ABAQUS+ALE自适应网格技术

ABAQUS+ALE自适应网格技术
ABAQUS+ALE自适应网格技术

ABAQUS ALE自适应网格技术

为了方便理解,先整体介绍一下ALE网格自适应方法的基本过程,一个完整的ALE过程可以分为若干个网格remesh子过程,而每一次remesh的过程可以分为两步:

1生成一个新的网格(create a new mesh),利用各种算法以及控制策略生成一个良好的网格,主要包括划分的频率和算法。

2环境变量的转换(advection variales),也就是将旧网格中的变量信息利用remapping技术转换到新网格中,也有不同算法,其中包括静变量(应力场,应变场等)的转换与动变量(速度场,加速度场等)的转换。

上面的两步在软件设置上面,可认为是对网格划分区域的控制(ALE Adaptive Mesh Domain)和算法的控制(ALE Adaptive Mesh Controls)。

1 ALE区域的控制

(1)几何区域选择(set)

※ No ALE adaptive mesh domain for this step

该分析步没有使用ALE技术。

※Use the ALE adaptive mesh domain below

将以下区域定义为ALE区域。

(2)ALE Adaptive Mesh Controls

自适应技术控制选项,后面介绍

(3)Frequency

频率控制,主要是对整个step time中网格remesh的次数进行控制。Reme sh次数n可以由n=Increment number /Frequency来表达其意义,当frequenc y的值为i时,表示每i个增量步进行一次remesh。

一个典型的ALE过程,在每5-100个增量步就需要一次remesh,对于拉格朗日问题,改参数默认值为10,若变形实在太大,可适当调高,以增加网格重画的强度,对于爆炸,碰撞等变形时间极短的问题求解,则在每一个增量步都需要一次remesh,这时Frequency的值需要设置得很小,比如设为1,当然,ada

ptive remesh过程的强度也很高,也会很废时。对于其他变形不是很剧烈的问题求解,该参数值可以适当调高。对于欧拉问题,默认值为1。

图1 Frequency的设置

(4)Remeshing sweeps per increment

一个频率下的迭代次数,当该参数的值为n时,每一个remesh过程将对网格进行n次sweep,其实这个参数可以理解为对整个adaptive remesh过程的每一个子过程(remesh过程)的强度进行控制。

那么,我们先来理解一下sweep的概念,每sweep一次,abaqus将利用我们设置好的算法(体积算法,拉普拉斯算法或等位算法)生成一套新的网格,但这个网格不一定是符合要求的,因此,需要在生成的新网格的基础上用同样的方式再进行sweep,就像我们求解方程时迭代的概念是一样的。就这样一直sweep 下去直到sweep的次数达到mesh sweeps参数的值,这样就完成了一个remesh 过程中的新网格的生成。同样,mesh sweeps参数的值越高,adaptive remesh 过程强度越高,网格优化的状况良好的机率也就越大。

图2 Remeshing sweeps per increment的设置

(5)Initial remeshing sweeps

也就是ALE过程开始之前对网格的一个优化,概念与mesh sweeps类似,因为我们有可能利用已经变形的很厉害的网格进行分析,这时,在分析开始之前,就需要对网格进行重画。

图3 Initial remeshing sweeps的设置

2 ALE过程的控制

算法控制包括两部分;一为网格算法控制;其二为变量转换算法控制。

(1)Priority

也就是指网格梯度控制(是否保持初始网格梯度,若需要保持初始网格梯度,则对网格的质量将会有影响)。

※Improve aspect ratio

在计算过程中将考虑到网格单元高宽比的改善,不考虑对初始网格梯度的保持。

※Preserve initial mesh grading

在计算过程中保证初始的网格梯度,但不会考虑到网格宽高比的改善。

图4 Priority的设置界面

(2)smoothing algorithm

※Use enhanced algorithm based on evolving element geometry

主要是在几何学的方面对我们定义的网格sweep算法(前面提到的三种算法)进行增强,目的是为了保证adaptive remesh过程的健壮性,为推荐选项,选它就行了

※ conventional smoothing

利用我们定义好的算法进行计算,无几何增强。

图5 smoothing algorithm的界面控制

(3)Meshing Predictor

也就是网格节点位置控制(理想的网格节点位置控制,将会减少需要的网格sweeps次数,减少资源浪费)。

※Current deformed position

对于拉格朗日问题选择

※Position from previous adaptive mesh increment

对于欧拉问题选择

图6 Meshing predictor的界面控制

(4)Curvature refinement

也就是曲率较大的曲线曲面边界的网格密度控制,默认为1,该值越大,则圆角区的网格密度也就会越大,比较简单。

图7 Curvature refinement的界面控制

(5)Weights

在ABAQUS中是如何生成新网格的呢?即使用网格扫掠技术(mesh sweep technique),每sweep一次,生成一套新的网格。但是当你使用的算法不同时,sweep出来的网格也是不同的。

在ABAQUS显示模块中,sweep算法用英语来说就是mesh smoothing method,有三种算法来sweep网格,如下所示;

※体积算法(volume smoothing)

该算法十分健壮,为默认算法,再绝大多数情况下适用

※拉普拉斯算法(laplacian smoothing)

耗费资源最少的算法,能力一般,作用与体积算法类似(一阶算法,类似于求平均值),对于曲率比较高的曲线曲面边界时,效果不是很理想。

※等位算法(equipotential smoothing)

比较复杂的算法,是基于拉普拉斯算法的解之上的算法,对曲率较大的曲线曲面边界效果较好,在节点被非结构化网格包围时,次算法为推荐算法,若节点被结构化网格包围,其效果与体积算法类似。

