镍氢电池智能充电电路

镍氢电池智能充电电路
镍氢电池智能充电电路

手机万能充电器电路图

一、手机万能充电器是一个小型的开关电源,电路结构简单,外围元件较少。但是一旦发生故障,有些人束手无策,因为没有电路图。现在我将电路图传上,和大家一起分享。有问题可以向我提问。希望和大家共同进步!

二、超力通电路图(原图)

三、我修改过的图纸(我认为原图可能有错误)

四、超力通电路原理

该充电器具有镍镉、镍氢、锂离子电池充电转换开关,并具有放电功能。在150~250V、40mA的交流市电输入时,可输出300±50mA的直流电流。

该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。开关管的截止时间取决于负载电流的大小。开关管的导通/截止由电平开关从输出电压取样进行控制。因此这种电源也称非周期性开关电源。

220V市电经VD1~VD4桥式整流后在V2的集电极上形成一个300V左右的直流电压。由V2和开关变压器组成间歇振荡器。开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。由于正反馈作用,V2 Ic 迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使VD7导通,向负载输出一个9V左右的直流电压。开关变压器的反馈绕组产生的感应脉冲经VD5整流、C1滤波后产生一个与振荡脉冲个数呈正比的直流电压。此电压若超过稳压管VD17的稳压值,VD17便导通,此负极性整流电压便加在V2的基极,使其迅速截止。V2的截止时间与其输出电压呈反比。VD17的导通/截止直接受电网电压和负载的影响。电网电压越低或负载电流越大,VD17的导通时间越短,V2的导通时间越长,反之,电网电压越高或负载电流越小,VD5的整流电压越高,VD17的导通时间越长,V2的导通时间越短。V1是过流保护管,R5是V2Ie的取样电阻。当V2Ie过大时,R5上的电

压降使V1导通,V2截止,可有效消除开机瞬间的冲击电流,同时对VD17的控制功能也是一种补偿。VD17以电压取样来控制V2的振荡时间,而V1是以电流取样来控制V2振荡时间的。

如果是为镍镉、镍氢电池充电,由于这类电池存在一定的记忆效应,需不定时对其进行放电。SW1是镍镉、镍氢、锂离子电池充电转换开关。SW1与精密基准电源SL431为运放LM324⑨提供两个不同的精密基准源,由SW1切换。在给镍镉、镍氢电池充电时,LM324⑨脚的基准电压约0.09V(空载);在给锂离子电池充电时,LM324⑨脚的基准电压约为0.08V(空载),这种设计是由这两种类型电池特有的化学特性决定的。按下SW2,V5基极瞬间得一低电平而导通,可充电池上的残余电压通过V5的ec极在R17上放电,同时放电指示灯VD14点亮。在按下SW2后会随即释放,这时可充电池上的残余电压通过R16、R13分压,C9滤波后为V4的基极提供一个高电平,V4导通,这相当于短接SW2。随着放电时间的延长,可充电池上的残余电压也越来越低,当V4基极上的电压不能维持其继续导通时,V4截止,放电终止,充电器随即转入充电状态。

由于锂电不存在记忆效应,当电池低于3V时便不能开机,其残余电压经电阻R40、R41分压后得到2.53V送入运算放大器的同相端③、⑤、⑩脚,由于LM324⑨脚电压在负载下始终为2.66V,因此⑧脚输出低电平,V3导通,+9V电压通过V3ec极、VD8向可充电池充电。IC1d在电容C6的作用下,{14}脚输出的是脉冲信号,由于IC1⑧脚为低电平,因此VD12处于闪烁状态,以指示电池正在充电,对应容量为20%。随着充电时间的延长,可充电池上的电压逐渐上升。当R40、R41的分压值约等于2.58V时,即IC1③脚等于2.58V时,IC1②脚经电阻分压后得2.57V,其①脚输出高电平(由于在充电时,IC1⑨脚电压始终是2.66V,V6导通;反之在空载时,IC1⑨脚为0.08V,V6截止),VD10、VD11点亮,对应指示容量为40%、60%。当R40、R41的分压值上升到2.63V时,即IC1⑤脚等于2.63V,其⑥脚经电阻分压后得2.63V,⑦脚输出高电平,VD9点亮,对应充电容量为80%。只有IC1⑩脚电压≥2.66V时,⑧脚才输出高电平,VD13点亮,对应充电容量为100%。即使VD13点亮时,VD12仍处于闪烁状态,这表示电池仍未达到完全饱和。只有IC1⑧脚电压>6.5V时,VD12才逐渐熄灭,表示电池完全充至饱和。

VD16在电路中起过充、过流保护作用,VD8起反向保护作用,避免充电器断电后,电池反向放电。

五、我用霸力通充电器改装的2节电池充电器(和超力通差不多)

六、再加一个普通的手机充电器(这个不是万能充哦)

镍氢电池智能充电电路

单只镍氢电池电压为1.25V,充电时最高为有1.55V,它不宜使用高于3V的直流电源为其充电。将电源变压器输出为交流3.5V的双绕组作全桥整流可得到正负3.5V直流电,以负端输出作为零电平,中点即成为+3.5V可作给镍氢电池充电的直流电源,正端输出则成为+7V 可作控制电路的工作电源。非满载输出状况时,中点电平约为4.9V,正输出端约为9.8V。满载输出状况时,中点电平为3V,正输出端约为7.9V。控制电路所使用的COMS门电路CC4093和通用四运放LM324均可在6V~12V之间正常工作。

参见原理图,U1是内置电压比较器的稳压集成电路TL431,可提供2.5V精密基准电压。经R7~R10四只电阻串联分压,分别为U2a、U2b、U2c三只电压比较器提供1.54V、1.25V、1.15V比较电压。U2a的负输入端与U2b、U2c的正输入端共同接在镍氢电池正端上,对电池两端电压进行检测。电池电压高于1.54V时U2a输出低电平,电池电压低于1.54V时U2a 输出高电平;电池电压高于1.25V时U2b输出高电平,电池电压低于1.25V时U2b输出低电平;电池电压高于1.15V时U2c输出高电平,电池电压低于1.15V时U2c输出低电平。U2d的负输入端接在2.5V基准电压上,正输入端通过R24电阻接中点电源上。与此同时,

U2d正输入端通过C3电容接在镍氢电池正端上,在没有放入电池或通电数秒种后,U2d输出高电平。

在电池已经放入电路中的状况下接通电源,U2d正输入端被C3电容暂时短路接在镍氢电池正端上,电平不大于1.5V, U2d输出低电平;经过约1秒钟后, C3电容被充电,U2d正输入端电平高于2.5V, U2d输出高电平。如果放入的是没有放完电可以继续使用的电池,U2c 将检测出电池的两端电压高于1.15V,输出高电平。在U2d尚输出低电平的时候,由与非门U3c、U3d组成的RS触发器将被置成U3c输出低电平,U3d输出高电平。1秒钟后U2d输出高电平,U3c、U3d的输出状态被保持不变。发光管LED4发红光显示电池不需要充电。而U3c输出低电平使BG1截止,与非门U3a输入端同时被封锁输出高电平,与非门U3b 输出低电平,功率场效应管BG2截止。只有经过R1的约30mA电流给电池作涓流维持性充电。

