LS-DYNA自适应网格划分

LS-DYNA自适应网格划分
LS-DYNA自适应网格划分

ANSYS/LS-DYNA自适应网格划分

在金属成形和高速撞击分析中,物体要经历很大的塑性变形。单积分点显式单元,常用于大变形,但是在这种情况下,由于单元纵横比不合适可能给出不精确的结果。为了解决这一问题,ANSYS/LS-DYNA程序可以在分析过程中自动重新划分表面来改善求解精度。这一功能,即自适应网格划分,由EDADAPT 和EDCADAPT 命令控制。

EDADAPT 命令在一个指定的PART内激活自适应网格划分。(用EDPART 命令创建或显示有效PART IDs),例如,为了给PART1打开自适应网格划分,可以执行下列命令:

EDADAPT,1,ON

注意—自适应网格划分功能仅对包含SHELL163单元的部件有效。

当此项功能打开时,分析中该部件的网格将自动重新生成。从而保证在整个变形过程中有合适的单元纵横比。自适应网格划分一般应用在大变形分析例如金属变形中(调节网格最典型的应用是板料)。在一个模型中要在多个部件上应用此功能,必须对每个不同的PART ID执行EDADAPT 命令。缺省时,该功能是关闭的。

在指定哪些部件重新划分后,必须用EDCADAPT 命令定义网格划分参数。采用EDADAPT 命令定义需要网格划分的所有PART ID号,用EDCADAPT 命令对其设置控制选项。

EDCADAPT 命令控制的参数如下所示:

·Frequency(FREQ)- 调节自适应网格划分的时间间隔。例如,假设FREQ设置为0.01,如果单元变形超过指定的角度容差,则其将每隔0.01秒被重新划分一次(假设时间单位为秒)。因为FREQ的缺省值为0.0,所以在分析中应用自适应网格划分时必须指定此项。

·Angle Tolerance(TOL)-对于自适应网格划分(缺省值为1e31)有一个自适应角度公差。TOL域控制着单元间的纵横比,它对保证结果的精度是非常重要的,如果单元之间的相对角度超过了指定的TOL值,单元将会被重新划分。

·Adaptivity Option(OPT)- 对于自适应网格划分有两个不同的选项。对于OPT=1,和指定的TOL值相比较的角度变化只是根据初始网格形状计算的。对于OPT=2,和指定的TOL值相比较的角度变化是根据前一次重新划分的网格计算的。

·Mesh Refinement Levels(MAXLVL)- MAXLVL域控制着整个分析中单元重新划分的次数。对于一个初始单元,MAXLVL=1可以创建一个附加单元,MAXLVL=2允许增加到4个单元,MAXLVL=3允许增加到16个单元。高MAXLVL会得到更精确的结果,但也会明显增加模型规模。

·Remeshing Birth and Death Times (BTIME and DTIME)-自适应网格划分的生死时间控制着该功能在分析过程中的激活或关闭。例如,如果设置BTIME=.01和DTIME=.1,那么分析中只在.01和.1秒间进行重新网格划分(假设时间单位为秒)。

·Interval of Remeshing Curve(LCID)-数据曲线把重新划分网格的时间间隔定义为时间的函数。数据曲线的横坐标为时间,而纵坐标为变化的时间间隔。如果这个选项不为0,那么它将代替适应频率(FREQ)。但是要注意,开始第一个自适应性循环仍需要非零FREQ值。

·Minimum Element Size (ADPSIZE)-根据单元边长设定的最小单元尺寸。如果不定义此参数,边长的限制将被忽略。

·One or Two Pass Option (ADPASS)-如果ADPASS=0,将使用双通道自适应划分,在重新划分网格后将重复这一计算(缺省值)。如果ADPASS=1,则使用单通道自适应划分,而计算不再重复。关于这两个选项的图形表示,请参看《ANSYS/LS-DYNATheoretical Manual 》图30.9(a)和30.9(b)。

·Uniform Refinement Level Flag (IREFLG)-值为1,2,3等,分别允许4,16,64等划分等级。对于每个初始单元都分别生成统一的单元。

