回损RL与驻波VSWR对照表

回损RL与驻波VSWR对照表
回损RL与驻波VSWR对照表

弦线上的驻波

实验四 弦线上的驻波 【实验目的】 1.了解弦线上驻波的形成,观察弦线上的驻波现象。 2.研究弦线振动时的振动频率与振幅变化对形成驻波的影响,研究波长与张力的关系; 3.在弦线张力不变时,研究弦线振动时驻波波长与振动频率的关系。 4.改变弦线张力后,研究弦线振动时驻波波长与振动频率的关系。 【实验仪器】 PD-SWE-II 弦线上驻波实验仪。包括可调频率的数显机械振动源、滑轮、砝码盘、米尺、弦线、砝码等。见图1 图1 仪器结构图 1.可调频率数显机械振动源 2.振簧片 3.弦线 4.可动刀口支架 5.可动滑轮支架 6.标尺 7.固定滑轮 8.砝码与砝码盘 9.变压器 10.实验平台 11.实验桌 【实验原理】 在一根拉紧的弦线上,沿弦线传播的横波应满足方程: 2222 y T y t x ρ??=?? (1) 式中T 为张力,ρ为线密度,x 为弦上质元在波传播方向(与弦线平行)的位置坐标,y 为 其振动位移。将(1)式与典型的波动方程 22 222 y y u t x ??=?? 相比较,即可得到波速为 : u = (2) 若波源的振动频率为ν,横波波长为λ,由于u νλ=,故波长与张力及线密度之间的关 系为: λ=

为了用实验证明公式(3)成立,将该式两边取对数,得: 11 log log log log 22 T λρν=-- (4) 若固定频率ν及线密度ρ,而改变张力T ,并测出各相应波长λ,作log λ~ log T 图, 若得一直线,计算其斜率值,如果为2 1 ,则证明了λ∝21T 的关系成立。同理,固定线密 度ρ及张力T ,改变振动频率ν,测出各相应波长λ,作log λ~ log ν图,如得到斜率为 -1的直线则验证了λ∝ ν-1 。 弦线上的波长可利用驻波原理测量。当两个振幅和频率相同的相干波在同一直线上相向传播时,其叠加而成的稳定的波形称为驻波。驻波振幅分布的特点是波腹和波节相间、等距排列,相邻波节(波腹)间距为半个波长。若(n+1)个波节之间的距离为L ,则有: 2 L n λ = (5) 【实验内容】 1.必做内容 (1)验证横波的波长与弦线中的张力的关系 固定一个波源振动的频率,在砝码盘上添加不同质量的砝码,以改变弦上的张力。每改 变一次张力(即增加一次砝码),均要左右移动可动滑轮○5的位置,使弦线出现振幅较大而稳 定的驻波。用实验平台⑩上的标尺○ 6测量L 值,即可根据式(5)算出波长λ。 (2)验证横波的波长与波源振动频率的关系 在砝码盘上放上一定质量的砝码,以固定弦线上所受的张力,改变波源振动的频率,用驻波法测量各相应的波长。 2.选做内容 验证横波的波长与弦线密度的关系 在砝码盘上放固定质量的砝码,以固定弦线上所受的张力,固定波源振动频率,通过改变弦丝的粗细来改变弦线的线密度,用驻波法测量相应的波长,作log λ~log ρ图,求其斜率。得出弦线上波传播规律与线密度的关系。 【数据处理】 1. 根据测得数据,作log λ~log T 曲线,利用作图法求其斜率。 2. 根据测得数据,作log λ~log ν曲线,利用最小二乘法求其斜率。 【预习思考题】 1.调节振动源上的振动频率和振幅大小后对弦线振动会产生什么影响? 2.为什么改变弦线张力后,需要左、右移动可动滑轮的位置方能使弦线出现稳定的驻波? 【分析讨论题】 1.如何判断弦线上驻波的振动平面? 2.求波长时为何要测几个半波长的总长度? 【注意事项】 1.实验中,要准确求得驻波的波长,必须在弦线上调出振幅较大且稳定的驻波。在固定频率和张力的条件下,可沿弦线方向左、右移动可动滑轮⑤的位置,找出“近似驻波状态”,然后细细移动可动滑轮位置,逐步逼近,最终使弦线出现振幅较大且稳定的驻波。

驻波管法测定吸声材料的吸声系数1

驻波管法测定吸声材料的吸声系数 【实验目的】 (1)了解人耳听觉得频率范围,获得对一些频率纯音得感性认识。 (2)加深对垂直入射吸声系数得理解,熟悉驻波管法是测定材料的吸声系数的方法。 【实验原理】 测量装置 1测试车2导轨3声源箱4驻波管(分低、高频两种) 测量原理 驻波管为一金属(塑料)直管,它的一端可以用夹具安装试件,另一端接好扬声器,声频讯号由声频发生器产生,经放大器进行放大,由扬声器发出单频声波,声波在驻波管内传播,由于管径较小,与音频声波的波长相比,可近似将声波面看作为平面入射波,沿管内直线传播;当入射到试件后,进行反射,由于反射波与入射波传递的方向和相位相反,声压产生叠加,干涉而形成驻波,并在管内某个位置上形成声压极大值Pmax(2 N),t和声压极较小值Pmin,其间距 /m 为l/4波长。