三种算法可以结合适用,利用权重值来定义,需要记住的是,三种算法各占的权值加起来必须等于1。

图8 Remesh网格重画的算法控制

(6)Boundary Region Smoothing

边界区域平滑主要包括以下几个参数设置:

※ initial feature angle

即初始检测角度的设置(0≤θ

≤180),当两个相邻的面的法向量大于该角

I

度值的时候,这两个相邻面形成的corner将被检测出来,在sweep时,网格不允许通过这个corner。小于的话就说明,该corner足够圆滑,网格可以通过,当然,该corner应该是具有活性的,对corner活性的控制由下面一个参数(Transition feature angle)控制,否则也不会被考虑。

※ Transition feature angle

控制被检测出的corner(0≤θ

≤180)是活性的,如果被检测处的corner

T

的两面法线夹角大于该值则该corner,在ale过程中是会被考虑的,否则就不会考虑。

※ Mesh constraint angle

≤85),一般大于45度,设为默认值控制分析过程的一个角度参数(5≤θ

C

就可以,在分析过程中,当网格内某一个角度大于该参数值时,分析终止,文档有详细介绍。

图9 Boundary Region Smoothing的设置

(7)Advection

在ABAQUS中是如何将旧网格中的环境变量转换到新网格中的呢?

即使用remapping技术,对于静变量(应力场,应变场,位移场等)的转换(advection),有两种算法即为一阶算法(first order)与(second order)算法,second order算法适用于所有问题,为推荐算法,一阶算法比较简单,占资源少,速度快;对于动变量(速度,加速度等)转换(momentum advection),也有两种算法,element center projection method与half-index shift method,前者为推荐算法,选择前者就ok了,如果想仔细研究,查查ABAqus文档就可以了,里面写的很清楚。

图10 Advection的控制

ansys教程之自适应网格划分

ansys教程之自适应网格划分 [摘要]:ANSYS程序提供了近似的技术自动估计特定分析类型中因为网格划分带来的误差。(误差估计在ANSYS Basic Analysis Procedures Guide第五章中讨论。)通过这种误差估计,程序可以确定网格是否足够细。如果不够的话,程序将自动细化网格以减少误差。这一自动估计网格划分误差并细化网格的过程就叫做自适应网格划分,然后通过一系列的求解过程使得误差低于用户指定的数值(或直到用户指定的最大求解次数)。 自适应网格划分的先决条件 ANSYS软件中包含一个预先写好的宏,ADAPT.MAC,完成自适应网格划分的功能。用户的模型在使用这个宏之前必须满足一些特定的条件。(在一些情况下,不满足要求的模型也可以用修正的过程完成自适应网格划分,下面还要讨论。)这些要求包括: 标准的ADAPT过程只适用于单次求解的线性静力结构分析和线性稳态热分析。 模型最好应该使用一种材料类型,因为误差计算是根据平均结点应力进行的,在不同材料过渡位置往往不能进行计算。而且单元的能量误差是受材料弹性模量影响的。因此,在两个相邻单元应力连续的情况下,其能量误差也可能由于材料特性不同而不一样。在模型中同样应该避免壳厚突变,这也可能造成在应力平均是发生问题。 模型必须使用支持误差计算的单元类型。(见表3-1) 模型必须是可以划分网格的:即模型中不能有引起网格划分出错的部分。 表3-1 自适应网格划分可用单元 2-D Structural Solids PLANE2 2-D 6-Node Triangular Solid PLANE25 Axisymmetric Harmonic Solid PLANE42 2-D 4-Node Isoparametric Solid PLANE82 2-D 8-Node Solid PLANE83 Axisymmetric Harmonic 8-Node Solid

自适应网格

ALE adaptive mesh单元: AC1D2, AC1D3, AC2D3, AC2D4, AC2D6, AC2D8, AC3D4, AC3D6, AC3D8, AC3D10, AC3D15, AC3D20, ACAX3, ACAX4, ACAX6, ACAX8 CPS4, CPS4T, CPS3 CPE4, CPE4H, CPE4T, CPE4HT, CPE4P, CPE4PH, CPE3, CPE3H CAX4, CAX4H, CAX4T, CAX4HT, CAX4P, CAX4PH, CAX3, CAX3H C3D8, C3D8R, C3D8H, C3D8RH, C3D8T, C3D8HT, C3D8RT, C3D8RHT, C3D8P, C3D8PH, C3D8RP, C3D8RPH 从列表来看,ALE自适应网格不适用于壳(S4、S4R等),另外对于实体单元也不适用于四面体(C3D4)。 问题1: The requested number of domains cannot be created due to restrictions in domain decomposition. 措施:job---Editjob---Parallelization---Number of domains: 设为1 问题2:ALE算法和CEL算法有什么区别? 措施:①CEL只能用于explicit,AEL在implicit(声畴、冲蚀、磨损)和explicit都能用; ②ALE方法最初出现于数值模拟流体动力学问题的有限差分方法中。这种方法兼具 Lagrange方法和Euler方法二者的特长,即首先在结构边界运动的处理上它引进了 Larange方法的特点,因此能够有效的跟踪物质结构边界的运动;其次在内部网格 的划分上,它吸收了Euler的长处,即是使内部网格单元独立于物质实体而存在, 但它又不完全和Euler网格相同,网格可根据定义的参数在求解过程中适当调整 位置,使得网格不致出现严重的畸变。 CEL是欧拉-拉格朗日耦合,用于固体液体之间的耦合。 说法1:ALE是arbitary lagrange euler 算法 CEL couple lagrange euler 流固耦合的设置应该不属于算法的范畴 问题3:为什么odb转换输出坐标系后,只有S11等应力分量改变,而像Mises Equivalent 等都不变呢? 措施:①看变量情况:S11指的是沿一方向的力,改了坐标系,值也会变。 但是如果是CPRESS,接触压力的话,它是指垂直于接触面上的力,与你的坐标没有关系,这样,你改了坐标系,自己它不会变。 其它的变量如mises等同理。