如果放入的是放完电的电池,U2c将检测出电池两端电压低于1.15V,输出低电平。在U2d尚输出低电平的时候,由与非门U3c、U3d组成的RS触发器将被置成U3c与U3d都输出高电平。但在1秒钟后,U3d改为输出低电平,U3c继续保持输出高电平。发光管LED3发绿光指示电池需要充电。此时,U2b输出低电平使U3a输出高电平,U3b输出低电平,功率场效应管BG2截止。但U3c输出高电平使BG1导通,经R2提供约100mA电流和经过R1的30mA电流一起给电池作小电流充电。电池开始充电后,在电池电压高于1.15V、低于1.25V期间,U2c的输出状态翻转为高电平。但U3c、U3d的输出状态保持不变,U3c 继续输出高电平,BG1导通。因U2b的输出状态还是低电平使U3a输出高电平,U3b输出低电平,功率场效应管BG2截止。仍然只经R2提供约100mA电流和经过R1的30mA电流一起给电池作小电流充电。

经过一段时间小电流充电后,电池电压高于1.25V、低于1.54V,电压比较器U2a、U2b 都输出高电平,此时U3c也继续输出高电平,从而使U3a输出低电平,U3b输出高电平,功率场效应管BG2导通,经R3提供不小于500mA电流和经过R2提供的100mA电流以及经过R1提供的30mA电流一起给电池作大电流充电。此时LED1发绿光显示正处于大电流充电状态,LED3绿发光管熄灭。发光管LED2也熄灭。

在经过一段时间大电流充电,电池已经充足电,电池电压高于1.54V时,U2a输出低电平使U3a输出高电平,U3b输出低电平,功率场效应管BG2截止。LED1熄灭,LED2发光。与此同时,U3b从高电平翻转为低电平,将通过C2电容和R13构成的微分电路将U3d输入端短暂置为低电平,从而使U3b输出端从低电平翻转为高电平。LED4发光显示电池已经充足电。U3a的输出端随之从高电平翻转为低电平,LED3熄灭,BG1也截止,只有经过R1的30mA电流继续给电池充电。若继续进行涓流充电,电池电压将从1.55V降低至1.5V,U2a 与U2b的输出端都将输出高电平,但此时U3a输入端已经被U3c封锁只能输出高电平,U3b 输出低电平,功率场效应管BG2继续保持截止,只有经过R1的30mA电流继续给电池作涓流充电。

取出电池后或在没有放入电池的状况下接通电源,连接电池正端的E点电平为中点电位高于1.55V,U2a输出低电平,BG3截止,LED3和LED4都不发光。此时U3a输出高电平,U3b输出低电平,LED2发红光指示电路处于通电工作状态,LED1不发光。再放入电池,即刻重复上述自动检测充电过程。

其中,LED1与LED2、LED3与LED4可分别合用一只双色发光管。接通电源后,LED1与LED2总有一只发光。LED3与LED4必须放有电池才发光,因此可以判断电池是否放入并且没发生接触不良现象。

CC4093是带斯密特触发器的四2与非门,因其不易买到,可用普通四2与非门CD4011替代。

手机万能充电器电路原理与维修

由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维修时参考。

四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。

一、工作原理

该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮?若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键)才行。具体电路原理如下。

1.振荡电路

该电路主要由三极管VT2及开关变压器T1等组成。接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。该电压经开关变压器T的卜1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T的1-1初级绕组中有电流通过。由于正反馈作用,在变压器T的1-2绕组感应的电压通过反馈电阻R1和电容C1加到VT2的b极,使三极管VT2的b极导通电流加大,迅速进人饱和区。随着电容C1两端电压不断升高,VT1的b极电压逐渐降低,使三极管VT2逐渐退出饱和区,其集电极电流开始减少,变压器T的1-1初级绕组中产生的磁通量也开始减少。在变压器T的1-2绕组感应的负反馈电压,使VT2迅速截止,完成一个振荡周期。在VT2进入截止期间,变压器T的1-3绕组就感应出一个5.5V左右的交流电压,作为后级的充电电压。

2.充电电路

该电路主要由一块软塑封集成块IC1(YLT539)和三极管VT3等组成。从变压器T 的1-3绕组感应出的交流电压5.5V经二极管VD3整流、电容C3滤波后,输出一个直流8.5V左右电压(空载时),该电压一部分加到三极管VT3的e极;另一部分送到软塑封集成块IC1(YLT539)的1脚,为其提供工作电源。集成块IC1有了工作电源后开始启动工作,在其8脚输出低电平充电脉冲,使三极管VT3导通,直流8.5V电压开始向电池E充电。

当待充电池E电压低于4.2V时,该电压经取样电阻R11、R12分压后,加到集成块IC1的6脚上,该电压低于集成块IC1内部参考电压越多,集成块IC1的8脚输出的电平越低,三极管VT3的b极电位也越低,其导通量越大,直流电压(8.5V)经极性转换开关S1向电池E快速充电。由于集成块IC1的2、3、4脚和电容C4共同组成振荡谐振电路,其2脚输出的振荡脉冲经电阻R16送至充电指示灯LED1(绿)的正极,其负极接到集成块IC1的8脚。在电池刚接人电路时,集成块IC1的8脚输出的电平越低,充电指示灯LED1闪烁发光强。随着充电时间延长,电池所充的电压慢慢升高,集成块IC1的8脚输出电压慢慢升高,充电指示灯LED1闪烁发光逐渐变弱。

当电池E慢慢充到4.2V左右时,集成块IC1的6脚电位也达到其内部的参考电压1.8V。此时,集成块IC1内部电路动作,使其8脚电压输出高电平,三极管VT3截止,充电指示灯LED1不再闪烁发光而熄灭,充满指示灯LED2(绿)由灭变亮。

3.稳压保护电路

该电路主要由三极管VT1、稳压二极管VDZ1等组成。

过压保护:当输出电压升高时,在变压器T的1-2反馈绕组端感应的电压就会升高,则电容C2所充电压升高。当电容C2两端电压超过稳压二极管VDZ1的稳压

值时,稳压二极管VDZ1击穿导通,三极管VT2的基极电压拉低,使其导通时间缩短或迅速截止,经开关变压器T1耦合后,使次级输出电压降低。反之,使输出电压升高,从而确保输出电压稳定。

过流保护:在接通电源瞬间或当某种原因使三极管VT2的电流过大时,在R5、R6上的压降就大,使过流保护管VT1导通,VT2截止,从而有效防止开关管VT1因冲击电流过大而损坏。同时电阻R6上的压降,使电容C2两端电压升高,此后过流保护过程与稳压原理相同,这里不再重复。三极管VT1是过流保护管,R5、R6是VT2的过流取样保护电阻。

二、常见故障检修

例1:接上待充电池及电源后,电源PW指示灯LED3及测试指示灯TEST LED4亮,而充电LED1及充满指示灯LED2不亮,无电压输出,不能给电池充电。

分析检修:这种故障多是充电器开关振荡电路没有工作所致。在实际检修过程中,发现开关管VT2和电阻R6损坏最多。一般情况下,电池E的充电电路工作电压较低,其元件损坏的概率不是很大,也就是开关变压器T1的次级之后电路的损坏概率不是很大。