11E E r -=-=γα 式中:α —————吸声系数 γ—————反射系数 Eo —————入射声能(W) Er —————反射声能(W) 令n P P =min max / 称为驻波比..................(1) 故有:24/(1)n n α=+ (2) 一般频谱分析仪或声级计,测试的标称值是声压级,而不是声压P 值,根据声压和声压级的关系,吸声系数可如下计算。 n P P L L L lg 20m in/lg 20m ax /lg 20m in m ax 00=Φ-Φ=-=? 20 2 204*10(110 ) P P L L a = + (3) 【测量方法】 (1) 电路接线正确后,信号发生器等电子仪器电源接通。 (2) 将试件按照要求装在试件筒内,并用凡士林将试件与筒壁接触处的缝隙填 塞,使之严密,然后再用夹具将试件筒固定在驻波管上。 (3) 调节声频发生器的频率,依次发出200、250、315、400、500、630、 800、1000、1250、1600、2000Hz 不同的声频。在设置仪器输出信号的频率时,测量到的声压级波峰值不超过136分贝,声压级波谷值不低于50分贝。 (4) 将滑块移到最远处,,移动仪器屏幕上的光标,到所测量的频率的第一个峰 值位置(1/4波长)缓慢移动滑块,同时读取光标位置显示的声压级,并记录滑块所在位置的刻度,按F7自动计算吸声系数。

光刻中常见的几种效应

光刻中常见的效应和概念 1、驻波效应(Standing Wave Effect) 现象:在光刻胶曝光的过程中,透射光与反射光(在基底或者表面)之间会发生干涉。这种相同频率的光波之间的干涉,在光刻胶的曝光区域内出现相长相消的条纹。光刻胶在显影后,在侧壁会产生波浪状的不平整。 解决方案:a、在光刻胶内加入染色剂,降低干涉现象;b、在光刻胶的上下表面增加抗反射涂层(ARC,Anti-Reflective Coating);c、后烘(PEB,Post Exposure Baking)和硬烘(HB,Hard Baking)。 2、摆线效应(Swing Curve Effect) 现象:在光刻胶曝光时,以相同的曝光剂量对不同厚度的光刻胶曝光,从而引起关键尺寸(CD,Critical dimension)的误差。 3、反射切口效应(Notching Effect) 现象:在光刻胶曝光时,由于接触孔尺寸的偏移等原因使入射光线直接照射到金属或多晶硅上发生发射,使不希望曝光的光刻胶被曝光,显影后,在光刻胶的底部出现缺口。 解决方案:a、提高套刻精度,防止接触孔打偏;b、涂覆抗反射涂层。 4、脚状图形(Footing Profiles) 现象:在光刻胶的底部,出现曝光不足。使显影后,底部有明显的光刻胶残留。 解决方案:a、妥善保管光刻胶,不要让其存放于碱性环境中;b、在涂覆光刻胶之前,硅片表面要清洗干净,防止硅基底上有碱性物质的残余。 5、T型图形(T-Top Profiles) 现象:由于表面的感光剂不足而造成表层光刻胶的图形尺寸变窄。

解决方案:注意腔室中保持清洁,排除腔室中的碱性气体污染。 6、分辨率增强技术(RET,Resolution Enhanced Technology) 包括偏轴曝光(OAI,Off Axis Illumination)、相移掩膜板技术(PSM,Phase Shift Mask)、光学近似修正(OPC,Optical Proximity Correction)以及光刻胶技术等。 a、偏轴曝光(OAI,Off Axis Illumination) 改变光源入射光方向使之与掩膜板保持一定角度,可以改善光强分布的均匀性。但同时,光强有所削弱。 b、相移掩膜板技术(PSM,Phase Shift Mask) 在掩膜板上,周期性地在相邻的图形中,每隔一个图形特征对掩膜板的结构(减薄或者加厚)进行改变,使相邻图形的相位相差180度,从而可以达到提升分辨率的目的。 相移掩膜板技术使掩膜板的制作难度和成本大幅增加。 c、光学近似修正(OPC,Optical Proximity Correction) 在曝光过程中,往往会因为光学临近效应使最后的图形质量下降:线宽的变化;转角的圆化;线长的缩短等。需要采用“智能型掩膜板工程(Clever Mask Engineering)” 来补偿这种尺寸变化。 7、显影后检测(ADI,After Development Inspection) 主要是检查硅片表面的缺陷。通常将一个无缺陷得标准图形存于电脑中,然后用每个芯片的图形与标准相比较,出现多少不同的点,就会在硅片的defect map 中显示多少个缺陷。 8、抗反射涂层(ARC,Anti-Reflective Coating) 光刻胶照射到光刻胶上时,使光刻胶曝光。但同时,在光刻胶层的上下表面也会产生反射而产生切口效应和驻波效应。 a、底部抗反射涂层(BARC,Bottom Anti-Reflective Coating)。将抗反射涂层涂覆在光刻胶的底部来减少底部光的反射。有两种涂层材料:有机抗反射涂层(Organic),在硅片表面旋涂,依靠有机层直接接收掉入射光线;无机抗反射涂层(Inorganic),在硅片表面利用等离子增强化学气相沉积(PECVD,Plasma