ANSYS命令流学习笔记12-自适应网格及其在WB中运用的对比

!ANSYS命令流学习笔记12-自适应网格及其在WB中运用的对比 !学习重点: !1、网格收敛的重要性 由于应力集中(区别于应力奇异)的存在,在结构不连续处存在应力较大,而且随着网格质量数量的增加,应力值趋于收敛,据说收敛与否的应力差值可以很大,所以说重要细节结构的网格收敛十分重要。 !2、WorkBench中网格收敛的实现 WorkBench中在solution选项中设置网格循环次数,关键点网格优化系数,在求解结果选项下插入convergence,定义deformation或者stress的收敛系数。 计算前后的网格对比 虽然六面体网格变成四面体网格进行细分,但是初始网格划分的尺寸,对结果仍然有一定影响。而且优化的方式和APDL中也有一定差异,此例与APDL结果相同,是有一定运气成分。此处如果网格继续细化,肯定是fix处的尖角处应力奇异。(所以如何指定优化区域也是个问题) !3、APDL中网格收敛的实现 (1) 建模,注意不要划分网格,而且3D模型只能使用4面体单元网格; (2) 加载边界条件,由于没有网格,边界条件只好由面或者线确定; (3) 启动ADAPT宏命令,指定能量收敛误差,最大循环次数,网格优化系数;看起来很厉害的样子,但是使用方法和命令一样,只是输入命令框的不提示有此命令存在;. (4) 后处理查看结果。 !4、对网格收敛的一些疑问 (1) 宏命令调用:通过help文件查询到ADAPT的命令含义,但是不懂宏的内容,权且当做命令处理。 (2) ADAPT收敛误差:help中说是结构能量误差(SEPC),如果在热分析是热能量误差(TEPC),SEPC等效于应变能量误差(strain energy error )。由于APDL和WorkBench收敛准则的不同,收敛结果无法对应,不明所以。 (3) 网格划分方式:实体单元只能采用非结构化网格形式,WB和APDL都是如此,WB 即使划分了结构和单元也会无效;但是APDL和WB指定网格初始尺寸有意义?;虽说非结

Fluent的自适应网格问题

加密网格的话有两种参考标准一种是y+值,一种是y*值,一般来说,要加密网格主要是为了是y+值满足需求,具体的情况看楼主你的需要... 根据y+值来加密网格的步骤如下:运行fluent,导入cas and dat 文件后,点击adapt——Yplus/Ystar..。,之后出现选择界面,一般情况可以保持默认界面,当然也可以根据自己的需求选择选项,一般type项选择Yplus,然后点击compute,在min及max项会出现你的选择壁面的Y+值,在其下方,有minallowed 和maxallowed,输入你所需要的Y+值范围,点击Mark按钮,会标记出不符合要求的部分,然后点击adapt,就可以了,这部分区域的网格会加密,以适应你的要求 Y*的步骤也是这样的 但是前提是要知道你的计算的y+值范围,而这个值一般是估计值,且跟计算有关的,是个不确定量,所以一般只作参考用 希望能帮到你......另外,希望给加分啊,呵呵 追问 我点完adpat,Yplus/Ystar这个是灰的,不能点。。 回答 额,你计算了吗或者说你导入的是cas & dat 文件吗如果不是,你都没 有一个y+值的范围,怎么可能让软件给你加密网格...(这是基本条件)追问 当然计算了,我保存完再导入cas& dat也不行 回答 那你试试计算完,直接点adapt试试.....还真没遇到过你说的情况 追问 adapt都能点只是里面的Yplus/Ystar不能点,是灰色的 fluent里的常见问题(一) (2011-02-26 09:44:43) 1什么叫松弛因子松弛因子对计算结果有什么样的影响它对计算的收敛情况又有什么样的影响 1、亚松驰(Under Relaxation):所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。用通用变量来写出时,为松驰因子(Relaxation Factors)。《数值传热学-214》 2、FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制的变化。一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了的变化量。亚松驰最简单的形式为:单元内变量等于原来的值加上亚松驰因子a 与变化的积, 分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。这就意味着使用分离解算器解的方程,包括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。这个值适合于很多问题,但是对于一些特殊的非线性问题(如:某些湍流或者高Rayleigh数自然对流问题),在计算开始时要慎重减小亚松驰因子。使用默认的亚松驰因子开始计算是很好的习惯。

ANSYS自适应网格划分

ANSYS自适应网格划分 (1) 何为网格自适应划分? ANS YS程序提供了近似的技术自动估计特定分析类型中因为网格划分带来的误差。(误差估计在ANSYS Basic Analysis Procedures Gui第五章中讨论。)通过这种误差估计,程序可以确定网格是否足够细。如果不够的话,程序将自动细化网格以减少误差。这一自动估计网格划分误差并细化网格的过程就叫做自适应网格划分,然后通过一系列的求解过程使得误差低于用户指定的数值 (或直到用户指定的最大求解次数)。 自适应网格划分的先决条件 ANSYS软件中包含一个预先写好的宏,ADAPT.MAC完成自适应网格划分的功能。 用户的模型在使用这个宏之前必须满足一些特定的条件。(在一些情况下,不满足要求的模型也可以用修正的过程完成自适应网格划分,下面还要讨论。)这些要求包括: 标准的ADAPT过程只适用于单次求解的线性静力结构分析和线性稳态热分析。模型最好应该使用一种材料类型,因为误差计算是根据平均结点应力进行的,在不同材料过渡位置往往不能进行计算。而且单元的能量误差是受材料弹性模量影响的。因此,在两个相邻单元应力连续的情况下,其能量误差也可能由于材料特性不同而不一样。在模型中同样应该避免壳厚突变,这也可能造成在应力平均是发生问题。 模型必须使用支持误差计算的单元类型。 模型必须是可以划分网格的:即模型中不能有引起网格划分出错的部分。 自适应网格划分可用单元 2-D Structural Solids PLANE2 2-D 6-Node Triangular Solid PLANE25 Axisymmetric Harmonic Solid

