Fluent时间步长设置细节

Fluent时间步长设置细节
Fluent时间步长设置细节

学习fluent(流体常识及软件计算参数设置)

luent 中一些问题 ( 目录 ) 离散化的目的 计算区域的离散及通常使用的网格 控制方程的离散及其方法 各种离散化方法的区别 8 9 10在GAMBIT 中显示的“check 主要通过哪几种来判断其网格的质量?及其在做网格时大 致注意到哪些细节? 11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克 服这种情况呢? 12在设置GAMBIT 边界层类型时需要注意的几个问题: a 、没有定义的边界线如何处理? b 、计算域内的内部边界如何处理( 2D )? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪 些? 14 20 何为流体区域( fluid zone )和固体区域( solid zone )?为什么要使用区域的概念? FLUENT 是怎样使用区域的? 15 21 如何监视 FLUENT 的计算结果?如何判断计算是否收敛?在 FLUENT 中收敛准则是 如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些 参数?解决不收1 如何入门 2 CFD 2.1 2.2 2. 3 2.4 2.5 2.6 计算中涉及到的流体及流动的基本概念和术语 理想流体( Ideal Fluid )和粘性流体( Viscous Fluid ) 牛顿流体( Newtonian Fluid )和非牛顿流体( non-Newtonian Fluid ) 可压缩流体 ( Compressible Fluid )和不可压缩流体( Incompressible Fluid ) 层流( Laminar Flow )和湍流( Turbulent Flow ) 定常流动( Steady Flow )和非定常流动( Unsteady Flow ) 亚音 速流动 (Subsonic) 与超音速流动( Supersonic ) 热传导( Heat Transfer )及扩散 ( Diffusion ) 2.7 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常 使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有 什么不 同? 3.1 3.2 3.3 3.4 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是 什 么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反 而比 可压缩流动有更多的困难? 6.1 可压缩 Euler 及 Navier-Stokes 方程数值解 6.2 不可压缩 Navier-Stokes 方程求解 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 在数值计算中,偏微分方程的 双曲型方程、椭圆型方程、抛物型方程有什么区别? 在网格生成技术中,什么叫贴体坐标 系?什么叫网格独立解?

ansys时间步长的确定

ANSYS 瞬态动力学分析中的时间步长的选择 对于瞬态动力学分析问题,如何选取合适的时间步长,才能保证得到正确的计算结果呢?这是我们在瞬态动力学分析中需要关注的一个问题。 积分时间步长的选取决定了瞬态动力学问题的求解精度:时间步长越小,则计算精度越高。太大的时间步长会导致高阶模态的响应出错,从而会影响到整体的响应。但是太小的时间步长会浪费计算资源。要得到一个较好的时间步长,应该遵循下述原则: (1)分析响应的频率。 时间步长应该小到可以分析结构的响应。既然结构的动力响应可以看成是一系列模态的组合,时间步长应该可以求解对响应有贡献的最高阶模态。对NEWMARK 积分方案而言,发现可以使用感兴趣结果的最高阶频率的每个周期内取20个点就可以得到大致合适的解答。这就是说, f t 201=? 上式中,t ?为时间步长,f 为所关注系统的最高频率。 如果需要计算加速度,则上述时间步长需要更小一些。 对于HHT 时间积分方法,可以使用同样的时间步长。在使用相同的时间步长和时间积分参数的前提下,HHT 方法比NEWMARK 方法更精确一些。 (2)分析加载的载荷-时间曲线。 时间步长应该足够的小到能跟踪载荷历程。响应一般要比施加的载荷慢半拍,阶跃载荷尤其如此。它需要较小的时间步以便能紧密的跟踪载荷的改变。它应该小到1/180f 会较合适。 (3)分析接触频率。 在包含接触(碰撞)的问题中,时间步长应该小到足以捕捉接触面之间的动力传递。否则,会产生明显的能量损失,而碰撞将不再是理想弹性的。时间步长可以由接触频率得到 c Nf t 1=? m k f c π21=