·Penetration FLAG (ADPENE)-根据ADPENE是正(到达)的还是负(穿透)的,当接触表面到达或穿透工具表面时,程序将依据这个值调整网格。自适应细化主要依据加工曲线。如果ADPENE是正的,细化一般发生在接触之前;因此,可能用单通道划分就可以了。(ADPASS=1)

·Shell Thickness Level (ADPTH)- 绝对薄壳厚度标准,低于该值自适应划分开始。这个选项仅在自适应角度公差不为零的情况下有用。如果期望不改变角度,激活基于厚度的自适应重新划分功能,那么可把TOL设为较大的角度。(如果ADPTH=0.0,不使用这个选项。)

·Maximum Element Limit (MAXEL)- 自适应结束的最大单元数。如果超过了此值,自适应将被中止。

对于大多数问题,不应该用自适应网格划分作初始分析。如果分析结果出现扭曲的网格,或结果不正确,那么再应用此项重新进行分析。当LS-DYNA分析中因为“negative volume element”的错误终止时,也可用此项分析。

当打开自适应网格划分选项时,在求解过程中模型内的单元数将发生变化。在一个调节循环结束后,网格将被更新,并且生成一个扩展名为RSnn的新结果文件,这里nn为自适应网格标准。(在由FREQ指定的每个时间增量或LCID指定的时间间隔,都会发生自适应循环。)例如,重新划分两次网格的模型将产生两个结果文件,Johname.RS01 和Johname.RS02.

有关自适应划分结果后处理的详细信息,请参看第十二章,Postprocessing.

注意--既使每次循环网格不发生变化,也会产生一个新的结果文件。

每次循环都会产生一个扩展名为HInn的时间历程文件,尽管这些文件可能不如RSnn文件有用。此外,LS-DYNA还创建了一系列源文件名为“adapt”的文件。因此,在激活调节网格划分时,不要把“adapt”作为你的工作名。

ansys教程之自适应网格划分

ansys教程之自适应网格划分 [摘要]:ANSYS程序提供了近似的技术自动估计特定分析类型中因为网格划分带来的误差。(误差估计在ANSYS Basic Analysis Procedures Guide第五章中讨论。)通过这种误差估计,程序可以确定网格是否足够细。如果不够的话,程序将自动细化网格以减少误差。这一自动估计网格划分误差并细化网格的过程就叫做自适应网格划分,然后通过一系列的求解过程使得误差低于用户指定的数值(或直到用户指定的最大求解次数)。 自适应网格划分的先决条件 ANSYS软件中包含一个预先写好的宏,ADAPT.MAC,完成自适应网格划分的功能。用户的模型在使用这个宏之前必须满足一些特定的条件。(在一些情况下,不满足要求的模型也可以用修正的过程完成自适应网格划分,下面还要讨论。)这些要求包括: 标准的ADAPT过程只适用于单次求解的线性静力结构分析和线性稳态热分析。 模型最好应该使用一种材料类型,因为误差计算是根据平均结点应力进行的,在不同材料过渡位置往往不能进行计算。而且单元的能量误差是受材料弹性模量影响的。因此,在两个相邻单元应力连续的情况下,其能量误差也可能由于材料特性不同而不一样。在模型中同样应该避免壳厚突变,这也可能造成在应力平均是发生问题。 模型必须使用支持误差计算的单元类型。(见表3-1) 模型必须是可以划分网格的:即模型中不能有引起网格划分出错的部分。 表3-1 自适应网格划分可用单元 2-D Structural Solids PLANE2 2-D 6-Node Triangular Solid PLANE25 Axisymmetric Harmonic Solid PLANE42 2-D 4-Node Isoparametric Solid PLANE82 2-D 8-Node Solid PLANE83 Axisymmetric Harmonic 8-Node Solid

ANSYS网格划分技巧

【分享】复杂几何模型的系列网格划分技术 众所周知,对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。在ANSYS中,大家知道,网格划分有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。在这里,我们仅对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些问题作简要阐述。 一、自由网格划分 自由网格划分是自动化程度最高的网格划分技术之一,它在面上(平面、曲面)可以自动生成三角形或四边形网格,在体上自动生成四面体网格。通常情况下,可利用ANSYS的智能尺寸控制技术(SMARTSIZE命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如45号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二