fluent网格自适应

1.读入文件 .file--read--case找到.msh文件打开 2.网格检查 grid-check 网格检查会报告有关网格的任何错误,特别make sure最小体积不能使负值;3.平滑和交换网格 . grid-smooth/swap---点击smooth再点击swap,重复多次; 4.确定长度单位 grid-scale---- .在units conversion中的grid was created in中选择相应的单位, .点击change length units给出相应的范围,点击scal,然后关闭; 5.显示网格 .display--grid 建立求解模型 1.define-models-solver(求解器) 2.设置湍流模型 .define-models-viscous 3.选择能量方程 define-models-energy 4 设置流体物理属性 define-materials,进行设置,然后点击change/create,弹出的对话框点NO。 可以从材料库database选择材料和拷贝属性,也可以在properties栏编辑属性,然后点击change/create。 5设置边界条件 define-boundary conditions,根据给定条件设置 6.求解 solver-initialize-initialize computer from列表中选择要计算的点,点击init,close 7监控 display-monitors--surface 设置surface monitors的个数,勾选plot,点击define,在这里面修改和选择一些选项; 然后保存:file-writer-case 7 迭代 .solver --iterate,会出现检测结果 8,显示计算结果 .8.1 利用不同颜色显示速度分布display--contours,勾选filled(就是填充),在contours of 选择,点击computer,点击display。 ..可以选择速度场,温度场,速度矢量场(这个注意,在style 中选择arrow,scale需要自己填),等压力线(levels可以选择条数) 9.创建XY曲线图 plot-XY plot, 10.可以自定义函数 define---custom field function中输入,然后在new funtion name中输入名字,点

有限元网格划分和收敛性

一、基本有限元网格概念 1.单元概述 几何体划分网格之前需要确定单元类型。 单元类型的选择应该根据分析类型、 形状特征、 计算数据特点、精度要求和计算的硬件条件等因素综合考虑。 为适应特殊的分析对象和边界 条件,一些问题需要采用多种单元进行组合建模。 2?单元分类 选择单元首先需要明确单元的类型,在结构中主要有以下一些单元类型: 平面应力单元、 平面应变单元、轴对称实体单元、空间实体单元、板 单元、壳单元、轴对称壳单元、杆单 元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。根据不 同的分类方法,上述单元可以分成以 下不同的形式。 3. 按照维度进行单元分类 根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。 一维单元的网格为一条直线或者曲线。 直线表示由两个节点确定的线性单元。 曲线代表 由两个以上的节点确定的高次单元, 或者由具有确定形状的线性单元。 杆单元、梁单元和轴 对称壳单元属于一维单元,如图 1?图 3所示。 二维单元的网格是一个平面或者曲面,它没有厚度方向的尺寸。这类单元包括平面单元、 轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图 4所示。二 维单元的形状通 常具有三角形和四边形两种, 在使用自动网格剖分时, 这类单元要求的几何形状是表面模型 图1捋果詰柯与一维杆单无犠型(直豉) &2桁舉第构石一隼杆早死撲型(曲线) B3毀姑构与一纯梁单元除世(直疑和呦疚〕

或者实体模型的边界面。采用薄壳单元通常具有相当好的计算效率。

洞丨伍金哉钩和潯壳社电 三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元 包括空间实体单元和厚壳单元,如图5所示。在自动网格划分时,它要求的是几何模型是实 体模型(厚壳单元是曲面也可以)。 图5三址乙勺久和父侬草无 4. 按照插值函数进行单元分类 根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次 单元和更高次的单元。 线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面。这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大 的情况下,采用线性单元可以得到较小的模型规模。但是由于单元位移函数是线性的,单元 着应力突变,如图6所示。 S6錢41吕节点点单无fu节庖实体羊元

fluent动态网格自适应

Fluent动态网格自适应详解 动态网格自适应用于,瞬态求解计算时,按照一定方法动态的加密某一区域,以实现对该区域物理变量的高精度捕捉。 比如,利用VOF计算液流雾化时,连续的流体会雾化成细小的液滴,且液滴的大小和位置是时时变化的,此时就要用动态网格自适应,去动态的捕捉液滴的位置,并相应的加密此处网格,用以更精确的捕捉液滴的形状。如下: 1,网格自适应设置 Method-gradient:一般选择gradient(梯度)自适应方法,本方法可以有效的捕捉两相交界面处的网格,便于更好的细化此处网格。 Coarsen threshold:粗化阀值。这个数值的意思是,低于这个阀值的网格将被标记并粗化,还原成原来的网格。也就是说当液滴运动到其他位置后,之前位置被细化的网格将被粗化,还原成原来的粗网格。如果这个值设为0,那么所有被细化的网格将不会被粗化,也就是不会被还原成原来的粗网格。只有这个值大于0,粗化才有意义。如本案例中,粗化阀值为0.001,也就是从体积分数梯度的:MIN(1.42E-14)到0.001,这之间的网格将被粗化,还原成原来的网格。 Refine Threshold:细化阀值。这个数值的意思是,高于这个数值的网格将被标记并细化。拿本案例来说,体积分数梯度大于这个数值的位置,网格才被加密。 Dynamic:选择这个按钮,说明是在瞬态仿真中,要时时的去细化网格。瞬态网格自适应,必须选择这个按钮才有效果。 Interval:这个数值的意思是,细化网格的频率。如果数值为1,就是每个时间步长都要进行网格自适应计算。数值为10,就是每10个步长进行一次网格自适应计算。 Normalization:包括三种正规化方法。Standard、scale和normalize,当进行瞬态网格自适应计算时,推荐scale和normalize。