学习fluent (流体常识及软件计算参数设置)

luent中一些问题----(目录) 1 如何入门 2 CFD计算中涉及到的流体及流动的基本概念和术语 2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid) 2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid) 2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid) 2.4 层流(Laminar Flow)和湍流(Turbulent Flow) 2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow) 2.6 亚音速流动(Subsonic)与超音速流动(Supersonic) 2.7 热传导(Heat Transfer)及扩散(Diffusion) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不 同? 3.1 离散化的目的 3.2 计算区域的离散及通常使用的网格 3.3 控制方程的离散及其方法 3.4 各种离散化方法的区别 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难? 6.1 可压缩Euler及Navier-Stokes方程数值解 6.2 不可压缩Navier-Stokes方程求解 7 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别? 9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解? 10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节? 11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢? 12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理? b、计算域内的内部边界如何处理(2D)? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些? 14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的? 15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收

辐射和对流模型Fluent参数设置

辐射和对流模型Fluent参数设置 1.读入***.mesh文件,并对网格文件进行进行检查,Grid→cheek,主要看最小体积和最小面积不能为负,之后进行刻度转换,Grid→scale,在Gmbit 里面建模默认尺寸为米,与实际尺寸之间要进行转化,如下图: 2.选择求解器,Define→Models→sover……根据情况选择,如上图:接着选择辐射模型,Define→Models→Radiation,如下图,当Radiation Model面板上 点击ok时,会出现一个信息提示框,告诉你新 的材料物性被添加了,你将在后面设置物性参 数,因此现在只需单击ok确认这个信息即可, 如下图: 注意:当你激活辐射模型后,Fluent会自动打开能量求解器,如下图: 不用再Define→Models→Energy……

3.设置流体粘性,由于模型中空气流速比较大,设成双方程模型:如下图: 4.设置操作条件,此模型此有流体,属有重力情况,Define→Operating Conditions,选中 Gravity.Y方向加速度设置为-9.8 2 m,击OK确定。 /s 设置工作温度,在后面要激活的Boussinesq model要用到,(Boussinesq model:

考虑温度变化而忽略压强变化引起的密度变化叫做Boussinesq 假设) 5. 定义材料并设置其物理属性 Define →Material …… 先定义空气物性,要定义成有浮力的,取Boussinesq 选项。 Density=1.1653/m kg ,()k kg j C p ?=/1005 Thermal Conductivity=0.0267()k m w ?/,Material Type :fluid ; Thermal Expansion Coefficient =0.0033()k /1。 通过滚动条使先前面板中不可见的物性显示出来。在Scattering Coefficient 和Scattering Phase Function 中保持默认值,在要解决的问题中不涉及到散射问题;设定热扩散系数(用boussinesq 模型时)为1e-5K -1。单击Change/Create ,关闭Materials 面板。 6.设置边界条件Define → Boundary Conditions ……