什么是天线的驻波比

什么是天线的驻波比? 只有阻抗完全匹配,才能达到最大功率传输。这在高频更重要!发射机、传输电缆(馈线)、天线阻抗都关系到功率的传输。驻波比就是表示馈线与天线匹配情形。 不匹配时,发射机发射的电波将有一部分反射回来,在馈线中产生反射波,反射波到达发射机,最终产生为热量消耗掉。接收时,也会因为不匹配,造成接收信号不好。 如下图,前进波(发射波)与反射波以相反方向进行。 完全匹配,将不产生反射波,这样,在馈线里各点的电压振幅是恒定的,如下图中左部分(a),不匹配时,在馈线里产生下图右方的电压波形,这驻留在馈线里的电压波形就叫做驻波。 驻波比(SWR)的S值的计算公式为下图: 当然还有其它的驻波比计算方法,不过计算结果是一样的。 驻波比越高,表示阻抗越不匹配,业余玩家,做到驻波比小于1.5就算可以了。 最后提醒一点,天线的好坏不能单看驻波比,现在大家如此迷信驻波比的原因很简单,就是因为驻波表好便宜、好买。不要因为天线驻波比很低就觉得一切OK,多研究天线的其它特性(如方向性)才是真正的乐趣。 电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好。测量一下天线系统的驻波比是否接近1:1,如果接近1:1,当然好。但如果不能达到1,会怎样呢?驻波比小到几,天线才算合格? VSWR及标称阻抗 发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗部分互相抵消。如果发射机的阻抗不同,要求天线的阻抗也不同。在电子管时代,一方面电子管本输出阻抗高,另一方面低阻抗的同轴电缆还没有得到推广,流行的是特性阻抗为几百欧的平行馈线,因此发射机的输出阻抗多为几百欧姆。

而现代商品固态无线电通信机的天线标称阻抗则多为50欧姆,因此产品VSWR表也是按50欧姆设计标度的。 如果你拥有一台输出阻抗为600欧姆的老电台,那就大可不必费心血用50欧姆的VSWR计来修理你的天线,因为那样反而帮倒忙。只要设法调到你的天线电流最大就可以了。 VSWR不是1时,比较VSWR的值没有意义 天线VSWR=1说明天线系统和发信机满足匹配条件,发信机的能量可以最有效地输送到天线上,匹配的情况只有这一种。 而如果VSWR不等于1,譬如说等于4,那么可能性会有很多:天线感性失谐,天线容性失谐,天线谐振但是馈电点不对,等等。在阻抗园图上,每一个VSWR数值都是一个园,拥有无穷多个点。也就是说,VSWR数值相同时,天线系统的状态有很多种可能性,因此两根天线之间仅用VSWR数值来做简单的互相比较没有太严格的意义。 正因为VSWR除了1以外的数值不值得那么精确地认定(除非有特殊需要),所以多数VSWR表并没有象电压表、电阻表那样认真标定,甚至很少有VSWR给出它的误差等级数据。由于表内射频耦合元件的相频特性和二极管非线性的影响,多数VSWR表在不同频率、不同功率下的误差并不均匀。 VSWR都=1不等于都是好天线 一些国外杂志文章在介绍天线时经常给出VSWR的曲线。有时会因此产生一种错觉,只要VSWR=1,总会是好天线。其实,VSWR=1只能说明发射机的能量可以有效地传输到天线系统。但是这些能量是否能有效地辐射到空间,那是另一个问题。一副按理论长度作制作的偶极天线,和一副长度只有1/20的缩短型天线,只要采取适当措施,它们都可能做到VSWR=1,但发射效果肯定大相径庭,不能同日而语。做为极端例子,一个50欧姆的电阻,它的VSWR十分理想地等于1,但是它的发射效率是0。 影响天线效果的最重要因素:谐振 天线系统和输出阻抗为50欧的发信机的匹配条件是天线系统阻抗为50欧纯电阻。要满足这个条件,需要做到两点:第一,天线电路与工作频率谐振(否则天线阻抗就不是纯电阻);第二,选择适当的馈电点。 让我们用弦乐器的弦来加以说明。无论是提琴还是古筝,它的每一根弦在特定的长度和张力下,都会有自己的固有频率。当弦以固有频率振动时,两端被固定不能移动,但振动方向的张力最大。中间摆动最大,但振动张力最松弛。这相当于自由谐振的总长度为1/2波长的天线,两端没有电流(电流波谷)而电压幅度最大(电压波腹),中间电流最大(电流波腹)而相邻两点的电压最小(电压波谷)。 我们要使这根弦发出最强的声音,一是所要的声音只能是弦的固有频率,二是驱动点的张力与摆幅之比要恰当,即驱动源要和弦上驱动点的阻抗相匹配。具体表现就是拉弦的琴弓或者弹拨的手指要选在弦的适当位置上。我们在实际中不难发现,拉弓或者拨弦位置错误会影响弦的发声强度,但稍有不当还不至于影响太多,而要发出与琴弦固有频率不同的声响却是十分困难的,此时弦上各点的振动状态十分复杂、混乱,即使振动起来,各点对空气的推动不是齐心合力的,发声效率很低。 天线也是同样,要使天线发射的电磁场最强,一是发射频率必须和天线的固有频率相同,二是驱动点要选在天线的适当位置。如果驱动点不恰当而天线与信号频率谐振,效果会略受影响,但是如果天线与信号频率不谐振,则发射效率会大打折扣。 所以,在天线匹配需要做到的两点中,谐振是最关键的因素。 在早期的发信机中,天线电路只用串联电感、电容的办法取得与工作频率的严格谐振,而进一步的阻抗配合是由线圈之间的固定耦合确定死的,在不同频率下未必真正达到阻抗的严格匹配,但是实际效果证明只要谐振就足以好好工作了。 因此在没有条件做到VSWR绝对为1时,电台天线最重要的调整是使整个天线电路与工作频率谐