例2:接上待充电池及电源后,各状态指示灯显示正常,但就是充不进电或充电时间长。

分析检修:这种故障多是三极管VT3(8550)损坏,用正常管子换上后,即可排除故障。如果三极管VT3正常,再用表测电容C3(100μF/16V)两端电压,正常在直流8.5V左右。若电压正常,应检查电阻R7或集成块IC1,集成块IC1各引脚正常参数如附表所示。若电压低,再测开关变压器T1次级输出电压,正常在交流5.5V左右。若电压正常,说明电容C3或整流二极管VD3损坏;若电压低,应检查开关变压器T1及其前级各元件。

一款开关电源手机充电器的原理

开关电源以效率高、电压适应性强而得到广泛应用。本文介绍一种插头可伸缩的袖珍式开关电源充电器,其尺寸为69mm×47mm×26mm。该充电器电路采用分立元件和贴片元件相结合,电路设计别致新颖,元件布局严谨合理。供电电压原为110V,可方便地改为90~250V工作;输出电压5V,可改动为5~12V输出,特别适合无绳电话或手机的3.6V(或4~9V)电池作快速充电之用。

电路原理见附图。其中D1、L1以及C2等组成市电输入整流滤波电路,C2两端产生约300V的直流高压。VT1、VT2、N1、N2等组成自激式振荡电路,R3、R4提供启动偏置电流,使VT1加电时即导通,主回路N1中有电流流过,N2上产生感应电压。当此电压峰值超过3V时,D5击穿,通过R8向VT2提供偏流,使VT2饱和导通,VT1因偏置电压被短路而关断。当N1中电流关断时,N2感应电压极性反相,经D5、R8加反向偏压于VT2基极,VT2转变为截止状态,VT1经R3、R4偏置重新导通。如此循环往复,形成间歇自激振荡。

C5、R6用以改善振荡波形,光电耦合器OPT1用以调控振荡器脉冲宽度。

N3、L2、C7等组成整流输出电路,二极管3S90作半波整流,RK14作充电隔离,R18为输出电流采样电阻。当输出电流超载(大于0.8A)或短路时,R18上产生较大压降,使OP1输出电位急剧降低,光电耦合器控制振荡脉冲变窄,由N1耦合到N3的平均能量也大幅度减少。即使输出短路,输出电流也仅有十几毫安,从而避免了输出端超载甚至短路对开关电源自身造成的威胁。

稳压部分由TL431等周边电路组成,电压采样点取自被充电电池两端,按图中R13+R14参数值,空载输出电压为5.25V,对于3.6V可充电池的最大充电电流为0.95A,适合对2Ah以上的镍镉或锂电池直接充电。若用它对0.7~1Ah的镍镉或锂电池充电时,充电回路内可串接一只1.5~2.5Ω、功率0.5W的限流电阻,使充电电流被限制在0.3~0.4A。

经试验,该电源的输出电压只需经小改动,即可使输出为5~12V之间的某一电压值。方法是:更换带号的电阻,在24kΩ~62kΩ之间取值。需要指出的是,输出端滤波电解电容器标称耐压为10V,需要改为12V输出时,请更换成耐压为16V的电解电容。在12V时,其最大输出电流应控制在0.7A以内。输出端带有2米长黑白线,黑线为正极,白线为负极。

一款镍镉电池充电器

1-4节电池充电电路

修一充电器,我们首先用眼睛观察比较明显的损坏,如上图保险丝严重烧毁,电容鼓起。还有最下一图圈红圈处(另一充电器)。然后看北面是否有元件松动脱焊,特别是变压器,滤波电感,大电解电容.

本例从保险丝的损坏情况,(从上图)可以判定有以下几种可能:

1,桥式整流二极管有部分击穿

2,滤波电容失效或击穿短路

3,场效应管击穿

4,其它原因,如线路被金属物体短路等。

所以我们先进行第一步,检查整流二极管,用测量二极管档去测它们的正向压降,如图2,图3所示

然后测量场效就管,看其是否击穿,如图4:测电流取样电阻,看是否损坏,如图5:

测场效应管驱动电阻是否损坏,如图6:(图示颜色为红红黑金,阻值为22欧+—5%)

测量3842电源与地之间的正向压降

由于取样电阻及驱动电阻都未损坏和3842的测量,从这步其本可以判断3842未损坏。如果前两者损坏,3842可以说99.9%损坏。如最后一图的情况。

另一损坏充电器总览图

在上一期里,我们是以一个UC3842+LM324为核心的单端反激式充电器,这次,我们就以TL494构成的一款充电器的维修。

充电器总览图:如图1,图2(背视图)所示。

镍氢充电电池正确的使用方法

镍氢电池正确的使用方法: 1、新电池一般经过三到五次充放电循环容量才可达到最高值。 2、原则上采取:充满---用完---充满。 3、电池的正负级保持干净,有利于正常使用和充电。 4、请勿将新旧电池、充电状态不同、容量、种类、品牌不同的电池放在一起充电。 1、充电电池能使用多久?一般能反复充电多少次?答:充电电池使用时间视电池容量和所使用对象的耗电功率而定,在不知道耗电功率的情况下很难估算使用时间。反复充电次数与充电器质量、充电电池质量、充电是否正确有关,理论上充电电池可反复充电1000次,但由于其他原因,一般好质量的充电电池使用700-800次的样子,一般质量的300-500次,不良品或者充电不正确一般在300次以下。 2、会对MP 3、数码相机有损坏吗?答:充电电池的电流是以毫安计算,使用过程中不会对MP3、数码相机产品造成任何损坏。 3、新买的镍氢充电电池需要先充电吗?答:是否需先充视情况而定,最简单的方法就是放进用电器中试一下,如有电就先使用完。新电池头3-5次使用时,最好用慢充充电,并且充电时间可以略微长10%,这样对激活电池有利。 4、如何长时间保存镍氢电池?答:对于想长期不用的镍氢电池,要从电器中取出,然后充满电再存放。方便的话最好每1-2个月使用一次。 5、充电器都是通用的吗?答:基本上都是通用的,但如果你使用的是快充或者极速充的话就请注意(充电电流300MA以上为快充,500MA以上为极速充),这是因为新电池(或者长期未使用的电池)的充电特性曲线和正常使用的电池的充电特性曲线不同,这种不同快充和极速充判断电池是否充满往往会出现失误,经常会出现以下两种现象,一是电池已经充满,但充电器认为电池没有充满而继续充电,会对电池造成部分损坏。二是电池没有充满的时候,快充就认为电池已经充满了,而停止充电了,对电池的激活(到达最大容量)不利,所以快充的说明书上面都说,对新电池的充电可以在充满后仍然充电2-3次就是这个原因。实际使用时我们也可以发现,将用快充充满的新电池,再充电的时候,电池仍然可以充电很长的时间,而用经常使用的电池,再充满后,再充电,一般几十分钟左右充电器就停止充电了,也是这个道理。