Fluent求解参数设置

求解参数设置(Solution Methods/Solution Controls): 在设置完计算模型和边界条件后,即可开始求解计算了,因为常会出现求解不收敛或者收敛速度很慢的情况,所以就要根据具体的模型制定具体的求解策略,主要通过修改求解参数来完成。在求解参数中主要设置求解的控制方程、选择压力速度耦合方法、松弛因子、离散格式等。 在VOF模型中,PISO比较适合于不复杂的流体,SIMPLE和SIMPLEC适合于可压缩的流体或者处于封闭域中的流体。 ? 求解的控制方程: 在求解参数设置中,可以选择所需要求 解的控制方程。可选择的方程包括Flow(流动方 程)、Turbulence(湍流方程)、Energy(能量方 程)、Volume Fraction(体积分数方程)等。在 求解过程中,有时为了得到收敛的解,先关闭 一些方程,等一些简单的方程收敛后,再开启 复杂的方程一起计算。 ? 选择压力速度耦合方法: 在基于压力求解器中,FLUENT提供了压 力速度耦合的4种方法,即SIMPLE、 SIMPLEC(SIMPLE.Consistent)、PISO以及 Coupled。定常状态计算一般使用SIMPLE或者 SIMPLEC方法,对于过渡计算推荐使用PISO方 法。PISO方法还可以用于高度倾斜网格的定常 状态计算和过渡计算。需要注意的是压力速度 耦合只用于分离求解器,在耦合求解器中不可 以使用。 在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC算法,默认是SIMPLE算法,但对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松弛迭代时。 对于相对简单的问题(如没有附加模型激活的层流流动),其收敛性可以被压力速度耦合所限制,用户通常可以使用SIMPLEC算法很快得到收敛解。在SIMPLEC算法中,压力校正亚松弛因子通常设为1.0,它有助于收敛,但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致流动不稳定,对于这种情况,则需要使用更为保守的亚松弛或者使用SIMPLE算法。对于包含湍流或附加物理模型的复杂流动,只要用压力速度耦合做限制,SIMPLEC就会提高收敛性,它通常是一种限制收敛性的附加模拟参数,在这种情况下,SIMPLE和SIMPLEC 会给出相似的收敛速度。 对于所有的过渡流动计算,推荐使用PISO算法邻近校正。它允许用户使用大的时间步,而且对于动量和压力都可以使用亚松弛因子1.0。对于定常状态问题,具有邻近校正的PISO并不会比具有较好的亚松弛因子的SIMPLE或SIMPLEC好。对于具有较大扭曲网格上的定常状态和过渡计算推荐使用PISO倾斜校正。 当使用PISO邻近校正时,对所有方程都推荐使用亚松弛因子为1.0或者接近1.0。如果只对高度扭曲的网格使用PISO倾斜校正,则要设定动量和压力的亚松弛因子之和为1.0(例如,压力亚松弛因子0.3,动量亚松弛因子0.7)。

CHP22时间步长

CHP22.15 时间步长的设定 绘制当前时间数据图的方法: 使用显式非稳态公式或使用的是适应时间步长法,推荐用绘制当前时间或当前时间步长数据图。方法: Solve—Monitors—statistic 在statistics框中选择time或是delta_time 项。 确定与时间有关的求解参数: 一阶或二阶隐式求解方法: Max Iterations per Time Step:当FLUENT用隐式方法求解时,每个时间步长都要迭代。设定了每个时间步长内迭代的最大数值,如果在达到这个数值以前迭代收敛的话,求解过程会提前进入下一个时间步长。 Time Step Size:时间步长大小是t?的数值大小。由于FLUENT是完全隐式,因此没有队时间步长大小的要求。但为了正确模拟瞬态流动,时间步长大小的数量级至少应比系统中正在模拟的最小时间常量要小一个数量级。判断t?的选择的一个好方法是观察FLUENT在每个时间步长内迭代至收敛的次数,理想次数是10到20次,如果次数多于这个数值,则说明时间步长太大了。如果每个时间步长内只有几次迭代,则说明t?应该增大。常见的问题是FLUENT启动很快,而衰减也很快。这样情况下,聪明的办法是开始的5到10个时间步长设的相对较小,然后随着计算过程逐渐增加t?。 对于周期性时间的计算,应该根据时间周期的大小选择时间步长。比如说,对于转子/定子模型,可以在每个叶片通过之间设置20个时间步长。再比如对于涡轮流散的模型,每个周期20个时间步长比较好。 迭代时间步场面板上,默认的时间步长大小是固定的。要想在计算过程中随时修改时间步长大小,则要选adaptive并在adaptive time stepping中设好参数。第22.15.2节中详细讲述该内容。 22.15.2 调整性时间步长 调整性时间步长只有在segregated算法和coupled implicit算法中才能用,coupled explicit 算法不能用。另外,VOF或是分散相模型也不能用。 自动调整时间步长根据对与时间差分方案有关的truncation error截断误差而定,如果截断误差小于指定的允许程度,时间步长大小就要增大,反之,时间步长要减小。 截断误差的估测可以通过对算法的时间差分的预测修正得到。每个时间步长开始时,算法简单、粗略的计算问题的初始值,将它作为该时间步长的初始条件,然后用非线性迭代隐式算法修正,在对预测值和修正值之间的差异以截断误差为标准进行比较,如果达到了截断误差的预期程度,FLUENT就调整时间步长的大小。 参数: 截断误差Truncation Error Tolerance:指定与计算的截断误差相比较的初始值,增大这个值,会使时间步长增大,求解精度降低。反之,则变化趋势相反,但计算所需的时间要变长。对大多数情况,用默认值0.01即可。 结束时间Ending Time:指定计算的结束时间。结束时间不等于时间步乘以固定时间步长长短,应该专门指定它的值。 最大/最小时间步长长短Minimum/Maximun Time Step Size:该项指定时间步长的上下限值。如果时间步长很小,计算要花费的时间和所占空间就高,如果时间步长很大,计算精度就不够。 最大/最小步长改变系数Minimum/Maximum Step Change Factor Limit:限制了每一步时