次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG命令将模型中的退化形式的四面体单元变化为非退化的四面体单元,减少每个单元的节点数量,提高求解效率。在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由LESIZE命令的LAYER1和LAYER2域控制)是非常有用的。 二、映射网格划分     映射网格划分是对规整模型的一种规整网格划分方法,其原始概念是:对于面,只能是四边形面,网格划分数需在对边上保持一致,形成的单元全部为四边形;对于体,只能是六面体,对应线和面的网格划分数保持一致;形成的单元全部为六面体。在ANSYS中,这些条件有了很大的放宽,包括: 1 面可以是三角形、四边形、或其它任意多边形。对于四边以上的多边形,必须用LCCAT命令将某些边联成一条边,以使得对于网格划分而言,仍然是三角形或四边形;或者用AMAP命令定义3到4个顶点(程序自动将两个顶点之间的所有线段联成一条)来进行映射划分。 2 面上对边的网格划分数可以不同,但有一些限制条件。

自适应网格

ALE adaptive mesh单元: AC1D2, AC1D3, AC2D3, AC2D4, AC2D6, AC2D8, AC3D4, AC3D6, AC3D8, AC3D10, AC3D15, AC3D20, ACAX3, ACAX4, ACAX6, ACAX8 CPS4, CPS4T, CPS3 CPE4, CPE4H, CPE4T, CPE4HT, CPE4P, CPE4PH, CPE3, CPE3H CAX4, CAX4H, CAX4T, CAX4HT, CAX4P, CAX4PH, CAX3, CAX3H C3D8, C3D8R, C3D8H, C3D8RH, C3D8T, C3D8HT, C3D8RT, C3D8RHT, C3D8P, C3D8PH, C3D8RP, C3D8RPH 从列表来看,ALE自适应网格不适用于壳(S4、S4R等),另外对于实体单元也不适用于四面体(C3D4)。 问题1: The requested number of domains cannot be created due to restrictions in domain decomposition. 措施:job---Editjob---Parallelization---Number of domains: 设为1 问题2:ALE算法和CEL算法有什么区别? 措施:①CEL只能用于explicit,AEL在implicit(声畴、冲蚀、磨损)和explicit都能用; ②ALE方法最初出现于数值模拟流体动力学问题的有限差分方法中。这种方法兼具 Lagrange方法和Euler方法二者的特长,即首先在结构边界运动的处理上它引进了 Larange方法的特点,因此能够有效的跟踪物质结构边界的运动;其次在内部网格 的划分上,它吸收了Euler的长处,即是使内部网格单元独立于物质实体而存在, 但它又不完全和Euler网格相同,网格可根据定义的参数在求解过程中适当调整 位置,使得网格不致出现严重的畸变。 CEL是欧拉-拉格朗日耦合,用于固体液体之间的耦合。 说法1:ALE是arbitary lagrange euler 算法 CEL couple lagrange euler 流固耦合的设置应该不属于算法的范畴 问题3:为什么odb转换输出坐标系后,只有S11等应力分量改变,而像Mises Equivalent 等都不变呢? 措施:①看变量情况:S11指的是沿一方向的力,改了坐标系,值也会变。 但是如果是CPRESS,接触压力的话,它是指垂直于接触面上的力,与你的坐标没有关系,这样,你改了坐标系,自己它不会变。 其它的变量如mises等同理。