镍氢电池充电器电路图及原理分析

镍氢电池充电器电路图及原理分析 镍氢电池充电器原理图:由LM324组成,用TL431设置电压基准,用S8550作为调整管,把输入电压降压,对电池进电行充电,电路附图所示.其工作原理是: 1.基准电压Vref形成 外接电源经插座X、二极管VD1后由电容C1滤波。VD1起保护作用,防止外接电源极性反接时损坏TL431。R3、R4、R5和TL431组成基准电压Vref,根据图中参数Vref= 2.5×(100+820)/820=2.80(v),这个数据主要是针对镍氢充电电池而设计(单节镍氢充电电池充满后电压约 为1.40V)。 2.大电流充电 (1)工作原理 接入电源,电源指示灯LED(VD2)点亮。装入电池(参考图片,实际上是用导线引出到电池盒,电池装在电池盒中),当电池电压低于Vref时,IC1-1输出低电平,VT1导通,输出大电流给电池充电。此时,VT1处于放大状态-这是因为电池电压和-VD4压降的和约为3.2V(假设开始充 电时电池电压约为2.5V),而经VD1后的电压大约5.OV,所以,VT1的发射极-集电极压差远大于0.2V,当充电电流为300mA时,VT1发热比较严重,所以最好用PT=625mW的S8550,或者适当增大基极电阻以减小充电电流(注:由于LM324低电平驱动能力较小,实测IC1-2,IC1-4输出低电平并不是0V,而是约为0.8V)。 (2)充电的指示 首先看IC1-3的工作情况:其同相端1O脚通过R13接Vref,R14接成正反馈,反相端9脚外接电容,并有一负反馈通路,所以,它实际上构成了滞回比较器。刚开始时C2上端没有电压,则IC1-3输出高电平。这个高电平有两个放电通路,一个通路是通过R14反馈到10脚,另一通路是经电阻R15对电容C2充电,当充电的电压高于10脚电压V+ 时,比较器翻转输出低电平;与此同时,由于R14的反馈作用,10脚电压立即下跳到V-,这时,电容C2通过电阻R15放电,当放电的电压小于10脚电压V-时,比较器再次翻转输出高电平,由于R14的反馈作用,10脚电压立即上跳到V+,此后电路一直重复上述过程,因此,IC1-3的输出为频率固定的方波信号。 其次看IC1-4的工作情况:电池电压经R2、R16分压,接IC1-4的12脚,因为R2<

充电常识

常见电池的充放电设置 镍氢电池:充电电流<= 0.25C,放电电流<= 0.5C,放电电压1.0V。 镍铬电池:充电电流<= 0.25C,放电电流<= 0.5C,放电电压0.8V。 3.7V锂电:充电电流<= 0.5C,充电电压= 4.2V,放电 电流<= 0.5C,放电电压2.8V 3.2V铁锂:充电电流<= 1C,充电电压=3.65V,放电 电流<= 1C,放电电压2.5V 12V铅酸:充电电流<= 0.25C,充电电压=14.4V,放电电流<= 0.5C,放电电压10.5V C为放电速率,数值上等于容量,如2000mAh的电池,0.5C=1A 充电电流一般是1/4C,大容量的锂电可以到1C 取决于放电电流。 0.2C内1.0V 1C 内0.9V

2C 内0.8V 用于无线mouse等。个人意见不要低于1.2V 因放电电流太小。远小于0.1C 镍氢用于无线mouse。我都是每个月充电。 ——★1、按照部颁标准:充电电池(包括电瓶等),它的终止放电电压为额定电压的0.9 倍,使用时电池电压低于额定电压的0.9 倍时,就属于过放电了,会损坏电池的。【1.2V镍氢电池的安全放电电压是(1.2V x 0.9)1.08V。】 ——★2、普通收音机一般使用普通的干电池,没有低压保护功能,使用镍氢电池收听,(由于镍氢电池的放电电流较平缓)有可能出现过放电的现象。 ——★3、以使用充电电池为电源的老人跳舞机(兼收音机用)为例:内置的充电电池具有低电压保护功能,当电压降低到额定电压的0.9 倍时,就会停止工作、进入保护状态。

镍氢电池每节的标准电压是1.2V,充电的控制电压为1.42V,最低放电电压1V。比如4.8V镍氢电池是4 节标准电池串联起来的,所以充电控制电压应该是5.68V。最低放电电压4V。9V的太阳能电池为这个镍氢电池组充电,不能直接充,需要接有充满停电的控制电路,否则会过充损坏电池。 电池容量是有条件的,说一个电池有多少容量,必须指明放电条件:电流大小、环境温度、截止电压、连续放电还是间歇放电等。镍氢电池容量一般指常温下,以恒定1C或0.5C或0.2CmAh(电流大小,C是指标称容量值)电流连续放电至1.0V时,电池所放出的容量。一般情况下,镍氢电池完全放电时的截至电压为1.0V,即电压降到1.0V就是完全放电(根据特定要求,截止电压可以是0.9V、0.8V) 每个电池都有内阻,不同类型的电池内阻不同。相同类型的电池,由于内部化学特性的不一致,内阻也不一样。电池的内阻很小,我们一般用微欧或者毫欧的单位来定义它。内阻是衡量电池性能的一个重要技术指标。正常情况下,内阻小的电池的大电流放电能力强,内阻大的电池放电能力弱。取个简单的例子:一台老式的使用5号电池的数码相机(例如耗电量很大的CANON 210),使

镍氢充电电池的使用方法

镍氢充电电池的使用方法 1.一般情况下,新的镍氢电池只含有少量的电量,大家购买后要先进行充电然后再使用。但如果电池出厂时间比较短,电量很足,推荐先使用然后再充电。.新买的镍氢电池一般要经过3-4次的充电和使用,性能才能发挥到最佳状态,很多朋友第一次充电碰到的小问题,比方第一次充电后使用时间没有想象的那么多。在3-4次充电和使用后问题就都迎刃而解了。 2.虽然镍氢电池的记忆效应小,仍然推荐大家尽量每次使用完后再充电,并且是一次性充满,不要充一会用一会然后再充。这可是“延年益寿”的重要一点噢。电池充电时,要注意充电器周围的散热,为了避免电量流失等问题发生,保持电池两端的接触点和电池盖子的内部干净,必要时使用柔软、清洁的干布轻擦。 3长时间不用的时候,记得把电池从电池仓中取出,置于干燥的环境中推荐放入电池盒中,可以避免电池短路。长期不用的镍氢电池会在存放几个月后,电池自然进入一种“休眠”状态,电池寿命大大降低。如果镍氢电池已经放置了很长的时候,建议你先用慢充进行充电为宜。、因为:据测试,镍氢电池保存的最佳条件是带电80%左右保存。这是因为镍氢电池的自放电较大(一个月10%-15%左右),如果电池完全放电后再保存,很长时间内不使用,电池的自放电现象就会造成电池的过放电,会损坏电池。不信?那你想一想新买的镍氢充电电池是不是都还有电的,其中就是这个道理。建议:多比较,纠正错误的观点,从正确的方向入手保养电池,否则会事与愿违。 4.对镍氢进行放电。专家建议,尽量不要对镍氢电池进行过放电,过放会导致充电失败,这样做的危害远远大于镍氢电池本身的记忆效应!.万用表自检电池充满与否。一般镍氢电池在充电前,电压在1.2V以下,充满后正常电压在1.4V左右。大家以此判断,也就很容易判断电池的状态了。 5.充电器主要分为快充和慢充。慢充电流小,通常在200mA左右,比如我们常见的充电电流是在160mA左右。她的充电时间长,充电1800mAh的镍氢电池要16个小时左右。时间虽然是慢了些,可是充电会充的很足,并且不伤电池。快充电流通常都在400mA以上,充电时间明显减少很多,3-4个小时就可以搞定,也赢得了大家的喜爱。快充种类很多,价格不一。所以大家也常常有疑问,同是快充,价格为什么相差甚大呢?好的充电器特别是好的快充都带有防过度充电保护功能的,比方我们常见的松下极品充电器BQ390在这方面表现尤为出色,优秀的芯片软件设计能力在对电池充电时,也把快充对电池的伤害降到了最低。 6.矛盾出现:慢充不伤电池但是充电时间太长;快充可以节省时间,但对电池有伤害,即使是目前世面上最好的松下极品充电器BQ390也只能很好的降低伤害程度,但不可完全避免。解决矛盾的方法就是要买一个快充和一个慢充。用快充充一段时间,比方5、10次之后,改用慢充充电一两次。这样就又把电池的性能恢复到最佳状态。电池使用时一般都是电池组,就是4节或6节串联起来,这时候,保持每节电池的平衡就很重要了,否则因为其中的一节电池问题而影响整个电池组的工作。首先要保证电池容量一致,最好选择相同牌子相同型号同时购买的电池。然后,要保持电池内部的电量一致,简单的说,就是电池组的电要么都是满的,要么都是空的。如果有比较多的电池组成若干组电池组,可以试着“精选”一下。具体就是说,将容量、电压等参数相近的电池单体串联成一组电池组,由于条件不足,一般情况下测一下放完点后的电压和冲好电的电压就可以了。 7.高档的NI-MH充电器用的是-DELTAV检测电池电压来判断电池是否充满。电池充电时的电压曲线和放电时有点相似,开始时是比较快的上升,之后缓慢上升,等到充好的时候,电压又开始快速下降,只是下降的幅度不是很大。之前常用的镍镉电池也类似,只是下降的速度和幅度比NI-MH都大。而市场上最多的充电器(比较便宜的那种)常常用的就是衡压充电,