第8讲 自适应网格和fluent计算数据的后处理(学生用)

FLUENT模拟中的关键问题与数据后处理以混合问题为例: 一、自定义函数(p57) 使用命令:Define>Custom Field Function 打开自定义函数设计对话框: 以定义速度水头为例: 显示自定义函数的数值分布: 使用命令:Display>Contours… 取消Filled选项,保留其它默认设置,点击Display 点击Close,结果见下图:

二、使用二阶离散化方法重新计算 为了提高计算精度,对于计算当中的变量可以在离散格式中,提高其精度:1)使用命令:Solve>Controls>Solution 在条目下,选择能量项,并选择,此时要修改相 应的能量方程的松弛因子为 0.8。 点击OK。 2)再进行200次计算: 得到的结果明显改善:

提高精度后的结果和前的结果比较 三、 自适应网格 FLUENT 设置自适应网格的目的是为了提高计算精度。 1. Display>contours…,选择温度作为显示对象; 2. 取消node values 选项,再点击display ,看到单元边界不光滑,即梯度很 大,其范围也会显示出来;

从图中可以明显的看到,单元间边界很不光滑了。为了改进梯度变化较大的区域的精度,我们必须建立梯度比较大的网格组合,以便于细分网格,提高计算精度。 3.在contours of 下拉菜单中,选择adption…和adaption function; 显示用于改进计算精度的网格图: 取消node values选项;点击display;

4.把梯度范围大于0.01的显示出来, 取消Options项下的Auto Range,设定min为0.01,把梯度大于0.01的边界节点显示出来: 如果把min设置为0.005,网格数量明显增加:

自适应网格划分

自适应网格划分 何为网格自适应划分? ANSYS程序提供了近似的技术自动估计特定分析类型中因为网格划分带来的误差。(误差估计在ANSYS Basic Analysis Procedures Guide第五章中讨论。)通过这种误差估计,程序可以确定网格是否足够细。如果不够的话,程序将自动细化网格以减少误差。这一自动估计网格划分误差并细化网格的过程就叫做自适应网格划分,然后通过一系列的求解过程使得误差低于用户指定的数值(或直到用户指定的最大求解次数)。 自适应网格划分的先决条件 ANSYS软件中包含一个预先写好的宏,ADAPT.MAC,完成自适应网格划分的功能。用户的模型在使用这个宏之前必须满足一些特定的条件。(在一些情况下,不满足要求的模型也可以用修正的过程完成自适应网格划分,下面还要讨论。)这些要求包括: 标准的ADAPT过程只适用于单次求解的线性静力结构分析和线 性稳态热分析。 模型最好应该使用一种材料类型,因为误差计算是根据平均 结点应力进行的,在不同材料过渡位置往往不能进行计算。 而且单元的能量误差是受材料弹性模量影响的。因此,在两 个相邻单元应力连续的情况下,其能量误差也可能由于材料 特性不同而不一样。在模型中同样应该避免壳厚突变,这也 可能造成在应力平均是发生问题。 模型必须使用支持误差计算的单元类型。(见表3-1) 模型必须是可以划分网格的:即模型中不能有引起网格划分 出错的部分。 表3-1 自适应网格划分可用单元 2-D Structural Solids PLANE2 2-D 6-Node Triangular Solid PLANE25 Axisymmetric Harmonic Solid PLANE42 2-D 4-Node Isoparametric Solid PLANE82 2-D 8-Node Solid PLANE83 Axisymmetric Harmonic 8-Node Solid 3-D Structural Solids

ANSYS自适应网格划分

ANSYS自适应网格划分(1) 何为网格自适应划分? ANSYS程序提供了近似的技术自动估计特定分析类型中因为网格划分带来的误差。(误差估计在ANSYS Basic Analysis Procedures Guide第五章中讨论。)通过这种误差估计,程序可以确定网格是否足够细。如果不够的话,程序将自动细化网格以减少误差。这一自动估计网格划分误差并细化网格的过程就叫做自适应网格划分,然后通过一系列的求解过程使得误差低于用户指定的数值(或直到用户指定的最大求解次数)。 自适应网格划分的先决条件 ANSYS软件中包含一个预先写好的宏,ADAPT.MAC,完成自适应网格划分的功能。用户的模型在使用这个宏之前必须满足一些特定的条件。(在一些情况下,不满足要求的模型也可以用修正的过程完成自适应网格划分,下面还要讨论。)这些要求包括: 标准的ADAPT过程只适用于单次求解的线性静力结构分析和线性稳态热分析。 模型最好应该使用一种材料类型,因为误差计算是根据平均结点应力进行的,在不同材料过渡位置往往不能进行计算。而且单元的能量误差是受材料弹性模量影响的。因此,在两个相邻单元应力连续的情况下,其能量误差也可能由于材料特性不同而不一样。在模型中同样应该避免壳厚突变,这也可能造成在应力平均是发生问题。 模型必须使用支持误差计算的单元类型。 模型必须是可以划分网格的:即模型中不能有引起网格划分出错的部分。 自适应网格划分可用单元 2-D Structural Solids PLANE2 2-D 6-Node Triangular Solid PLANE25 Axisymmetric Harmonic Solid PLANE42 2-D 4-Node Isoparametric Solid PLANE82 2-D 8-Node Solid PLANE83 Axisymmetric Harmonic 8-Node Solid 3-D Structural Solids SOLID45 3-D 8-Node Isoparametric Solid SOLID64 3-D Anisotropic Solid SOLID73 3-D 8-Node Solid with Rotational DOF SOLID92 3-D 10-Node Tetrahedral Solid SOLID95 3-D 20-Node Isoparametric Solid 3-D Structural Shells SHELL43 Plastic quadrilateral Shell