ANSYS 13.0 Workbench 网格划分及操作案例

第 3章 ANSYS 13.0 Workbench网格划分及操作案例 网格是计算机辅助工程(CAE)模拟过程中不可分割的一部分。网格直接影响到求解精 度、求解收敛性和求解速度。此外,建立网格模型所花费的时间往往是取得 CAE 解决方案所 耗费时间中的一个重要部分。因此,一个越好的自动化网格工具,越能得到好的解决方案。 3.1 ANSYS 13.0 Workbench 网格划分概述 ANSYS 13.0 提供了强大的自动化能力,通过实用智能的默认设置简化一个新几何体的网 格初始化,从而使得网格在第一次使用时就能生成。此外,变化参数可以得到即时更新的网 格。ANSYS 13.0 的网格技术提供了生成网格的灵活性,可以把正确的网格用于正确的地方, 并确保在物理模型上进行精确有效的数值模拟。 网格的节点和单元参与有限元求解,ANSYS 13.0在求解开始时会自动生成默认的网格。 可以通过预览网格,检查有限元模型是否满足要求,细化网格可以使结果更精确,但是会增 加 CPU 计算时间和需要更大的存储空间,因此需要权衡计算成本和细化网格之间的矛盾。在 理想情况下,我们所需要的网格密度是结果随着网格细化而收敛,但要注意:细化网格不能 弥补不准确的假设和错误的输入条件。 ANSYS 13.0 的网格技术通过 ANSYS Workbench的【Mesh】组件实现。作为下一代网格 划分平台, ANSYS 13.0 的网格技术集成 ANSYS 强大的前处理功能, 集成 ICEM CFD、 TGRID、 CFX-MESH、GAMBIT网格划分功能,并计划在 ANSYS 15.0 中完全整合。【Mesh】中可以根 据不同的物理场和求解器生成网格,物理场有流场、结构场和电磁场,流场求解可采用 【Fluent】、【CFX】、【POLYFLOW】,结构场求解可以采用显式动力算法和隐式算法。不同的 物理场对网格的要求不一样,通常流场的网格比结构场要细密得多,因此选择不同的物理场, 也会有不同的网格划分。【Mesh】组件在项目流程图中直接与其他 Workbench分析系统集成。 3.2 ANSYS 13.0 Workbench 网格划分 ANSYS 网格划分不能单独启动,只能在 Workbench 中调用分析系统或【Mesh】组件启 动,如图 3-1 所示。 图3-1 调入分析系统及网格划分组件

ansysworkbench中划分网格的几种方法

转自宋博士的博客 如何在ANSYS WORKBENCH中划分网格经常有朋友问到这个问题。我整理了一下,先给出第一个入门篇,说明最基本的划分思路。以后再对某些专题问题进行细致阐述。 ANSYS WORKBENCH中提供了对于网格划分的几种方法,为了便于说明问题,我们首先创建一个简单的模型,然后分别使用几种网格划分方法对之划分网格,从而考察各种划分方法的特点。 1. 创建一个网格划分系统。 2. 创建一个变截面轴。 先把一个直径为20mm的圆拉伸30mm成为一个圆柱体 再以上述圆柱体的右端面为基础,创建一个直径为26mm的圆,拉伸30mm得到第二个圆柱体。 对小圆柱的端面倒角2mm。

退出DM. 3.进入网格划分程序,并设定网格划分方法。双击mesh进入到网格划分程序。 下面分别考察各种网格划分方法的特点。(1)用扫掠网格划分。 对整个构件使用sweep方式划分网格。

结果失败。 该方法只能针对规则的形体(只有单一的源面和目标面)进行网格划分。(2)使用多域扫掠型网格划分。 结果如下

可见ANSYS把该构件自动分成了多个规则区域,而对每一个区域使用扫略网格划分,得到了很规则的六面体网格。这是最合适的网格划分方法。 (3)使用四面体网格划分方法。 使用四面体网格划分,且使用patch conforming算法。 可见,该方式得到的网格都是四面体网格。且在倒角处网格比较细密。 其内部单元如下图(这里剖开了一个截面) 使用四面体网格划分,但是使用patch independent算法。忽略细节。

?、网格划分结果如下图 此时得到的仍旧是四面体网格,但是倒角处并没有特别处理。(4)使用自动网格划分方法。 得到的结果如下图

ANSYS网格划分总结大全

有限元分析中的网格划分好坏直接关系到模型计算的准确性。本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。 1 引言 ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 2 ANSYS网格划分的指导思想 ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材