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

镍镉镍氢电池的原理及充电方法

镍镉/镍氢电池的原理及充电方法 镍镉/镍氢电池的发展 1899年,Waldmar Jungner在开口型镍镉电池中,首先使用了镍极板,几乎与此同时,Thomas Edison 发 明了用于电动车的镍铁电池。遗憾的是,由 于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制。 后来,Jungner的镍镉电池经过几次重要改进,性能明显改善。其中最重要的改进是在1932年,科学家在 镍电池中开始使用了活性物质。他们将活性 物质放入多孔的镍极板中,然后再将镍极板装入金属壳内。镍镉电池发展史上另一个重要的里程碑是1947 年密封型镍镉电池研制成功。在这种电池中 ,化学反应产生的各种气体不用排出,可以在电池内部化合。密封镍镉电池的研制成功,使镍镉电池的应 用范围大大增加。 密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑,并且不需要维护,因此在 工业和消费产品中得到了广泛应用。 随着空间技术的发展,人们对电源的要求越来越高。70年代中期,美国研制成功了功率大、重量轻、寿命 长、成本低的镍氢电池,并且于1978年成功 地将这种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍,而且没有重金属镉 带来的污染问题。它的工作电压与镍镉电池 完全相同,工作寿命也大体相当,但它具有良好的过充电和过放电性能。近年来,镍氢电池受到世界各国 的重视,各种新技术层出不穷。镍氢电池刚 问世时,要使用高压容器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压镍氢 电池。1992年,日本三洋公司每月可生产 200万只镍氢电池。目前国内已有20多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际 先进水平。 蓄电池参数 蓄电池的五个主要参数为:电池的容量、标称电压、内阻、放电终止电压和充电终止电压。电池的容量通 常用Ah(安时)表示,1Ah就是能在1A的电流 下放电1小时。单元电池内活性物质的数量决定单元电池含有的电荷量,而活性物质的含量则由电池使用 的材料和体积决定,因此,通常电池体积越

镍氢充电电池使用和保养

镍氢充电电池使用和保养 1.一般情况下,新的镍氢电池只含有少量的电量,大家购买后要先进行充电然 后再使用。但如果电池出厂时间比较短,电量很足,推荐先使用然后再充电。 2.新买的镍氢电池一般要经过3-4次的充电和使用,性能才能发挥到最佳状态,很多朋友第一次充电碰到的小问题,比方第一次充电后拍片数量没有想象的那 么多。在3-4次充电和使用后就都迎刃而解了。 3.虽然镍氢电池的记忆效应小,仍然推荐大家尽量每次使用完后再充电,并且 是一次性充满,不要充一会用一会然后再充。这可是“延年益寿”的重要一点噢。 4.电池充电时,要注意充电器周围的散热,太刻意用什么风扇吹没有什么必要,但要注意的是充电器周围不要放置太多杂物。普通用户在使用电池的过程中, 电池往往没有专用的存放包;用户在替换电池后,会习惯性的把电池随手放好,而不管所放的地方是否干净、潮湿。这样的后果就是电池容易弄脏、触点易与 金属?比如钥匙等接触、容易受潮,而这些都是电池的大敌。建议:用户应该设置一个电池专用放置点,并保持电池的清洁。为了避免电量流失等问题发生,保持电池两端的接触点和电池盖子的内部干净,必要时使用柔软、清洁的干布 轻擦。 5.长时间不用的时候,记得把电池从电池仓中取出,置于干燥的环境中推荐放 入牌电池盒中,可以避免电池短路。 6.长期不用的镍氢电池会在存放几个月后,电池自然进入一种“休眠”状态,电 池寿命大大降低。如果镍氢电池已经放置了很长的时候,建议你先用慢充进行 充电为宜。、因为:据测试,镍氢电池保存的最佳条件是带电80%左右保存。这是因为镍氢电池的自放电较大(一个月10%-15%左右),如果电池完全放 电后再保存,很长时间内不使用,电池的自放电现象就会造成电池的过放电, 会损坏电池。不信?那你想一想新买的镍氢充电电池是不是都还有电的,其中 就是这个道理。建议:多比较,纠正错误的观点,从正确的方向入手保养电池,否则会事与愿违。 7.对镍氢进行放电。专家建议。尽量不要对镍氢电池放电,过放会导致充电失败,这样做的危害远远大于镍氢电池本身的记忆效应! 8.万用表自检电池充满与否。一般镍氢电池在充电前,电压在1.2V以下,充 满后正常电压在1.4V左右。大家以此判断,也就很容易判断电池的状态了。

手机充电器电路原理图分析

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,

镍镉电池镍氢电池的原理及充电方法

镍镉电池镍氢电池的原理及充电方法 发表于81 天前???被围观151 views+ 镍镉/镍氢电池的发展 1899年,Waldmar Jungner在开口型镍镉电池中,首先使用了镍极板,几乎与此同时,Thomas Edison 发明了用于电动车的镍铁电池。遗憾的是,由于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制。 后来,Jungner的镍镉电池经过几次重要改进,性能明显改善。其中最重要的改进是在1932年,科学家在镍电池中开始使用了活性物质。他们将活性物质放入多孔的镍极板中,然后再将镍极板装入金属壳内。镍镉电池发展史上另一个重要的里程碑是1947年密封型镍镉电池研制成功。在这种电池中,化学反应产生的各种气体不用排出,可以在电池内部化合。密封镍镉电池的研制成功,使镍镉电池的应用范围大大增加。 密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑,并且不需要维护,因此在工业和消费产品中得到了广泛应用。 随着空间技术的发展,人们对电源的要求越来越高。70年代中期,美国研制成功了功率大、重量轻、寿命长、成本低的镍氢电池,并且于 1978年成功地将这种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍,而且没有重金属镉带来的污染问题。它的工作电压与镍镉电池完全相同,工作寿命也大体相当,但它具有良好的过充电和过放电性能。近年来,镍氢电池受到世界各国的重视,各种新技术层出不穷。镍氢电池刚问世时,要使用高压容器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压镍氢电池。1992年,日本三洋公司每月可生产200万只镍氢电池。目前国内已有20多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际先进水平。 蓄电池参数