详细FLUENT实例讲座翼型计算

详细FLUENT实例讲座翼型计算 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

CAE联盟论坛精品讲座系列 详细FLUENT实例讲座-翼型计算 主讲人:流沙 CAE联盟论坛总版主 1.1 问题描述 翼型升阻力计算是CFD最常规的应用之一。本例计算的翼型为 RAE2822,其几何参数可以查看翼型数据库。本例计算在来流速度0.75马赫,攻角3.19°情况下,翼型的升阻系数及流场分布,并将计算结果与实验数据进行对比。模型示意图如图1所示。 b5E2RGbCAP 1.p ng(12.13 K>2018/7/29 23:41:251.2 FLUENT前处理设置Step 1:导入计算模型 以3D,双精度方式启动FLUENT14.5。 利用菜单【File】>【Read】>【Mesh…】,在弹出的文件选择对话框中选择网格文件rae2822_coarse.msh,点击OK按钮选择文件。如图2所示。p1EanqFDPw

点击FLUENT模型树按钮General,在右侧设置面板中点击按钮Display…,在弹出的设置对话框中保持默认设置,点击Display按钮,显示网格。如图3所示。DXDiTa9E3d 2.png(11.51 K>2018/7/29 23:41:25

3.png(33.41 K>2018/7/29 23:41:253-2.png(52.04 K>2018/7/29 23:41:25Step 2:检查网格 采用如图4所示步骤进行网格的检查与显示。点击FLUENT模型树节点General节点,在右侧面板中通过按钮Scale…、Check及 Report Quality实现网格检查。 4.png(12. 10 K>RTCrpUDGiT2018/7/29 23:41:25点击按钮Check,在命令输出按钮出现如图5所示网格统计信息。从图中可以看出,网格尺寸分布: x轴:-48.97~50m

Fluent时间步长

用FLUENT计算非稳态问题,是不是在计算时必须保证在每个时间步timestep里都要收敛才行,否则计算结果就不对呢也就是说,在iteration选项里,max iteration pertime step设为一个值,比如500,就是如果500次迭代后仍未收敛,进入下一步迭代,那对结果会有什么影响。 对于隐式非定常格式,原则上,每个时间步长内必须保证结果收敛。在fluent 的帮助中就有这样的话:“对于不可压流动,在每个时间步内,不可压解必须迭代直至收敛。”另外,我们回归到fluent内部计算的本源,它实质就是一种差分算法,通过不断逼近来获得真实解,这样我们就不难理解为什么在每个时间步长内需要收敛了。max iteration pertime step 设定的是最大时间步,在单一步长内,如果结果已经收敛,则会自动跳至下一时间进行计算。所以其设定要纵观全局。但对于周期性流动,这种收敛性的要求就相对松动一些。不过你需要多计算几个周期,等计算结果达到对时间的周期状态后,再对结果进行储存。 对于显式非定常格式,在Fluent帮助中这样说:“一定记住,对于显式非定常格式,每一个迭代就是一个时间步。” 如果每个时间步内结果没有得到收敛,则很有可能你所得到的结果是不真实的,但是一个时间步内的不真实性应该不会影响到下一个时间步长内的计算。因为在每一个时间步开时,fluent 都会进行初始化。在单个时间步内,它实际是按照稳态进行计算的。 time step size的设定是根据你的计算需要,一般是你的特征长度(比如说管道的长度)除于特征速度(比如平均速度)的值再小一到两个量级即可,如果你的time stip size太大,计算会提示你的,改小即可。