ANSYS命令流学习笔记12-自适应网格及其在WB中运用的对比

!ANSYS命令流学习笔记12-自适应网格及其在WB中运用的对比 !学习重点: !1、网格收敛的重要性 由于应力集中(区别于应力奇异)的存在,在结构不连续处存在应力较大,而且随着网格质量数量的增加,应力值趋于收敛,据说收敛与否的应力差值可以很大,所以说重要细节结构的网格收敛十分重要。 !2、WorkBench中网格收敛的实现 WorkBench中在solution选项中设置网格循环次数,关键点网格优化系数,在求解结果选项下插入convergence,定义deformation或者stress的收敛系数。 计算前后的网格对比 虽然六面体网格变成四面体网格进行细分,但是初始网格划分的尺寸,对结果仍然有一定影响。而且优化的方式和APDL中也有一定差异,此例与APDL结果相同,是有一定运气成分。此处如果网格继续细化,肯定是fix处的尖角处应力奇异。(所以如何指定优化区域也是个问题) !3、APDL中网格收敛的实现 (1) 建模,注意不要划分网格,而且3D模型只能使用4面体单元网格; (2) 加载边界条件,由于没有网格,边界条件只好由面或者线确定; (3) 启动ADAPT宏命令,指定能量收敛误差,最大循环次数,网格优化系数;看起来很厉害的样子,但是使用方法和命令一样,只是输入命令框的不提示有此命令存在;. (4) 后处理查看结果。 !4、对网格收敛的一些疑问 (1) 宏命令调用:通过help文件查询到ADAPT的命令含义,但是不懂宏的内容,权且当做命令处理。 (2) ADAPT收敛误差:help中说是结构能量误差(SEPC),如果在热分析是热能量误差(TEPC),SEPC等效于应变能量误差(strain energy error )。由于APDL和WorkBench收敛准则的不同,收敛结果无法对应,不明所以。 (3) 网格划分方式:实体单元只能采用非结构化网格形式,WB和APDL都是如此,WB 即使划分了结构和单元也会无效;但是APDL和WB指定网格初始尺寸有意义?;虽说非结

ANSYS自适应网格划分

ANSYS自适应网格划分 (1) 何为网格自适应划分? ANS YS程序提供了近似的技术自动估计特定分析类型中因为网格划分带来的误差。(误差估计在ANSYS Basic Analysis Procedures Gui第五章中讨论。)通过这种误差估计,程序可以确定网格是否足够细。如果不够的话,程序将自动细化网格以减少误差。这一自动估计网格划分误差并细化网格的过程就叫做自适应网格划分,然后通过一系列的求解过程使得误差低于用户指定的数值 (或直到用户指定的最大求解次数)。 自适应网格划分的先决条件 ANSYS软件中包含一个预先写好的宏,ADAPT.MAC完成自适应网格划分的功能。 用户的模型在使用这个宏之前必须满足一些特定的条件。(在一些情况下,不满足要求的模型也可以用修正的过程完成自适应网格划分,下面还要讨论。)这些要求包括: 标准的ADAPT过程只适用于单次求解的线性静力结构分析和线性稳态热分析。模型最好应该使用一种材料类型,因为误差计算是根据平均结点应力进行的,在不同材料过渡位置往往不能进行计算。而且单元的能量误差是受材料弹性模量影响的。因此,在两个相邻单元应力连续的情况下,其能量误差也可能由于材料特性不同而不一样。在模型中同样应该避免壳厚突变,这也可能造成在应力平均是发生问题。 模型必须使用支持误差计算的单元类型。 模型必须是可以划分网格的:即模型中不能有引起网格划分出错的部分。 自适应网格划分可用单元 2-D Structural Solids PLANE2 2-D 6-Node Triangular Solid PLANE25 Axisymmetric Harmonic Solid