什么是波长缩短效应

什么是波长缩短效应?试简要解释其原因. 对称振子上的相移常数β大于自由空间的波数k, 亦即对称振子上的波长短于自由空间波长, 这是一种波长缩短现象, 故称n1为波长缩短系数λ和λa分别为自由空间和对称振子上的波长 造成上述波长缩短现象的主要原因有:①对称振子辐射引起振子电流衰减, 使振子电流相速减小, 相移常数β大于自由空间的波数k, 致使波长缩短;②由于振子导体有一定半径, 末端分布电容增大(称为末端效应), 末端电流实际不为零, 这等效于振子长度增加, 因而造成波长缩短.振子导体越粗, 末端效应越显著, 波长缩短越严重 电波/微波传播受什么因素影响? 1地形对电波影响 地形对大气中电波传播的影响表现在三个方面:反射、绕射和散射。这三种情况在一般条件下都存在,只不过在不同条件下有主次之分:天线高架,地面平滑,反射为主;地面粗糙起伏较大,散射为主;天线低架,或障碍物尺寸较小,绕射为主。 2大气对微波影响 对流层对微波传播的影响,主要表现在以下几点。(1)由于气体分子谐振引起对电磁波能量的吸收。(2)由雨、雾、雪引起对电磁波能量的吸收。(3)由于气象因素等影响,使对流层也会形成云、雾之类的“水气囊”,形成了大气中的不均匀结构,对微波的散射和折射。 天线的基本概念? 定义:用金属导线、金属面或其他介质材料构成一定形状,架设在一定空间,将从发射机馈给的射频电能转换为向空间辐射的电磁波能,或者把空间传播的电磁波能转化为射频电能并输送到接收机的装置。天线(antenna)是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。 简述天线的功能 ①天线应能将导波能量尽可能多地转变为电磁波能量.这首先要求天线是一个良好的电磁开放系统, 其次要求天线与发射机或接收机匹配.②天线应使电磁波尽可能集中于确定的方向上, 或对确定方向的来波最大限度的接受, 即天线具有方向性.③天线应能发射或接收规定极化的电磁波, 即天线有适当的极化. ④天线应有足够的工作频带. 从接收角度讲,对天线的方向性有哪些要求? ①主瓣宽度尽可能窄, 以抑制干扰。但如果信号与干扰来自同一方向, 即使主瓣很窄,也不能抑制干扰; 另一方面, 当来波方向易于变化时, 主瓣太窄则难以保证稳定的接收。 ②旁瓣电平尽可能低。如果干扰方向恰与旁瓣最大方向相同, 则接收噪声功率就会较高, 也就是干扰较大; 对雷达天线而言, 如果旁瓣较大, 则由主瓣所看到的目标与旁瓣所看到的目标会在显示器上相混淆, 造成目标的失落。 ③天线方向图中最好能有一个或多个可控制的零点, 以便将零点对准干扰方向,而且当干扰方向变化时, 零点方向也随之改变, 这也称为零点自动形成技术。 隔离器和环形器主要用途: 控制电磁波的单向传输

驻波比、反射损耗、传输损耗、反射系数、功率传输、功率反射之间的换算

驻波比、反射损耗、传输损耗、反射系数、功率传输、功率反射之间的换算(1) 电压驻波比VSW R 回波 损耗 Retur n Loss (dB) 传输 损耗 Tran. Loss (dB) 电压 反射 系数 V olt. REF L. COE FF. 功率 传输 Powe r Trans . % 功率 反射 Powe r REF L. % 电压 驻波 比 VSW R 回波 损耗 Retur n Loss (dB) 传输 损耗 Tran. Loss (dB) 电压 反射 系数 V olt. REF L. COE FF. 功率 传输 Powe r Trans . % 功率 反射 Powe r REF L. % 1.0 ∞.000 .00 100.0 .0 1.64 1 2.3 .263 .24 94.1 5.9 1.01 46.1 .000 .00 100.0 .0 1.66 12.1 .276 .25 9 3.8 6.2 1.02 40.1 .000 .01 100.0 .0 1.68 11.9 .289 .25 93.6 6.4 1.03 36.6 .001 .01 100.0 .0 1.70 11.7 .302 .26 93.3 6.7 1.04 3 4.2 .002 .02 100.0 .0 1.72 11.5 .315 .26 93.0 7.0 1.05 3 2.3 .003 .02 99.9 .1 1.74 11.4 .329 .27 92.7 7.3 1.06 30.7 .004 .03 99.9 .1 1.76 11.2 .342 .28 92.4 7.6 1.07 29.4 .005 .03 99.9 .1 1.78 11.0 .356 .28 92.1 7.9 1.08 28.3 .006 .04 99.9 .1 1.80 10.9 .370 .29 91.8 8.2 1.09 27.3 .008 .04 99.8 .2 1.82 10.7 .384 .29 91.5 8.5 1.10 26.4 .010 .05 99.8 .2 1.84 10.6 .398 .30 91.3 8.7 1.11 25.7 .012 .05 99.7 .3 1.86 10.4 .412 .30 91.0 9.0 1.12 24.9 .014 .06 99.7 .3 1.88 10.3 .426 .31 90.7 9.3 1.13 24.3 .016 .06 99.6 .4 1.90 10.2 .440. .31 90.4 9.6 1.14 23.7 .019 .07 99.6 .4 1.92 10.0 .454 .32 90.1 8.9 1.15 23.1 .021 .07 99.5 .5 1.94 9.9 .468 .32 89.8 10.2 1.16 2 2.6 .024 .07 99.5 .5 1.96 9.8 .483 .32 89.5 10.5 1.17 22.1 .027 .08 99.4 .6 1.98 9.7 .497 .33 89.2 10.8 1.18 21.7 .030 .08 99.3 .7 2.00 9.5 .512 .33 88.9 11.1 1.19 21.2 .033 .09 99.2 .8 2.50 9.4 .881 .43 81.6 18.4 1.20 20.8 .036 .09 99.2 .8 3.00 6.0 1.249 .50 75.0 25.0 1.21 20.4 .039 .10 99.1 .9 3.50 5.1 1.603 .56 69.1 30.9 1.22 20.1 .043 .10 99.0 1.0 4.00 4.4 1.938 .60 64.0 36.0 1.23 19.7 .046 .10 98.9 1.1 4.50 3.9 2.255 .64 59.5 40.5 1.24 19.4 .050 .11 98.9 1.1 5.00 3.5 2.553 .67 55.6 4 4.4 1.25 19.1 .054 .11 98.8 1.2 5.50 3.2 2.834 .69 52.1 47.9 1.26 18.8 .058 .12 98.7 1.3 6.00 2.9 3.100 .71 49.0 51.0 1.27 18.5 .062 .12 98.6 1.4 6.50 2.7 3.351 .73 46.2 53.8 1.28 18.2 .066 .12 98.5 1.5 7.00 2.5 3.590 .75 43.7 56.2 1.29 17.9 .070 .13 98.4 1.6 7.50 2.3 3.817 .76 41.5 58.5 1.30 17.7 .075 .13 98.3 1.7 8.00 2.2 4.033 .78 39.5 60.5