ansys自适应网格分析:2D矩形板的稳态热对流

2D矩形板的稳态热对流的自适应分析 一个2D矩形区域的稳态热对流见图1,模型的参数见表1,由于在AB边上的外界温度为T=100C,而在BC边上的外界温度为T=0C,则在它们的交点处(即B点),会出现一个奇异区,在BE区间将有温度的高梯度的跨越,因此,要求采用自适应网格划分进行多次分析,最后得到一个满足计算精度要求的温度计算结果。 图1 2D矩形区域的稳态热对流 表1模型参数 建模要点: ①首先定义分析类型,对于稳态传热分析,设置,并选取热分析单元,输入材料的热传导系数; ②建立对应几何关键点,注意给出需要关注的高梯度区域的E点,连点成线,再连线成面; ③定义热边界条件,包括给定边界温度,边界的对流系数 ④设定自适应网格划分,不多于10次划分,或精度误差在5%以内 ⑤在后处理中,用命令<*GET>来提取相应位置的计算分析结果。 1 设置计算类型,定义单元类型 单元类型选择的是Solid Quad 4node 55

2 定义材料参数这里只需要设置材料的热导率,因为只是稳态分析,跟瞬态分析不同,瞬态分析除了要设置材料的热导率之外,还需要设置材料的比热容,密度

3 建立几何模型 这里的几何模型非常简单,只是一个矩形,只是要注意的是,这里特意设置了一个E点,用来查看“奇异区”的温度。 Main Menu: Preprocessor→Modeling→Create→Keypoints→In Active CS→NPTKeypoint number:1,X,Y,Z Location in active CS: 0,0,0→Apply→同样输入其余4个关键点坐标,坐标分别为(0.6,0,0),(0.6,1.0,0),(0,1.0,0),(0.6,0.2,0)→OK→Lines →Lines→Straight Line →分别连接各关键点(1-2)、(2-5)、(5一 3)、(3→4)、(4一1)→0K→Areas→Arbitrary→By Line→选择所有的直线→OK 4 模型加约束 因为此次是自适应网格划分求解,所以不需要手动划分网格。 ANSYS Utility Menu: Plo tCtrls →Numbering..…(出现Plot Numbering Control 对话框)→KP:On,LINE:on→OK ANSYS Main Menu→ Preprocessor → Loads → Define Loads→Apply→Thermal→Temperature→On Keypoints →点关键点1→OK(出现Apply TEMP on Keypoints对话框)→Lab2:TEMP:VALUE: 100;KEXPND:Yes→Apply →点关键点2→OK(出现Apply TEMP on Keypoints 对话框)→Lab2:TEMP;VALUE:100;KEXPND:Yes →OK ANSYS Main Menu: Preprocessor→Loads→Define Loads → Apply →Thermal →Convection→On Lines→点直线2(L2)→OK(出现Apply CONV on Lines 对话框)→VALI:750.0;VAL2I:0.0→OK→On Lines(Main Menu下)→点直线3(L3)→OK(出现Apply CONV on Lines对话框)→VALI:750.0; VAL2I:0.0→OK→On Lines(Main Menu下)→点直线4(L4)→OK(出现Apply CONV on Lines对话框) →VALI:750.0;VAL2l:0.0→OK

ABAQUS+ALE自适应网格技术

ABAQUS ALE自适应网格技术 为了方便理解,先整体介绍一下ALE网格自适应方法的基本过程,一个完整的ALE过程可以分为若干个网格remesh子过程,而每一次remesh的过程可以分为两步: 1生成一个新的网格(create a new mesh),利用各种算法以及控制策略生成一个良好的网格,主要包括划分的频率和算法。 2环境变量的转换(advection variales),也就是将旧网格中的变量信息利用remapping技术转换到新网格中,也有不同算法,其中包括静变量(应力场,应变场等)的转换与动变量(速度场,加速度场等)的转换。 上面的两步在软件设置上面,可认为是对网格划分区域的控制(ALE Adaptive Mesh Domain)和算法的控制(ALE Adaptive Mesh Controls)。 1 ALE区域的控制 (1)几何区域选择(set) ※ No ALE adaptive mesh domain for this step 该分析步没有使用ALE技术。 ※Use the ALE adaptive mesh domain below 将以下区域定义为ALE区域。 (2)ALE Adaptive Mesh Controls 自适应技术控制选项,后面介绍 (3)Frequency 频率控制,主要是对整个step time中网格remesh的次数进行控制。Reme sh次数n可以由n=Increment number /Frequency来表达其意义,当frequenc y的值为i时,表示每i个增量步进行一次remesh。 一个典型的ALE过程,在每5-100个增量步就需要一次remesh,对于拉格朗日问题,改参数默认值为10,若变形实在太大,可适当调高,以增加网格重画的强度,对于爆炸,碰撞等变形时间极短的问题求解,则在每一个增量步都需要一次remesh,这时Frequency的值需要设置得很小,比如设为1,当然,ada