48伏电瓶车充电器原理图

48伏电瓶车充电器原理图 常用电动车充电器根据电路结构可大致分为两种。?第一种是以uc3842驱动场效应管的单 双运放来实现三阶段充电方式。其电原理图和元件参数见图表1 管开关电源,配合LM358 --

?图表1 ?工作原理:220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。U1为TL3842脉宽调制集成电路。其5脚为电源负极,7 脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整 --

R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35)起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。第二路经R5,C8,C3,达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。第二路经R14,D5,C9,为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。正常充电时,R27上端有0.15-0.18V左 --

镍氢电池首次充电方法介绍-全文

镍氢电池首次充电方法介绍 - 全文 镍氢电池和镍镉电池一样都有记忆效应,但是要远 小于镍镉电池。所以没有必要每次充电都进行放电操作(因 为操作不当会损害电池) ,只需三个月一次完全充放电以缓 25?35% (月),镍镉电池为15?30% (月),锂电池为2 5% (月)。镍氢电池的自放电率为最大,而锂电池与其他两 氢电池和锂电池都不能耐过充电。因此,镍氢电池以定电流 充电的 PICK CUT 控制方式在充电电压达到最高时, 停止继 续充电为最好的充电方式。而锂电池则使用定电流、定电压 方式充电最好,若以镍镉电池的充电器 -DV 控制方式进行充 使用的时间越长。抛开体积和重量的因素,当然容量越高越 也相同,实际测的初始容量不同:比如一个为 660mAh ,另 个是 605mAh ,那么 660mAh 的就比 605mAh 的好吗。 实际情况可能是容量高的是因为电极材料中多了增加初始 容量的东西,而减少了电极稳定用的东西,其结果就是循环 使用几十次以后,容量高的电池迅速容量衰竭,而容量低的 解记忆效应。 2.镍氢电池的自放电率 镍氢电池为 类电池相比放电率极低。 3.镍氢电池的充电方式 电的话对镍氢电池和锂电池会造成使用寿命的影响。 4. 镍氢电池容量越高越好吗 不同型号的电池,容量越高, 好。 但是同样的电池型号,标称容量(比如 600mAh ) 号,

电池却依然坚挺。许多国内的电芯厂家往往以这个方式来获 得高容量的电池。而用户使用半年以后待机时间却是差得 塌糊涂。民用的那些AA 镍氢电池 (就是五号电池) , 般是1400mAh ,却也有标超高容量的 ( 1600mAh ),道理也 是一样。提高容量的代价就是牺牲循环寿命,厂家不在 电池材料的改性上下文章,是不可能真正“提高”电池容量的。 镍氢电池充电方法科学的充电方法可以延长镍氢电池 的使用寿命。①一般情况下,新的镍氢电池只有很少的 电量,购买后要先进行充电然后再使用。但如果电池出 厂时间短,电量很足,推荐先使用再充电。新的镍氢电池般要经过3-4 次的充电和使用,性能才能发挥到最佳状态。 ②镍氢电池的记忆效应虽然小,最好还是每次使用完再充电,并且是一次性充满,不要充一会用一会然后再充。这是“延年益寿”的重要一点。③ 充电的时候,要注意充电器周围的散热。不用的时候要保持电池清洁,尤 其是两端的触点,必 要时使用柔软的干布轻擦。长时间不用的话,要把电池从电个月后,会进入一种“休眠”状态,电池寿命大大降低。如果镍氢电池已经放置了很长时间,建议先用慢充进行充电为宜。 池仓中取出,置于干燥的环境中④镍氢电池在存放几 般镍氢电池在充电前,电压是在1.2V 以下,充满后正常电压在1.4V 左右。以此可以判断电池是否已经充满。 氢电池第一次充电镍氢电池出厂后的第一次充电包括

充电电池的标识方法

充电电池的标识方法 根据IEC标准镍镉镍氢电池的标识由5部分组成 1. 电池种类KR标识镍镉电池HF表示镍氢电池HR表示型镍氢电池 2. 电池尺寸资料包括圆形电池的直径高度方型电池的高度宽度厚度数值之间用斜杠隔开单位mm 3. 放电特性符号L表示适宜放电电流倍率在0.5C以内 M表示适宜放电电流倍率在0.5-3.5C以内 H表示适宜放电电流倍率在3.5-7.0C以内 X表示电池能在7C-15C高倍率的放电电流下工作 4. 高温电池符号用T表示 5. 电池连接片表示CF代表无连接片HH表示电池拉状串联连接片用的连接片HB表示电池带并排串联连接用连接片 例如HF18/07/49表示方形镍氢电池宽为18mm,厚度为7mm高度为49mm KRMT33/62HH表示镍镉电池放电倍率在0.5C-3.5之间高温系列单体电池无连接片直径33mm高度为62mm 根据IEC61960标准二次锂电池的标识如下: 1. 电池标识组成3个字母后跟5个数字圆柱形或6个方形数字 2. 第一个字母表示电池的负极材料I表示有内置电池的锂离子L表示锂金属电极或锂合金电极 3. 第二个字母表示电池的正极材料C基于钴的电极N基于镍的电极M基于锰的电极V基于钒的电极 4. 第三个字母表示电池的形状R表示圆柱形电池L表示方形电池 5. 数字圆柱形电池5个数字分别表示电池的直径和高度直径的单位为毫米高 度的单位为十分之一毫米直径或高度任一尺寸大于或等于100mm时两个尺寸之间应加一条斜线