FLUENT操作过程及全参数选择

振动流化床仿真操作过程及参数选择 1创建流化床模型。 根据靳海波论文提供的试验机参数,创建流化床模型。流化床直148mm 高1m开孔率9%孔径2mm在筛板上铺两层帆布保证气流均布。 因为实验机为一个圆形的流化床,所以可简化为仅二维模型。而实际实验中流化高度远小于1m甚至500mm所以为提高计算时间,可将模型高度缩为500mm由于筛板上铺设两层帆布以达到气流均分的目的,所以认为沿整个筛板的进口风速为均匀的。最终简化模型如下图所示: 上图为流化后的流化床模型,可以看出流化床下端的网格相对上端较密,因为流化行为主要发生的流化床下端,为了加快计算时间,所以采用这种下密上疏的划分方式。其中进口设置为velocity inlet ;出口设置为outflow ;左右两边分为设置为wall。在GAMBIT中设置完毕后,输出二维模型vfb.msh。 outflow 边界条件不需要给定任何入口的物理条件,但是应用也会有限制,大致为以下四点: 1.只能用于不可压缩流动

2.出口处流动充分发展 3.不能与任何压力边界条件搭配使用(压力入口、压力出口) 4.不能用于计算流量分配问题(比如有多个出口的问题) 2 打开FLUENT 6326,导入模型vfb.msh 点击GRID—CHECK检查网格信息及模型中设置的信息,核对是否正确,尤其查看是否出现负体积和负面积,如出现马上修改。核对完毕后,点击GRID-SCAL弹出SCALEGRID窗口,设置单位为mm 并点击change length unit 按钮。具体设置如下: 3设置求解器 保持其他设置为默认,更改TIME为unsteady,因为实际流化的过程是随时间变化的。 (1)pressure based 求解方法在求解不可压流体时,如果我们联立求解 从动量方程和连续性方程离散得到的代数方程组,可以直接得到各速

学习fluent(流体常识及软件计算参数设置)

luent 中一些问题( 目录) 1 如何入门 2 CFD 计算中涉及到的流体及流动的基本概念和术语 2.1 理想流体( Ideal Fluid )和粘性流体( Viscous Fluid ) 2.2 牛顿流体( Newtonian Fluid )和非牛顿流体( non-Newtonian Fluid ) 2.3 可压缩流体( Compressible Fluid )和不可压缩流体( Incompressible Fluid ) 2.4 层流( Laminar Flow )和湍流( Turbulent Flow ) 2.5 定常流动( Steady Flow )和非定常流动( Unsteady Flow ) 2.6 亚音速流动(Subsonic) 与超音速流动( Supersonic ) 2.7 热传导( Heat Transfer )及扩散( Diffusion ) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同? 3.1 离散化的目的 3.2 计算区域的离散及通常使用的网格 3.3 控制方程的离散及其方法 3.4 各种离散化方法的区别 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难? 6.1 可压缩Euler 及Navier-Stokes 方程数值解 6.2 不可压缩Navier-Stokes 方程求解 7 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别? 9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解? 10在GAMBIT中显示的“check主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节? 11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢? 12 在设置GAMBIT 边界层类型时需要注意的几个问题:a 、没有定义的边界线如何处理? b、计算域内的内部边界如何处理( 2D)? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪 些? 14 20 何为流体区域( fluid zone )和固体区域( solid zone )?为什么要使用区域的概念?FLUENT 是怎样使用区域的? 15 21 如何监视FLUENT 的计算结果?如何判断计算是否收敛?在FLUENT 中收敛准则是 如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收