Fluent的自适应网格问题

加密网格的话有两种参考标准一种是y+值,一种是y*值,一般来说,要加密网格主要是为了是y+值满足需求,具体的情况看楼主你的需要... 根据y+值来加密网格的步骤如下:运行fluent,导入cas and dat 文件后,点击adapt——Yplus/Ystar..。,之后出现选择界面,一般情况可以保持默认界面,当然也可以根据自己的需求选择选项,一般type项选择Yplus,然后点击compute,在min及max项会出现你的选择壁面的Y+值,在其下方,有minallowed 和maxallowed,输入你所需要的Y+值范围,点击Mark按钮,会标记出不符合要求的部分,然后点击adapt,就可以了,这部分区域的网格会加密,以适应你的要求 Y*的步骤也是这样的 但是前提是要知道你的计算的y+值范围,而这个值一般是估计值,且跟计算有关的,是个不确定量,所以一般只作参考用 希望能帮到你......另外,希望给加分啊,呵呵 追问 我点完adpat,Yplus/Ystar这个是灰的,不能点。。 回答 额,你计算了吗或者说你导入的是cas & dat 文件吗如果不是,你都没 有一个y+值的范围,怎么可能让软件给你加密网格...(这是基本条件)追问 当然计算了,我保存完再导入cas& dat也不行 回答 那你试试计算完,直接点adapt试试.....还真没遇到过你说的情况 追问 adapt都能点只是里面的Yplus/Ystar不能点,是灰色的 fluent里的常见问题(一) (2011-02-26 09:44:43) 1什么叫松弛因子松弛因子对计算结果有什么样的影响它对计算的收敛情况又有什么样的影响 1、亚松驰(Under Relaxation):所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。用通用变量来写出时,为松驰因子(Relaxation Factors)。《数值传热学-214》 2、FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制的变化。一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了的变化量。亚松驰最简单的形式为:单元内变量等于原来的值加上亚松驰因子a 与变化的积, 分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。这就意味着使用分离解算器解的方程,包括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。这个值适合于很多问题,但是对于一些特殊的非线性问题(如:某些湍流或者高Rayleigh数自然对流问题),在计算开始时要慎重减小亚松驰因子。使用默认的亚松驰因子开始计算是很好的习惯。

有限元网格划分和收敛性

一、基本有限元网格概念 1.单元概述 几何体划分网格之前需要确定单元类型。 单元类型的选择应该根据分析类型、 形状特征、 计算数据特点、精度要求和计算的硬件条件等因素综合考虑。 为适应特殊的分析对象和边界 条件,一些问题需要采用多种单元进行组合建模。 2?单元分类 选择单元首先需要明确单元的类型,在结构中主要有以下一些单元类型: 平面应力单元、 平面应变单元、轴对称实体单元、空间实体单元、板 单元、壳单元、轴对称壳单元、杆单 元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。根据不 同的分类方法,上述单元可以分成以 下不同的形式。 3. 按照维度进行单元分类 根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。 一维单元的网格为一条直线或者曲线。 直线表示由两个节点确定的线性单元。 曲线代表 由两个以上的节点确定的高次单元, 或者由具有确定形状的线性单元。 杆单元、梁单元和轴 对称壳单元属于一维单元,如图 1?图 3所示。 二维单元的网格是一个平面或者曲面,它没有厚度方向的尺寸。这类单元包括平面单元、 轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图 4所示。二 维单元的形状通 常具有三角形和四边形两种, 在使用自动网格剖分时, 这类单元要求的几何形状是表面模型 图1捋果詰柯与一维杆单无犠型(直豉) &2桁舉第构石一隼杆早死撲型(曲线) B3毀姑构与一纯梁单元除世(直疑和呦疚〕

或者实体模型的边界面。采用薄壳单元通常具有相当好的计算效率。

洞丨伍金哉钩和潯壳社电 三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元 包括空间实体单元和厚壳单元,如图5所示。在自动网格划分时,它要求的是几何模型是实 体模型(厚壳单元是曲面也可以)。 图5三址乙勺久和父侬草无 4. 按照插值函数进行单元分类 根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次 单元和更高次的单元。 线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面。这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大 的情况下,采用线性单元可以得到较小的模型规模。但是由于单元位移函数是线性的,单元 着应力突变,如图6所示。 S6錢41吕节点点单无fu节庖实体羊元

ansys_网格网格划分教程

血管模型网格划分 网格划分即将所用的模型划分为有限体积或单元,这里我们使用Ansys自身的网格划分器对提取出来的血管模型(STL格式的三维模型)进行网格划分。具体步骤为: 一、软件启动 单击开始---所有程序--Ansys14.0---Meshing---ICEM CFD 14.0。 二、模型导入 1、单击主菜单栏中的File---Import Geometry---STL,如下图: 主菜单烂