方型电池6个数字分别表示电池的厚度宽度和高度单位毫米三个尺寸任一个大于或等于100mm时尺寸之间应加斜线三个尺寸中若有任一小于1mm,则在此尺寸前加字母t此尺寸单位为十分之一毫米。 例如: ICR18650表示一个圆柱形二次锂离子电池正极材料为钴其直径约为18mm高约为65mm。 ICR20/1050 ICP083448表示一个方形二次锂离子电池正极材料为钴其厚度约为8mm,宽度约为34mm高约为48mm。 ICP08/34/150表示一个方形二次锂离子电池正极材料为钴其厚度约为8mm,宽度约为34mm高约为150mm。 ICPt73448表示一个方形二次锂离子电池正极材料为钴其厚度约为0.7mm,宽度约为34mm高约为48mm。

v电动车充电高清电路图与原理详解

v电动车充电高清电路图 与原理详解 Prepared on 22 November 2020

工作原理 220V 交流电经 LF1 双向滤波.VD1-VD4 整流为脉动直流电压,再经 C3 滤波后形成约 300V 的直流电压,300V 直流电压经过启动电阻 R4 为脉宽调制集成电路 IC1 的 7 脚提供启动电压,IC1 的 7 脚得到启动电压后,(7 脚电压高于 14V 时,集成电路开始工作),6 脚输出 PWM 脉冲,驱动电源开关管(场效应管) VT1 工作在开关状态,流通过 VT1 的 S 极-D 极-R7-接地端.此时开关变压器 T1 的 8-9绕产生感应电压,经 VD6,R2 为 IC1 的 7 脚提供稳定的工作电压,4 脚外接振荡阻 R10 和振荡电容C7 决定 IC1 的振荡频率, IC2(TL431)为精密基准压源,IC4(光耦合器 4N35)配合用来稳定充电压,调整 RP1(510 欧半可调电位器)可以细调充电器的电压,LED1 是电源指示灯.接通电源后该指示灯就会发出红色的光。VT1 开始工作后,变压器的次级 6-5 绕组输出的电压经快速恢复二极管 VD60 整流,C18 滤波得到稳定的电压(约 53V).此电压一路经二极管 VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻 R38,稳压二极管 VZD1,滤波电容 C60,为比较器 IC3(LM358)提供 12V 工作电源,VD12 为 IC3 提供基准压,经 R25,R26,R27 分压后送到 IC3 的 2

脚和 5 脚。 正常充电时,R33 上端有-的电压,此电压经 R10 加到 IC3 的 3 脚,从 1 脚输出高电平。1 脚输出的高电平信号分三路输出,第一路驱动 VT2 导通,散热风扇得开始工作,第二路经过电阻 R34 点亮双色二极管 LED2 中的红色发光二极管,第三路输入到 IC3 的 6 脚,此时 7 脚输出低电平,双色发光二极管 LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段。当电池压升到左右时,充电器进入恒压充电阶段,流逐渐减小。当充电流减小到 200MA-300MA 时,R33 上端的电压下降,IC3 的 3 脚电压低于 2 脚,1 脚输出低电平,双色发光二极管 LED2 中的红色发光二极管熄灭,三极管 VT2 截止,风扇停止运转,同时 IC3 的 7 脚输出高电平,此高电平一路经过电阻 R35 点亮双色发光二极管 LED2 中的绿色发光二极管(指示电已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经 R52,VD18,R40,RP2 到达 IC2 的 1 脚,使输出电压降低,充电器进入200MA-300MA 的涓流充电阶段(浮充),改变 RP2 的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折流(200-300MA)。 常见故障 这种类型充电器的常见故障有下面几种情况: 1、高压电路故障:该部分路出现问题的主要现象是指示灯不亮。通常还伴有保险丝烧断,此时应检查整流二极管 VD1-VD4 是否击穿,电容 C3 是否炸裂或者鼓包, VT2 是否击穿, R7,R4 是否开路,此时更换损坏的元件即可排除故障,若经常烧 VT1,且 VT1 不烫手,则应重点检查 R1,C4,VD5 等元器件,若 VT1 烫手,则重点检查开关变压器次级路中的元器件有无短路或者漏电。若红色指示灯闪烁,则故障多数是由 R2 或者 VD6 开路,变压器 T1 线脚虚焊引起。 2、低压电路故障:低压电路中最常见的故障就是电流检测电阻 R33 烧断,此时的故障现象是红灯一直亮,绿灯不亮,输出电压低,电瓶始终充不进电,另外,若 RP2 接触不良或者因振动导致阻值变化(充电器注明不可随车携带就是怕RP2 因振动而改变阻值),就会导致输出电压移。若输出电压偏高,电瓶会过充,严重时会失水-发烫,最终导致充爆,若输出电压偏低,会导致电瓶欠充,缩短其寿命。

镍镉-镍氢电池的原理及充电方法

镍镉/镍氢电池的原理及充电方法 一、镍镉/镍氢电池的发展 1899年,Waldmar Jungner在开口型镍镉电池中,首先使用了镍极板,几乎与此同时,Thomas Edison 发明了用于电动车的镍铁电池。遗憾的是,由于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制。 后来,Jungner的镍镉电池经过几次重要改进,性能明显改善。其中最重要的改进是在1932年,科学家在镍电池中开始使用了活性物质。他们将活性物质放入多孔的镍极板中,然后再将镍极板装入金属壳内。镍镉电池发展史上另一个重要的里程碑是1947年密封型镍镉电池研制成功。在这种电池中,化学反应产生的各种气体不用排出,可以在电池内部化合。密封镍镉电池的研制成功,使镍镉电池的应用范围大大增加。 密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑,并且不需要维护,因此在工业和消费产品中得到了广泛应用。 随着空间技术的发展,人们对电源的要求越来越高。70年代中期,美国研制成功了功率大、重量轻、寿命长、成本低的镍氢电池,并且于1978年成功地将这种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍,而且没有重金属镉带来的污染问题。它的工作电压与镍镉电池完全相同,工作寿命也大体相当,但它具有良好的过充电和过放电性能。近年来,镍氢电池受到世界各国的重视,各种新技术层出不穷。镍氢电池刚问世时,要使用高压容器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压镍氢电池。1992年,日本三洋公司每月可生产200万只镍氢电池。目前国内已有20多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际先进水平。 二、蓄电池参数 蓄电池的五个主要参数为:电池的容量、标称电压、内阻、放电终止电压和充电终止电压。电池的容量 ......1.小时 ..。单元电池内活性物质 ....1A..的电流下放电 ..通常用Ah( ...安时 ..).表示,1Ah ...就是能在 的数量决定单元电池含有的电荷量,而活性物质的含量则由电池使用的材料和体积决定,因此, 通常电池体积越大,容量越高 .............。与电池容量相关的一个参数是蓄电池的充电电流。蓄电池的充电 ...... 电流通常用充电速率 ...C.为蓄电池的额定容量 .........。例如,用2A电流对1Ah电池充电,充电.........C.表示, 速率就是2C;同样地,用2A电流对500mAh电池充电,充电速率就是4C。 电池刚出厂时,正负极之间的电势差称为电池的标称电压。标称电压由极板材料的电极电 ............. 位和内部电解液的浓度决定。 .............当环境温度、使用时间和工作状态变化时,单元电池的输出电压略 有变化,此外,电池的输出电压与电池的剩余电量也有一定关系 .....................。单元镍镉电池的标称电压约为1.3V(但一般认为是1.25V),单元镍氢电池的标称电压为1.25V。 电池的内阻决定于极板的电阻和离子流的阻抗。在充放电过程中,极板的电阻是不变的,但是,离子流的阻抗将随电解液浓度的变化和带电离子的增减而变化。

