, 2) 将六面体重命名为DownPlate Assign Material > pec(设置材料为理想导体perfect conductor) 创建上极板六面体 Draw > Box(创建下极板六面体) 上极板起点:(X,Y,Z)>(0, 0, 3) 坐标偏置:(dX,dY,dZ)>(25, 25,0) 坐标偏置:(dX,dY,dZ)>(0, 0, 2) 将六面体重命名为UpPlate Assign Material > pec(设置材料为理想导体perfect conductor) 创建中间的介质六面体 Draw > Box(创建下极板六面体) 介质板起点:(X,Y,Z)>(0, 0, 2) 坐标偏置:(dX,dY,dZ)>(25, 25,0) 坐标偏置:(dX,dY,dZ)>(0, 0, 1) 将六面体重命名为medium Assign Material > mica(设置材料为云母mica,也可以根据实际情况设置新材料)创建计算区域(Region) Padding Percentage:0% 忽略电场的边缘效应(fringing effect) 电容器中电场分布的边缘效应

相关文档
最新文档