第2章 fluent的计算步骤

FLUENT6.1全攻略 第二章 FLUENT的计算步骤 本章通过一个稍微复杂一些的算例再次演示FLUENT的求解过程。这个算例的内容是计算一个二维弯管中的湍流流动和热传导过程,在这个算例中可以看到FLUENT计算的标准流程,其中包括: (1)如何读入网格文件。 (2)如何使用混合的单位制定义几何模型和物质属性。 (3)如何设定边界条件和和物质属性。 (4)如何初始化计算并用残差曲线监视计算进程。 (5)如何用分离求解器计算流场。 (6)如何用FLUENT的图形显示功能检查流场。 (7)如何用二阶精度离散格式获得更高精度的流场。 (8)以温度梯度为基准调整网格以提高对温度场的计算精度。 2.1 问题概述 图2-1 弯管流动图示 如图2-1所示,温度为26℃的冷流体流过弯管,温度为40℃的热流体从转弯处流入, 1

FLUENT6.1全攻略 并与主流中的冷流体混合。管道的尺寸如图2-1所示,单位为英寸,而边界条件和流体材料性质则采用国际单位制。入口处的雷诺数为2.03 x 105,因此必须使用湍流模型。 2.2 处理网格 网格处理包括网格的输入、检查、光顺、比例转换和显示等操作,下面分别进行介绍。 2.2.1读入网格文件 首先启动FLUENT的2D版,然后读入网格文件: File -> Read -> Case... 这个算例的网格文件可以在FLUENT6.1为用户提供的文档光盘中找到,路径是: cdrom:\fluent6.1\help\tutfiles\elbow\elbow.msh 2.2.2检查网格 执行下列菜单操作,进行网格检查: Grid -> Check 此时控制台窗口中会显示与网格有关的信息,包括网格空间范围、体积信息、表面积信息、节点信息等等。网格中存在的任何错误都会出现在这个信息报告中,其中最需要检查的是网格单元的体积不能为负值,否则计算将无法继续下去。 图2-2 Smooth/Swap Grid(光顺/转换网格)面板 2

FLUENT全参数设置(新手)

4月1日 写给Fluent新手(续) 31数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免? 假扩散(false diffusion)的含义: 基本含义:由于对流—扩散方程中一阶导数项的离散格式的截断误差小于二阶而引起较大数值计算误差的现象。有的文献中将人工粘性(artificial viscosity)或数值粘性(numerical viscosity)视为它的同义词。 拓宽含义:现在通常把以下三种原因引起的数值计算误差都归在假扩散的名称下 1.非稳态项或对流项采用一阶截差的格式; 2.流动方向与网格线呈倾斜交叉(多维问题); 3.建立差分格式时没有考虑到非常数的源项的影响。 克服或减轻假扩散的格式或方法, 为克服或减轻数值计算中的假扩散(包括流向扩散及交叉扩散)误差,应当: 1. 采用截差阶数较高的格式; 2. 减轻流线与网格线之间的倾斜交叉现象或在构造格式时考虑到来流方向的影响。 3. 至于非常数源项的问题,目前文献中,还没有为克服这种影响而专门构造的格式,但是高阶格式显然对减轻其影响是有利的。 32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决? FLUENT等高线(contour)显示过程中,可以通过调节显示的水平等级来调节其显示细节,Levels...最大值允许设置为100.对于封闭的3D物体,可以通过建立Surface,监视Surface上的量来显示计算结果。或者计算之后将结果导入到Tecplot中,作切片图显示。

Fluent多相流模型选择与设定

1.多相流动模式 我们可以根据下面的原则对多相流分成四类: ?气-液或者液-液两相流: o 气泡流动:连续流体中的气泡或者液泡。 o 液滴流动:连续气体中的离散流体液滴。 o 活塞流动: 在连续流体中的大的气泡 o 分层自由面流动:由明显的分界面隔开的非混合流体流动。 ?气-固两相流: o 充满粒子的流动:连续气体流动中有离散的固体粒子。 o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。 o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。从 床底不断充入的气体使得颗粒得以悬浮。改变气体的流量,就会有气泡不断 的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。 ?液-固两相流 o 泥浆流:流体中的颗粒输运。液-固两相流的基本特征不同于液体中固体颗 粒的流动。在泥浆流中,Stokes 数通常小于1。当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。 o 水力运输: 在连续流体中密布着固体颗粒 o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物 质。随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤 积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里 的粒子仍然在沉降。在澄清层和沉降层中间,是一个清晰可辨的交界面。 ?三相流(上面各种情况的组合) 各流动模式对应的例子如下: ?气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷 ?液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗?活塞流例子:管道或容器内有大尺度气泡的流动 ?分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝 ?粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动 ?风力输运例子:水泥、谷粒和金属粉末的输运