简单充电器电路图

简单充电器电路图 一般电池充电均采用恒流方式,这样只需控制充电时间即可完成对电池的充电。从该电池外观上看,它是镍氢电池,容量为1450毫安时。其标准充电方法是:用电池额定容量的1/10电流即145毫安充电14~16小时。本充电器实测充电电流为170毫安左右,充电时间约为12小时。制作所需的元件有:变压器一个,功率在10W左右,次级绕组的电压在12~15V之间;7812三端稳压集成电路一个;IN4008二极管4个(或1A/200V整流桥一个),2200UF/50V电解电容和0.1UF无极性电容各一个;56欧姆电阻一只(阻值大小可以根据需要自定);可放4节电池的电池盒一个;电路板一块,导线若干。制作说明及注意点:选好元件以后按照电路图组装好电路,仔细检查确保焊接无误。三端稳压集成电路须安装散热片。电阻的功率2W以上,最好选择阻燃电阻。在电路板上安装电阻时要在他周围预留一定的空间,因为电阻也有较大的发热量。充电时间计算:应充入的容量是1450/10*14=2030毫安时充电电流为170毫安时的充电时间为2030/170约为12小时根据实际需要,改变电阻的阻值大小即可在一定范围内改变充电电流,也就控制了充电时间的长短。不过建议在一般情况下不要采用大电流充电,以免影响电池的使用寿命。本充电器给电池充一次电,在笔者的奥林巴斯C-860L上可以拍照200~300张(LCD取景屏常开,偶尔使用闪光灯),使用至今已4个多月,电池工作一直良好。而制作本充电器仅花费十几元,起性价比是极高的,使用效果也非常令人满意。 说明:印刷电路板中J1接电源变压器的副边输出,J2接电池组。板中的D为硅整流桥。

镍氢电池充电方案参考

镍氢电池组充电方案参考 方案一、充电电路可以采用恒压串联一个限流电阻给镍氢电池组充电。恒压一般需要根据电路中的直流恒压来选定,但是该电压一定要大于电池充满时的电压。限流电阻的大小可以采用如下示例来计算。 例如:现在需要给一组标称4.8V 300mAh的镍氢电池组充电,假设电路中外加直流恒压为12V,那限流电阻的大小可按如下a、b、c步骤计算:a.由于单颗镍氢电池充满时的电压约为1.45V,如果是4颗一组的镍氢 电池,那充满时电池的电压约为1.45V × 4 = 5.80V。 b.当电池组充满电时,我们希望继续给电池组充电的电流大小不要超过 电池本身标称容量的0.03-0.05倍,这时电池就处于涓流充电状态,也即浮充状态。 c.现在示例电池组的标称容量为300mAh,4颗一组的镍氢电池组,所以 当该4.8V 300mAh电池组充满电时,电池组的电压约为1.45V ×4 = 5.80V,如要继续给电池组充电,那么只能进行涓流充电,(涓流充电电 流范围为大于300× 0.03= 9mA,小于300× 0.05= 15mA),考虑电路中的波动,我们一般选其中值12mA,那么限流电阻的大小R=(外加恒压12V - 电池电压5.80V)÷12mA = 517Ω。即如果采用外加12V 的恒压串联一个517Ω的限流电阻给该 4.8V 300mAh镍氢电池组充电,那么当该电池组充满电时,继续给电池组充电的电流大小自动降到12mA的涓流充电水平。镍氢电池在涓流充电状态下可以连续长期充电,对电池没有损伤。该方案的优点是价格便宜,缺点是电池放完

电后,再充满时需要的时间较长。 方案二、采用充电管理芯片给电池组充电。例如:现在需要给一组标称 4.8V 300mAh的镍氢电池组充电,可以考虑当电池组电压被充到5.6V-5.8V时,充电管理芯片发出指示停止充电;当电池组电压下降到4.7-4.8V,充电管理芯片发出指示启动充电。充电电流的大小建议采用电池标称容量的0.1倍。该方案的优点是电池没电时能较快充满,同时电池也不容易发生过度充电和过度放电。 注意:过度放电容易导致可充电池损坏。因此建议单颗镍氢电池的电压下降到1.0V时(如果是4颗一组的镍氢电池,那就是电池电压下降到4.0V 时)就要关断电路,不要再让电池放电。

镍镉镍氢电池原理及充电方法详解

■设为首页 ■加入收藏 ■联系我们  当前位置首页 >> 镍氢充电知识帮助 >> [推荐] 镍镉电池镍氢电池的原理及充电方法详解 [推荐] 镍镉电池镍氢电池的原理及充电方法详解 ——镍氢充电帮助 作者来源发布时间 2005-06-24 浏览次数字体大中小 [推荐] 镍镉电池镍氢电池的原理及充电方法详解 =================================== [作者:佚名转贴自:《IT大虾网》]转贴来自:镍氢电池论坛 镍镉/镍氢电池的发展 1899年,Waldmar Jungner在开口型镍镉电池中,首先使用了镍极板,几乎与此同时,Thomas Edison 发明了用于电动车的镍铁电池。遗憾的是,由于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制。 后来,Jungner的镍镉电池经过几次重要改进,性能明显改善。其中最重要的改进是在1932年,科学家在镍电池中开始使用了活性物质。他们将活性物质放入多孔的镍极板中,然后再将镍极板装入金属壳内。镍镉电池发展史上另一个重要的里程碑是1947年密封型镍镉电池研制成功。在这种电池中,化学反应产生的各种气体不用排出,可以在电池内部化合。密封镍镉电池的研制成功,使镍镉电池的应用范围大大增加。 密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑,并且不需要维护,因此在工业和消费产品中得到了广泛应用。 随着空间技术的发展,人们对电源的要求越来越高。70年代中期,美国研制成功了功率大、重量轻、寿命长、成本低的镍氢电池,并且于1978年成功地将这种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍,而且没有重金属镉带来的污染问题。它的工作电压与镍镉电池完全相同,工作寿命也大体相当,但它具有良好的过充电和过放电性能。近年来,镍氢电池受到世界各国的重视,各种新技术层出不穷。镍氢电池刚问世时,要使用高压容器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压镍氢电池。1992年,日本三洋公司每月可生产200万只镍氢电池。目前国内已有20多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际先进水平。 蓄电池参数 蓄电池的五个主要参数为:电池的容量、标称电压、内阻、放电终止电压和充电终止电压。电池的容量通常用Ah(安时)表示,1Ah就是能在1A 的电流下放电1小时。单元电池内活性物质的数量决定单元电池含有的电荷量,而活性物质的含量则由电池使用的材料和体积决定,因此,通常电池体积越大,容量越高。与电池容量相关的一个参数是蓄电池的充电电流。蓄电池的充电电流通常用充电速率C表示,C为蓄电池的额定容量。例如,用2A电流对1Ah电池充电,充电速率就是2C;同样地,用2A电流对500mAh电池充电,充电速率就是4C。 电池刚出厂时,正负极之间的电势差称为电池的标称电压。标称电压由极板材料的电极电位和内部电解液的浓度决定。当环境温度、使用时间和工作状态变化时,单元电池的输出电压略有变化,此外,电池的输出电压与电池的剩余电量也有一定关系。单元镍镉电池的标称电压约为1.3V(但一般认为是1.25V),单元镍氢电池的标称电压为1.25V。 电池的内阻决定于极板的电阻和离子流的阻抗。在充放电过程中,极板的电阻是不变的,但是,离子流的阻抗将随电解液浓度的变化和带电离子的增减而变化。 蓄电池充足电时,极板上的活性物质已达到饱和状态,再继续充电,蓄电池的电压也不会上升,此时的电压称为充电终止电压。镍镉电池的充电终止电压为1.75~1.8V,镍氢电池的充电终止电压为1.5V。 表1-1 镍镉电池不同放电率时的放电终止电压

相关文档
最新文档