LS-DYNA自适应网格划分

ANSYS/LS-DYNA自适应网格划分 在金属成形和高速撞击分析中,物体要经历很大的塑性变形。单积分点显式单元,常用于大变形,但是在这种情况下,由于单元纵横比不合适可能给出不精确的结果。为了解决这一问题,ANSYS/LS-DYNA程序可以在分析过程中自动重新划分表面来改善求解精度。这一功能,即自适应网格划分,由EDADAPT 和EDCADAPT 命令控制。 EDADAPT 命令在一个指定的PART内激活自适应网格划分。(用EDPART 命令创建或显示有效PART IDs),例如,为了给PART1打开自适应网格划分,可以执行下列命令: EDADAPT,1,ON 注意—自适应网格划分功能仅对包含SHELL163单元的部件有效。 当此项功能打开时,分析中该部件的网格将自动重新生成。从而保证在整个变形过程中有合适的单元纵横比。自适应网格划分一般应用在大变形分析例如金属变形中(调节网格最典型的应用是板料)。在一个模型中要在多个部件上应用此功能,必须对每个不同的PART ID执行EDADAPT 命令。缺省时,该功能是关闭的。 在指定哪些部件重新划分后,必须用EDCADAPT 命令定义网格划分参数。采用EDADAPT 命令定义需要网格划分的所有PART ID号,用EDCADAPT 命令对其设置控制选项。 EDCADAPT 命令控制的参数如下所示: ·Frequency(FREQ)- 调节自适应网格划分的时间间隔。例如,假设FREQ设置为0.01,如果单元变形超过指定的角度容差,则其将每隔0.01秒被重新划分一次(假设时间单位为秒)。因为FREQ的缺省值为0.0,所以在分析中应用自适应网格划分时必须指定此项。 ·Angle Tolerance(TOL)-对于自适应网格划分(缺省值为1e31)有一个自适应角度公差。TOL域控制着单元间的纵横比,它对保证结果的精度是非常重要的,如果单元之间的相对角度超过了指定的TOL值,单元将会被重新划分。 ·Adaptivity Option(OPT)- 对于自适应网格划分有两个不同的选项。对于OPT=1,和指定的TOL值相比较的角度变化只是根据初始网格形状计算的。对于OPT=2,和指定的TOL值相比较的角度变化是根据前一次重新划分的网格计算的。 ·Mesh Refinement Levels(MAXLVL)- MAXLVL域控制着整个分析中单元重新划分的次数。对于一个初始单元,MAXLVL=1可以创建一个附加单元,MAXLVL=2允许增加到4个单元,MAXLVL=3允许增加到16个单元。高MAXLVL会得到更精确的结果,但也会明显增加模型规模。

Abaqus中三种自适应网格介绍及对比

为了提高分析精度,ABAQUS提供了以下三种自适应网格。 1、ALE自适应网格。 其全称为“任意的拉格朗日-欧拉自适应网格”(Arbitrary Lagrangian Eulerian adaptive meshing)。它不改变原有网格的拓扑结构(单元和节点的数目和连接关系不会变化),而是在单分析步的求解过程中逐步改善网格的质量。它主要用于ABAQUS/Explicit 的大变形分析,以及ABAQUS/Standard中的声畴(acoustic domain)、冲蚀(ablation)和磨损问题。在ABAQUS/Standard的大变形分析中,尽管也要以设定ALE自适应网格,但不会起到明显的作用。 2、自适应网格重划(adaptive remeshing) 自适应网格重划通过多次重划网格达到所要求的求解精度,只适用于ABAQUS/Standard 分析,并且只能在ABAQUS/CAE中实现,其具体操作步骤为: 1)在Mesh功能模块中选择菜单Adaptivity---Remeshing rule---Create,定义需要网格重划的区域、误差因子(error indicator)的相关变量和目标、以及网格重划的控制参数。需要注意的是,对于三维实体模型,必须使用四面体单元网格;对于二维模型,必须使用三角形单元或以进阶算法(advancing front)生成的四边形单元网格,否则在提交分析时将会提示错误。 2)在Job功能模块中选择菜单Adaptivity---Manage,在弹出的Adaptivity Process Manager对话框中单击Create按钮,创建自适应分析作业系列(adaptivity process),指定最大重复次数(Maximum iterations),然后单击这个对话框中的Submit按钮提交分析,注意不是通常所用的Job Manager对话框中的Submit按钮。 3)ABAQUS/CAE会自动完成以下自适应网格重划过程:首先提交一个基于当前网格的分析作业,在分析完成后,根据得到的结果计算误差因子,根据这个误差因子重新生成网格(在

Fluent的自适应网格问题.doc

加密网格的话有两种参考标准一种是 y+值,一种是 y* 值,一般来说,要加密网格 主要是为了是 y+值满足需求,具体的情况看楼主你的需要 ... 根据 y+值来加密网格的步骤如下:运行 fluent ,导入 cas and dat 文件后,点击adapt —— Yplus/Ystar.. 。,之后出现选择界面,一般情况可以保持默认界 面,当然也可以根据自己的需求选择选项,一般 type 项选择 Yplus ,然后点击compute,在 min 及 max项会出现你的选择壁面的 Y+值,在其下方,有minallowed 和 maxallowed,输入你所需要的 Y+值范围,点击 Mark 按钮,会标记出不符合要 求的部分,然后点击 adapt ,就可以了,这部分区域的网格会加密,以适应你的要求 Y*的步骤也是这样的 但是前提是要知道你的计算的 y+值范围,而这个值一般是估计值,且跟计算有 关的,是个不确定量,所以一般只作参考用 希望能帮到你 ......另外,希望给加分啊,呵呵 追问 我点完adpat ,Yplus/Ystar 这个是灰的,不能点。。 回答 额,你计算了吗?或者说你导入的是 cas & dat 文件吗?如果不是,你都没 有一个 y+值的范围,怎么可能让软件给你加密网格??? ... (这是基本条 件) 追问 当然计算了,我保存完再导入cas& dat 也不行 回答 那你试试计算完,直接点adapt 试试 .....还真没遇到过你说的情况 追问 adapt 都能点只是里面的Yplus/Ystar不能点,是灰色的 fluent里的常见问题(一) (2011-02-26 09:44:43) 1什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情 况又有什么样的影响? 1、亚松驰(Under Relaxation ):所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。用通用变量来写出时,为松驰因子( Relaxation Factors )。《数值传热学 -214 》 2、FLUENT中的亚松驰:由于 FLUENT所解方程组的非线性,我们有必要 控制的变化。一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了的变 化 a 量。亚松驰最简单的形式为:单元内变量等于原来的值加上亚松驰因子与变化 的积 , 分离解算器使用亚松驰来控制每一步迭代中的计算变量的更 新。这就意味着使用分离解算器解的方程,包括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。在 FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。这个值适合于很多问题,但是对于一些特殊的非线性问题(如:某些湍流或者高 Rayleigh 数自然对流问题),在计算