Fluent求解参数设置知识分享

F l u e n t求解参数设置

求解参数设置(Solution Methods/Solution Controls): 在设置完计算模型和边界条件后,即可开始求解计算了,因为常会出现求解不收敛或者收敛速度很慢的情况,所以就要根据具体的模型制定具体的求解策略,主要通过修改求解参数来完成。在求解参数中主要设置求解的控制方程、选择压力速度耦合方法、松弛因子、离散格式等。 在VOF模型中,PISO比较适合于不复杂的流体,SIMPLE和SIMPLEC适合于可压缩的流体或者处于封闭域中的流体。 ? 求解的控制方程: 在求解参数设置中,可以选择所需要 求解的控制方程。可选择的方程包括 Flow(流动方程)、Turbulence(湍流方 程)、Energy(能量方程)、Volume Fraction(体积分数方程)等。在求解过程 中,有时为了得到收敛的解,先关闭一 些方程,等一些简单的方程收敛后,再 开启复杂的方程一起计算。 ? 选择压力速度耦合方法: 在基于压力求解器中,FLUENT提供了压力速度耦合的4种方法,即SIMPLE、SIMPLEC(SIMPLE.Consistent)、PISO以及Coupled。定常状态计算一般使用SIMPLE或者SIMPLEC方法,对于过渡计算推荐使用PISO方法。PISO方法还可以用于高度倾斜网格的定常状态计算和过渡计算。需要注意的是压力速度耦合只用于分离求解器,在耦合求解器中不可以使用。

在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC算法,默认是SIMPLE算法,但对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松弛迭代时。 对于相对简单的问题(如没有附加模型激活的层流流动),其收敛性可以被压力速度耦合所限制,用户通常可以使用SIMPLEC算法很快得到收敛解。在SIMPLEC算法中,压力校正亚松弛因子通常设为1.0,它有助于收敛,但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致流动不稳定,对于这种情况,则需要使用更为保守的亚松弛或者使用SIMPLE算法。对于包含湍流或附加物理模型的复杂流动,只要用压力速度耦合做限制,SIMPLEC就会提高收敛性,它通常是一种限制收敛性的附加模拟参数,在这种情况下,SIMPLE 和SIMPLEC会给出相似的收敛速度。 对于所有的过渡流动计算,推荐使用PISO算法邻近校正。它允许用户使用大的时间步,而且对于动量和压力都可以使用亚松弛因子1.0。对于定常状态问题,具有邻近校正的PISO并不会比具有较好的亚松弛因子的SIMPLE或SIMPLEC好。对于具有较大扭曲网格上的定常状态和过渡计算推荐使用PISO 倾斜校正。 当使用PISO邻近校正时,对所有方程都推荐使用亚松弛因子为1.0或者接近1.0。如果只对高度扭曲的网格使用PISO倾斜校正,则要设定动量和压力的亚松弛因子之和为1.0(例如,压力亚松弛因子0.3,动量亚松弛因子0.7)。 ? 松弛因子:

学习fluent (流体常识及软件计算参数设置)