射频中的回波损耗 反射系数 电压驻波比以及S参数的含义和关系

回波损耗,反射系数,电压驻波比,S11这几个参数在射频微波应用中经常会碰到,他们各自的含义如下: 回波损耗(Return Loss):入射功率/反射功率,为dB数值 反射系数(Г):反射电压/入射电压,为标量 电压驻波比(Voltage Standing Wave Ration):波腹电压/波节电压S参数:S12为反向传输系数,也就是隔离。S21为正向传输系数,也就是增益。S11为输入反射系数,也就是输入回波损耗,S22为输出反射系数,也就是输出回波损耗。 四者的关系: VSWR=(1+Г)/(1-Г)(1) S11=20lg(Г)(2) RL=-S11(3) 以上各参数的定义与测量都有一个前提,就是其它各端口都要匹配。这些参数的共同点:他们都是描述阻抗匹配好坏程度的参数。其中,S11实际上就是反射系数Г,只不过它特指一个网络1号端口的反射系数。反射系数描述的是入射电压和反射电压之间的比值,而回波损耗是从功率的角度来看待问题。而电压驻波的原始定义与传输

线有关,将两个网络连接在一起,虽然我们能计算出连接之后的电压驻波比的值,但实际上如果这里没有传输线,根本不会存在驻波。我们实际上可以认为电压驻波比实际上是反射系数的另一种表达方式,至于用哪一个参数来进行描述,取决于怎样方便,以及习惯如何。回波损耗、反射系数、电压驻波比以及S参数的物理意义:以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。在高速电路设计中用到:以二端口网络为例,如单根传输线,共有四个S 参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB,S21

驻波管法测量吸声材料

驻波管法测量吸声材料 实验目的: 通过本实验,掌握用驻波管法测量吸声材料法向吸声系数和法向声阻抗率的原理及操作方法。 实验原理: 1,驻波管法测量吸声材料法向吸声系数的原理和方法 吸声系数是描述吸声材料的吸收声能大小的物理量。它定义为:吸声材料所吸收的声能和入射声能之比。测量材料的吸声系数,一般采用驻波管法和混响室法,前者测量的是法向吸声系数,后者测量的屎无规入射的吸声系数。 用驻波管法测定吸声材料的法向吸声西系数,设备简单而费用低廉。根据法向吸声系数又可以推算出均匀无规则入射条件下的吸声系数。但驻波管法只适用于测量声学特性与材料尺寸无关的材料样品,多用于测量多孔材料,多孔板或,穿孔薄片结构的吸声特性。 声学测量用的驻波管结构,如图1.1所示,主要部分是一根内壁光滑而坚硬,界面均匀的管子,管子的末端装有被测材料样品。由扬声器向管中辐射的声波以平面波形式传播,理论上可以证明,为了在管中获得平面波,声波的波长要大于管子的内径并且满足要求:对于圆形管,直径d<0.586λ;对于矩形管,长边的边长L<0.5λ,其

图1.1 驻波管结构 测量装置包括以下几部分:1,驻波管,根据测试频率段不同,可选用不同内劲和不同长度的驻波管;2,可移动的刚性后盖,移动它可以调节吸声材料与刚性壁面间的距离;3,被测吸声材料4,探管式传输器,用来接收驻波管轴线上各点的声压;5,扬声器,向管中辐射声波,探管可以自由穿过其中心孔;6,传输器小车,推动它可使探管在驻波管内纵向移动;7,标尺,用来指示探管在驻波管中的位置。 平面波在材料表面被反射回来,于是在管中建立起驻波声场,从材料表面算起,管 中出现声压极大与极小的交替分布。利用可移动的探管传输器接收,在测试仪表上再 读出声压极大与极小的声级差,便可以确定垂直入射时的吸声系数αp 虽然音频振荡器输给扬声器的是单频信号,但扬声器辐射处的声波并不一定是纯音,所以在接收端必须进行滤波,这样才能滤去不必要的高次谐波分量。由于要满足在管 中传播的声波为平面波和其他测试条件,常有低,中和高频三种尺寸的驻波管,以适 用于不同的频率范围。 如前所述,当平面波从试件表面反射回来时,在管中便形成驻波。入射平面波可视为一列沿正向进入参考平面的入射波,记其声压为P i于是P i可以写成 P i=P0exp?[i(ωt+kx)] (1.1) 式中k=ω/C0=2π/λ是平面波的波数,C0为空气中的声速,λ为波长,ω为圆频率。 设材料的反射系数为R,则反射波声压P r为 P r=RP0exp?[i(ωt?kx)] (1.2) 引入相位角 ?=kx=2π x (1.3) λ