3.1.8在Abaqus-tandard中使用自适应网格的胎面磨损模拟

3.1.8 Tread wear simulation using adaptive meshing in Abaqus/Standard 3.1.8在Abaqus / Standard中使用自适应网格的胎面磨损模拟 Product: Abaqus/Standard This example illustrates the use of adaptive meshing in Abaqus/Standard as part of a technique to model tread wear in a steady rolling tire. The analysis follows closely the techniques used in “Steady-state rolling analysis of a tire,” Section 3.1.2, to establish first the footprint and then the state of the steady rolling tire. These steps are then followed by a steady-state transport step in which a wear rate is calculated and extrapolated over the duration of the step, providing an approximate consideration of the transient process of wear in this steady-state procedure.本 示例说明了在Abaqus / Standard中使用自适应网格划分作为用于对稳定滚动轮胎中的胎面磨损进行建模 的技术的一部分。该分析紧接着使用在“轮胎的稳态滚动分析”第3.1.2节中使用的技术,以首先建立轮 胎的足迹,然后建立稳定滚动轮胎的状态。然后,这些步骤之后是稳态传输步骤,其中在该步骤的持续时间内计算和外推磨损率,提供对该稳态过程中的磨损的瞬态过程的近似考虑。 Problem description and model definition问题描述和模型定义 With some exceptions, noted here, the description of the tire and finite element model is the same as that given in “Import of a steady-state rolling tire,” Section 3.1.6. Since the focus of this analysis is tread wear, the tread is modeled in more detail. In addition, a linear elastic material model is used in the tread region to avoid difficulties advecting the hyperelastic material state during the adaptive meshing procedure.除了一些例外,在此指出,轮胎和有限元模型的描述与“进口稳态滚动轮胎”第3.1.6节中给出的相同。由于本分析的焦点是胎面磨损, 所以胎面被更详细地建模。此外,在胎面区域中使用线性弹性材料模型以避免在自适应啮合过程期间平流超弹性材料状态的困难。 The axisymmetric half-model of the 175 SR14 tire is shown in Figure 3.1.8–1. The rubber matrix is modeled with CGAX4 and CGAX3 elements. The reinforcement is modeled with SFMGAX1 elements that carry rebar layers. An embedded element constraint is used to embed the reinforcement layers in the rubber matrix. The tread is modeled with an elastic material of elastic modulus 6 MPa and Poisson’s ratio 0.49. The rest of the tire is modeled with the hyperelastic material model. The polynomial strain energy potential is used with coefficients C10=106, C01=0.0, and D1=2 ×10–8. The rebar layers used to model the carcass fibers are oriented at 0°to the radial direction and have an elastic modulus of 9.87 GPa. The modulus in compression is set to 1/100th of the modulus in tension. The Marlow hyperelastic model is used to specify the nominal stress-nominal strain data for such a material definition. The elastic modulus in tension of the material of the belt fibers is 172.2 GPa. The modulus in compression is set to 1/100th of the modulus in tension. The fibers in the belts are oriented at +20° and –20° with respect to the hoop (circumferential) direction.175 SR14轮胎的轴对称半模型如图3.1.8-1所示。橡胶基体用CGAX4和CGAX3元素建模。加强件用携带钢筋层的SFMGAX1元件建模。嵌入元件约束用于将加强层嵌入橡胶基质中。胎面用弹性模量6MPa和泊松比0.49的弹性材料建模。轮胎的其余部分用超弹性材料模型建模。多项式应变能量势用于系数C10 = 106,C01 = 0.0和D1 = 2×10-8。用于模制胎体纤维的钢筋层取向为相对于径向方向为0°,并且具有9.87GPa的弹性模量。压缩模量设定为拉伸模量的1/100。Marlow超弹性模型用于指定这种材料定义的标称应力- 名义应变数据。带状纤维的材料的弹性拉伸模量为172.2GPa。压缩模量设定为拉伸模量的1/100。带中的纤维相对于环向(圆周)方向定向在+ 20°和-20°。The three-dimensional model is created by first revolving the axisymmetric half-model, using symmetric model generation, by 360° to generate the partial three-dimensional model shown in Figure 3.1.8–2. A focused mesh is applied at the footprint region. The partial three-dimensional model is then reflected about a line to generate the full three-dimensional model. The results are then transferred from the end of the footprint simulation for the partial three-dimensional model (see Figure 3.1.8–2).通过首先使用对称模型生成来旋转轴对称半模型360°以产生如图3.1.8-2所示的部分三维模型来创建三维模型。在足迹区域应

相关文档
最新文档