luent中一些问题----(目录) 2.1 理想流体(Id1如何入门?2 CFD计算中涉及到的流体及流动的基本概念和术语? ealFluid)和粘性流体(Viscous Fluid) 2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid) 2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid) ? 2.4 层流(Laminar Flow)和湍流(Turbulent Flow) ?2.5定常流动 2.6亚音速流动(Subsonic)(Steady Flow)和非定常流动(Unsteady Flow)? 与超音速流动(Supersonic) 2.7 热传导(Heat Transfer)及扩散(Diffusion)?3在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?? 3.1离散化的目的 3.3控制方程的离散及其方法 3.2计算区域的离散及通常使用的网格? 3.4各种离散化方法的区别 4常见离散格式的性能的对比(稳定性、精度和经济性) 5流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围 是什么? 6可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反 而比可压缩流动有更多的困难? 6.2不可压缩Navier-Stokes 6.1 可压缩Euler及Navier-Stokes方程数值解? 方程求解?7什么叫边界条件?有何物理意义?它与初始条件有什么关系? 8在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别? 10在GAMBIT中显示9在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?? 的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细 节? ?11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢? 12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、 13为何在划分网格后,还要指定边界类型和区域类 计算域内的内部边界如何处理(2D)?? 型?常用的边界类型和区域类型有哪些??1420 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的? ?1521 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收 1622什么叫松弛因子?松弛因子对计算结果有什敛问题通常的几个解决方法是什么? ? 么样的影响?它对计算的收敛情况又有什么样的影响? 17 23 在FLUENT运行过程中,经常会出现“turbulenceviscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响 18 24 在FLUENT运行计算时,为什么有时候总是出现“reversedflow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响

Fluent新手入门(3)

1、整体界面 自12.0版本之后,FLUENT采用了树形菜单的处理流程操作方式。在启动界面上点击OK按钮后即进入FLUENT图形界面窗口。如下图所示。按照其不同的功能将其分为6个区域。 区域1:菜单栏。包括软件操作的所有菜单。 区域2:工具栏。包括软件常用操作功能,如文件操作、视图操作等功能。 区域3:模型操作树。按照CFD仿真操作流程安排的树形菜单,在后续将会详细描述。 区域4:参数设置面板。在描述模型操作树时详细描述。 区域5:图形显示区。主要显示前处理网格模型及后处理数据图形等。 区域6:TUI窗口。可以进行TUI命令操作及软件信息显示。 2、菜单栏 FLUENT的菜单如下图所示。 主要包括的菜单: File:文件操作菜单。包括文件的读入、写出、导入、输出等功能,同时包含图形窗口的图片输出功能。 Mesh:包括网格检查、网格分割等网格基本操作功能。 Define:定义物理模型及边界条件信息。 Solve:定义求解控制参数及监控参数等。

Adapt:主要是为网格自适应准备的菜单,也常常用于Patch操作。 Surface:定义面,常用于后处理操作。 Display:后处理操作及设置。 Report:后处理数据输出。 Parallel:并行计算设置。 View:视图设置。 Help:帮助菜单。 3、工具栏 工具栏按钮如下图所示。 各按钮从左至右依次为: 文件打开按钮。包含File菜单中的部分内容。 文件保存按钮。 输出图像按钮。通过此按钮可以输出图形窗口中的图形。 帮助文档按钮。 旋转视图按钮。 平移视图按钮。 放大视图按钮。 区域放大按钮。 Probe按钮,获取鼠标点击位置的信息。 Fit view按钮,窗口适应按钮。 Set view按钮,设置视图显示。 排列窗口按钮。 图形窗口分栏按钮。 4、树形菜单 树形菜单如下图所示。包括四个主要部分内容:Meshing、Solution Setup、Solution、Results,分别对应CFD操作流程。

学习fluent-(流体常识及软件计算参数设置)

学习fluent-(流体常识及软件计算参数设置)

luent中一些问题----(目录) 1 如何入门 2 CFD计算中涉及到的流体及流动的基本概念和术语 2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid) 2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid) 2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid) 2.4 层流(Laminar Flow)和湍流(Turbulent Flow) 2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow) 2.6 亚音速流动(Subsonic)与超音速流动(Supersonic) 2.7 热传导(Heat Transfer)及扩散(Diffusion) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化

常用的方法有哪些?它们有什么不同? 3.1 离散化的目的 3.2 计算区域的离散及通常使用的网格 3.3 控制方程的离散及其方法 3.4 各种离散化方法的区别 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难? 6.1 可压缩Euler及Navier-Stokes方程数值解 6.2 不可压缩Navier-Stokes方程求解 7 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别? 9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?

相关文档
最新文档