驻波管法吸声系数测量

驻波管法吸声系数测量 1.1引言 任何一项试验都需要做细致的前期准备工作,这样才能保证试验有序合理的进行,同时可以保证试验的延续性、重复性、可比性。前期的工作主要包括对试验对象、试验条件、试验仪器、系统的搭建进行详细的定义和说明。 1.2试验对象和条件 1.2.1待测材料的规定 1、被测材料应为多孔吸声材料; 2、被测材料应制作成直径为30mm和100mm圆形,尺寸误差在2%以内,能过正好装入; 3、材料表面应平整,材料与阻抗管之间的缝隙应用油脂密封; 4、同种材料至少准备两个被测样件。 1.2.2试验环境和设备的规定 试验过程中应保证环境的安静,同时应测量环境的温度。 试验设备应满足GB/T 18696. 1- 2004的规定。 主要实验设备:采集器、功率放大器、驻波管、传声器、线缆、声级校准器、电脑和软件。 1.2.3说明 本节关于被测材料、实验设备、环境等要求未描述者,请参考GB/T 18696. 1- 2004。 1.3试验步骤 1.3.1根据设备使用说明,依次连接好采集器、传感器、功率放大器、线

缆、电脑等设备。 1.3.2检查设备连接无误后,接通电源,将功放输出增益调制最小后,依 次打开功放、采集器、电脑和软件,并在软件里根据选择对应的采集器型号,并设置采样频率,一般设置为50kHz。 1.3.3打开传感器校准功能选项,校准传感器,通常每次测试前均需对对 各通道的传感器进行校准。 1.3.4打开材料吸声系数测量模块,进行材料吸声系数测量: 1) Setting(设置) ?Mode Choose 选择Absorption(吸声系数测试) ?TUBE 选择测试所使用的管,程序会自动给出管的参数,包括:样 品到最近传声器的距离、两个传声器的间距,测试管的内径,以及 测试的有效频率范围。 ?ENVIRONMENT 填写测试环境的大气压、温度,用来计算空气密度、 声速和特性阻抗。缺省设置为101325Pa 及20℃。 2) 按显示内容,布置传声器通道:声源-1通道- 2通道-样品 3) 点击进行测量,等待测量曲线开始稳定,比较平滑后点击 。 4) 点击,变成,按显示内容布置传声器通道:声 源-2通道- 1通道-样品交换传声器位置。 5) 重复2)过程 6) 退出

驻波比与回波损耗的换算关系

驻波比 欧阳学文 驻波比全称为电压驻波比,又名VSWR和SWR,为英文Voltage Standing Wave Ratio的简写。在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。其它各点的振幅值则介于波腹与波节之间。这种合成波称为行驻波。驻波比是驻波波腹处的声压幅值Vmax与波节处的声压Vmin幅值之比。在驻波管法中,测得驻波比,就可以求出吸声材料的声反射系数和吸声系数。在无线电通信中,天线与馈线的阻抗不匹配或天线与发信机的阻抗不匹配,高频能量就会产生反射折回,并与前进的部分干扰汇合发生驻波。为了表征和测量天线系统中的驻波特性,也就是天线中正向波与反射波的情况,人们建立了“驻波比”这一概念,SWR=R/r=(1+K)/(1K) 反射系数K=(Rr)/(R+r) (K为负值时表明相位相反) 式中R和r分别是输出阻抗和输入阻抗。当两个阻抗数值一样时,即达到完全匹配,反射

系数K等于0,驻波比为1。这是一种理想的状况,实际上总存在反射,所以驻波比总是大于1的。射频系统阻抗匹配。特别要注意使电压驻波比达到一定要求,因为在宽带运用时频率范围很广,驻波比会随着频率而变,应使阻抗在宽范围内尽量匹配。 驻波比与回波损耗的换算关系 驻波比(VSWR): Voltage Standing Wave Ratio 回波损耗(RL) :Return Loss 换算公式:RL=20*log10[(VSWR+1)/(VSWR1)] 换算表格: 驻波比回波损耗(dB)驻波比回波损耗(dB) 1.0146.064 1.2618.783 1.0240.086 1.2718.493 1.0336.607 1.2818.216 1.0434.151 1.2917.949 1.053 2.256 1.3017.692 1.0630.714 1.3117.445 1.0729.417 1.3217.207 1.0828.299 1.3316.977 1.0927.318 1.3416.755 1.1026.444 1.3516.540

驻波测量线的调整与电压驻波比测量

实验一驻波测量线的调整 一、实验目的 1、熟悉测量线的使用及探针的调谐。 2、了解波到波导波长的测量方法。 二、实验原理 1、微波测量系统的组成 微波测量一般都必须在一个测试系统上进行。测试系统包括微波信号源,若干波导元件和指示仪表三部分。图1是小功率微波测试系统组成的典型例子。 图1 小功率波导测试系统示意图 进行微波测量,首先必须正确连接与调整微波测试系统。信号源通常位于左侧,待测元件接在右侧,以便于操作。连接系统平稳,各元件接头对准,晶体检波器输出引线应远离电源和输入线路,以免干扰。如果连接不当,将会影响测量精度,产生误差。 微波信号源的工作状态有连续波、方波调制和锯齿波调制三种信号通过同轴—波导转换接头进入波导系统(以后测试图中都省略画出同轴—波导转换接头)。隔离器起去耦作用,即防止反射波返回信号源影响其输出功率和频率的稳定。可变衰减器用来控制进入测试系统的功率电平。频率计用来测量信号源的频率。驻波测量线用来测量波导中驻波的分布。波导的输出功率是通过检波器进行检波送往指示器。 若信号为连续波,指示器用光点检流计或直流微安表。若信号输出是调制波,检波得到的低频信号可通过高灵敏度的选频放大器或测量放大器进行放大,或由示波器数字电压表、功率计等来指示。后一种测量方法的测量精度较高,姑经常采用调制波作被测信号,测试系统的组成应当根据波测对象作灵活变动。 系统调整主要指信号源和测量线的调整,以及晶体检波器的校准。信号源的调整包括振谐频率、功率电平及调谐方式等。本实验讨论驻波测量线的调整和晶体检波器的校准。 2、测量线的调整及波长测量 (1)驻波测量线的调整 驻波测量线是微波系统的一个常用测量仪器,它在微波测量中用处很广,如测驻波、阻抗、相位、波长等。

驻波管法测量吸声材料

驻波管法测量吸声材料

驻波管法测量吸声材料

驻波管法测量吸声材料 实验目的: 通过本实验,掌握用驻波管法测量吸声材料法向吸声系数和法向声阻抗率的原理及操作方法。 实验原理: 1, 驻波管法测量吸声材料法向吸声系数的原理和方法 吸声系数是描述吸声材料的吸收声能大小的物理量。它定义为:吸声材料所吸收的声能和入射声能之比。测量材料的吸声系数,一般采用驻波管法和混响室法,前者测量的是法向吸声系数,后者测量的屎无规入射的吸声系数。 用驻波管法测定吸声材料的法向吸声西系数,设备简单而费用低廉。根据法向吸声系数又可以推算出均匀无规则入射条件下的吸声系数。但驻波管法只适用于测量声学特性与材料尺寸无关的材料样品,多用于测量多孔材料,多孔板或,穿孔薄片结构的吸声特性。 声学测量用的驻波管结构,如图1.1所示,主要部分是一根内壁光滑而坚硬,界面均匀的管子,管子的末端装有被测材料样品。由扬声器向管中辐射的声波以平面波形式传播,理论上可以证明,为了在管中获得平面波,声波的波长要大于管子的内径并且满足要求:对于圆形管,直径d<0.586λ;对于矩形管,长边的边长L<0.5λ,其 刚性后盖 试件 驻波管 传输器小车 探管 拍窄带滤波 传声

|p| r λ/2x 图1.1 驻波管结构 测量装置包括以下几部分:1,驻波管,根据测试频率段不同,可选用不同内劲和不同长度的驻波管;2,可移动的刚性后盖,移动它可以调节吸声材料与刚性壁面间的距离;3,被测吸声材料4,探管式传输器,用来接收驻波管轴线上各点的声压;5,扬声器,向管中辐射声波,探管可以自由穿过其中心孔;6,传输器小车,推动它可使探管在驻波管内纵向移动;7,标尺,用来指示探管在驻波管中的位置。 平面波在材料表面被反射回来,于是在管中建立起驻波声场,从材料表面算起,管中出现声压极大与极小的交替分布。利用可移动的探管传输器接收,在测试仪表上再读出声压极大与极小的声级差,便可以确定垂直入射时的吸声系数αp 虽然音频振荡器输给扬声器的是单频信号,但扬声器辐射处的声波并不一定是纯音,所以在接收端必须进行滤波,这样才能滤去不必要的高次谐波分量。由于要满足在管中传播的声波为平面波和其他测试条件,常有低,中和高频三种尺寸的驻波管,以适用于不同的频率范围。 如前所述,当平面波从试件表面反射回来时,在管中便形成驻波。入射平面波可视为一列沿正向进入参考平面的入射波,记其声压为P i于是P i可以写成 P i=P0exp?[i(ωt+kx)](1.1) 式中k=ω/C0=2π/λ是平面波的波数,C0为空气中的声速,λ为波长,ω为圆频率。设材料的反射系数为R,则反射波声压P r为 P r=RP0exp?[i(ωt?kx)] (1.2) 引入相位角

SiteMaster驻波比测试方法

两种测量方式的目的是不同的,第一种是测试GSM频段内那个频点范围存在驻波过大问题,而第二种测试的目的是在已知天馈部分存在问题情况下找出具体的故障点。这两种方法是相辅相成的。一般首先测试频段内是否存在驻波偏大的问题,如果没有,标明天馈驻波指标合格,如果存在某一频点范围内驻波偏大,则利用第二种方法找出具体的故障点。 测试步骤如下: 步骤1:选择主菜单中OPT选项。 步骤2:按B1和UP/DOWN选择选择要测试的项目(SWR,RL,CL),按ENTER确认。 步骤3:按B5选择计量单位(METRIC或ENGLISH) 步骤4:按B8调整显示对比度。其他选项说明在功能篇中已有叙述。 步骤5:选择主菜单中FREQ,则出现下级菜单;按F1,可以用数字键输入扫描起始频率或用上/下键改变其值。按F2,输入扫描截止频率,按ENTER键确定。 步骤6:按START CAL 键对系统进行校正,系统会提示在CAL A和CAL B之间选择,选择相应频率段按ENTER开始校准。(用短路器、开路器以及匹配负载进行校准); 步骤7:通过测试电缆连接要测试的设备。 步骤8:可以通过按AUTO SCALE 键,自动调整显示比例;或通过选择主菜单下SCALE,手动输入TOP,BOTTOM和LIMIT值,改变显示比例。 步骤9:按FREQ菜单下的MKRS键,打开一个MKRS,选择EDIT ,用上/下键改变频率值,读取相应SWR值,或按MORE 键,选择PEAK查看SWR最大值。假如所测驻波比大于1。5,那么就要用故障定位功能(DTF),选择主菜单中DIST项,设置D1,D2值,然后选择MKRS下一个MRKS(确定已打开),再按PEAK键,系统会显示驻波比最大值所在的位置。 本章提供一个有关电缆和天线分析仪测量的说明,包括传输线扫描基本原理 和传输线扫描测量的过程,当Site Master处于频率模式或DTF模式下时,这 些基本原理和过程是适用的。 传输线扫描基本原理 在无线电通信中,发射和接收天线是通过一条发射传输线而连接到无线电设备 上的。这个发射传输线通常是一条同轴电缆或波导。这种连接系统被称为一个 天馈线系统。图4-1 显示一个典型的天馈线系统的举例。

驻波比、插入损耗和回波损耗对照表

驻波比、插入损耗和回波损耗对照表 ρ=VSWR-1 VSWR+1RL=-20lg?ρVSWR=1+ρ 1-ρ 反射系数ρ回波损耗RL 驻波比VSWR 1.00 0.00 ∞ 0.90 0.92 19.00 0.80 0.94 9.00 0.70 3.10 5.67 0.60 4.44 4.00 0.50 6.02 3.00 0.40 7.96 2.33 0.30 10.46 1.86 0.20 13.98 1.50 0.10 20.00 1.22 0.09 20.92 1.20 0.08 21.94 1.17 0.07 23.10 1.15 0.06 24.44 1.13 0.05 26.02 1.11 0.04 27.96 1.08 0.03 30.46 1.06 0.02 33.98 1.04 0.01 40.00 1.02 0.00 ∞ 1.00

复反射系数:Γ=Z L-Z0 Z L+Z0 =ρsinθ+j cosθ 其中:幅度在0~1之间(为标量反射系数) 反射波相对于入射波的相角在+180°~-180°之间 定向耦合器: 耦合度C(dB)= -10lg P3 P1 隔离度I(dB)= -10lg P4 P1 方向性D(dB)= -10lg P3 P4 C-I=D 其中:P1为输入端口功率,P3为耦合端口输出功率,P4为隔离端口输出功率 网络基本参数: (一)反射参数 正向反向 反射系 数ΓΓ=S11Γ=S22 回波损 耗RL RL=-20lg?S11 RL=-20lg?S22 驻波比VSWR VSWR =(1+?S11 )(1-?S11 ) VSWR= (1+?S22 )(1-?S22 ) 阻抗Z Z=R+jX =Z0(1+?S11 )(1-?S11 ) Z=R+jX= Z0(1+?S22 )(1-?S22 ) (二)传输参数 正向反向

驻波管法吸声系数与声阻抗率测量规范

更新规范 https://www.360docs.net/doc/6e6237474.html, 中华人民共和国国家标准 驻波管法吸声系数与声阻抗率测量规范 GBJ 88-85 主编单位:同济大学 批准部门:中华人民共和国国家计划委员会 施行日期:1986年6月1日 关于发布《驻波管法吸声系数与声阻抗率测量规范》的通知 计标〔1986〕04号 根据原国家建委(81)建发设字第546号通知的要求,由全国声学标准化技术委员会负责归口组织,具体由同济大学会同有关单位编制《驻波管法吸声系数与声阻抗率测量规范》,已经全国声学标准化技术委员会会审。现批准《驻波管法吸声系数与声阻抗率测量规范》GBJ88—85为国家标准,自一九八六年六月一日起施行。 本规范具体解释等工作由同济大学负责。 国家计划委员会 1985年12月31日 编制说明

本规范是根据原国家基本建设委员会(81)建发设字546号文的要求,由全国声学标准化技术委员会委托同济大学负责编制的。 在本规范的编制过程中,编制单位调查研究了国内有关单位的实践经验和研究成果,收集并分析了国外同类测量标准及有关技术资料,对一些重要内容作了较系统的对比试验以及相应的理论分析,提出了规范征求意见稿。广泛征询了国内各有关单位的意见,并召开了座谈会,经反复修改提出了送审稿。经全国声学标准化技术委员会建筑声学分委员会讨论同意,最后由全国声学标准化技术委员会审查定稿。 本规范共五章及七个附录。内容包括:测量设备、测量方法、测量范围和测量要求。 在本规范施行过程中,希各单位注意积累资料,认真总结经验,如发现有需要修改或补充之处,请将意见和有关资料寄交同济大学声学研究所,以供今后修订时参考。 同济大学 1985年12月更新规范 https://www.360docs.net/doc/6e6237474.html, 第一章 总则 第 1.0.1条 为了统一驻波管测量,便于测量数据的相互比较,特制订本规范。 第1.0.2条 本规范适用于吸收空气声的吸声材料和吸声构件。采用驻波管测量法向入射时的吸声系数和法向声阻抗率。 更新规范 https://www.360docs.net/doc/6e6237474.html, 第二章 测量基本设备 第一节 测量装置 第2.1.1条 驻波管测量的设备,应由驻波管、声源系统、探测器及输出指示装置等部分所组成,如图2.1.1所示。

相关文档
最新文档