2、在下拉菜单对话框中选取血管模型并确定后,血管模型导入完成,如下图; 三、图形参数设置(封闭模型) 1、单击Geometry 工具栏中的Repair Geometry 图标,后单击Build Diagnostic 按钮单击Apply 按钮运行,如下图: 单击此处可调整显示边框与实体 Geometry 工具栏 Repair Geometry 按钮 单击此按钮后单击Apply 按钮 运行后端口显示封闭黄线

2、运行完成后,单击左侧工具栏中的Close Holes图标,然后单击鼠标图形按钮,而后单击模型端口处黄线并单击Apply运行,从而使模型端口封闭,模型有几个端口则反复操作几次,如下图: Close Holes按 钮运行结束 后端口封 闭 四、网格化分参数设置 1、单击Mesh工具栏的Compute Mesh按钮,选取Volume mesh按钮,后单击Compute按钮,而后单击YES按钮,进行初步的电脑网格划分; Mesh工具栏,Compute Mesh 按钮 单击此按钮,而后在下面的Mesh方法中选择,一般选择默 认的方法

运行结束后显示 网格 2、完成上步操作后,单击Mesh工具栏中的Globe mesh setup按钮,一般不更改默认设置,单击Apply按钮运行完成; 3、再次重复单击Compute Mesh按钮,后单击Apply按钮,而后单击YES按钮,进行初步的电脑网格划分,注:(1)可用多种方式进行划分而后单击融合操作,直至满意;(2)若模型有其他漏洞,程序会提示是否修复,一般选择不修复; 五、设置模型边界---共包括:出口端、入口端及墙壁 1、右键单击屏幕左侧控制树中的Part,在下拉菜单中选取Part create,而后在下面的窗口栏中Part部分对端口命名(如:input),然后在Creat Part by Selection部分单击鼠标箭头图形,再在浏览界面中左键单击所需设定的端口(如:输入端),注:只单击一次后进行下步操作,是否选中可能显示不明显,单击Apply运行完成此步操作; 2、依次完成输入端、输出端以及墙的设定。如下图:

AnsysWorkbench划分网格

Ansys Workbench 划分网格 (张栋zd0561@https://www.360docs.net/doc/666492895.html,) 1、对于三维几何体(对于三维几何体(3D 3D 3D) )有几种不同的网格化分方法。如图1下部所示。 图1网格划分的种类 1.1、Automatic(自动划分法) 1.2、Tetrahedron(四面体划分法) 它包括两种划分方法:Patch Conforming(A W 自带功能),Patch Independent(依靠ICEM CFD Tetra Algorithm 软件包来实现)。

步骤:Mesh(右键)——Insert——Method (操作区上方)Meshcontrl——Method (左下角)Scope——Geometry Method——Tetrahedrons(四面体网格) Algorithm——Patch Conforming (补充:Patch Independent该算法是基于Icem CFD Tetra的,Tetra部分具有膨胀应用,其对CAD许多面的修补均有用,包括碎面、短边、较差的面参数等。在没有载荷或命名选项的情况下,面和边无需考虑。) 图2四面体网格分两类

图3四面体划分法的参数设置 1.3、Hex Dominant(六面体主导法) 1.4、Sweep(扫掠划分法) 1.5、MultiZone(多区划分法) 2、对于面体或者壳二维几何 对于面体或壳二维(2D),A W有一下: Quad Dominant(四边形单元主导) Triangles(三角形单元) Uniform Quad/Tri(均匀四面体/三角形单元) Uniform Quad(均匀四边形单元) 3、网格参数设置 下图为缺省设置(Defaults)下的物理环境(Physics Preferance)

第8讲 自适应网格和fluent计算数据的后处理(学生用)

FLUENT模拟中的关键问题与数据后处理以混合问题为例: 一、自定义函数(p57) 使用命令:Define>Custom Field Function 打开自定义函数设计对话框: 以定义速度水头为例: 显示自定义函数的数值分布: 使用命令:Display>Contours… 取消Filled选项,保留其它默认设置,点击Display 点击Close,结果见下图:

二、使用二阶离散化方法重新计算 为了提高计算精度,对于计算当中的变量可以在离散格式中,提高其精度:1)使用命令:Solve>Controls>Solution 在条目下,选择能量项,并选择,此时要修改相 应的能量方程的松弛因子为 0.8。 点击OK。 2)再进行200次计算: 得到的结果明显改善:

提高精度后的结果和前的结果比较 三、 自适应网格 FLUENT 设置自适应网格的目的是为了提高计算精度。 1. Display>contours…,选择温度作为显示对象; 2. 取消node values 选项,再点击display ,看到单元边界不光滑,即梯度很 大,其范围也会显示出来;

从图中可以明显的看到,单元间边界很不光滑了。为了改进梯度变化较大的区域的精度,我们必须建立梯度比较大的网格组合,以便于细分网格,提高计算精度。 3.在contours of 下拉菜单中,选择adption…和adaption function; 显示用于改进计算精度的网格图: 取消node values选项;点击display;

4.把梯度范围大于0.01的显示出来, 取消Options项下的Auto Range,设定min为0.01,把梯度大于0.01的边界节点显示出来: 如果把min设置为0.005,网格数量明显增加:

自适应网格划分

自适应网格划分 何为网格自适应划分? ANSYS程序提供了近似的技术自动估计特定分析类型中因为网格划分带来的误差。(误差估计在ANSYS Basic Analysis Procedures Guide第五章中讨论。)通过这种误差估计,程序可以确定网格是否足够细。如果不够的话,程序将自动细化网格以减少误差。这一自动估计网格划分误差并细化网格的过程就叫做自适应网格划分,然后通过一系列的求解过程使得误差低于用户指定的数值(或直到用户指定的最大求解次数)。 自适应网格划分的先决条件 ANSYS软件中包含一个预先写好的宏,ADAPT.MAC,完成自适应网格划分的功能。用户的模型在使用这个宏之前必须满足一些特定的条件。(在一些情况下,不满足要求的模型也可以用修正的过程完成自适应网格划分,下面还要讨论。)这些要求包括: 标准的ADAPT过程只适用于单次求解的线性静力结构分析和线 性稳态热分析。 模型最好应该使用一种材料类型,因为误差计算是根据平均 结点应力进行的,在不同材料过渡位置往往不能进行计算。 而且单元的能量误差是受材料弹性模量影响的。因此,在两 个相邻单元应力连续的情况下,其能量误差也可能由于材料 特性不同而不一样。在模型中同样应该避免壳厚突变,这也 可能造成在应力平均是发生问题。 模型必须使用支持误差计算的单元类型。(见表3-1) 模型必须是可以划分网格的:即模型中不能有引起网格划分 出错的部分。 表3-1 自适应网格划分可用单元 2-D Structural Solids PLANE2 2-D 6-Node Triangular Solid PLANE25 Axisymmetric Harmonic Solid PLANE42 2-D 4-Node Isoparametric Solid PLANE82 2-D 8-Node Solid PLANE83 Axisymmetric Harmonic 8-Node Solid 3-D Structural Solids

ANSYS网格划分浅谈

ANSYS网格划分浅谈 在本学期,我们学习了CAX这门课程。通过对这一门课程8周的学习使我对本模块的认识和了解有了一种新的看法。在老师的认真教育和带领下把我们引入了一个新的领域。在CAX这个领域中包括CAD CAM CAE CAPP等的各项技术,这些技术都是将理论知识和计算机辅助集合在一起的新兴工业工程技术,是要将理论和实践的学科。在下面我主要将我这段学习期间对于ANSYS软件的学习中关于有限元网格划分的一些认识和经验做个报告总结。 1、ANSYS网格划分简述 ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAD工具之一。 ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。在划分网格前,用户首先需要对模型中将要用到的单元属性进行定义。在ANSYS中,大家知道,网格划分有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。单元属性主要包括:单元类型、实常数、材料常数。典型的实常数包括:厚度、横截面面积、高度、梁的惯性矩等。材料属性包括:弹性模量、泊松比、密度、热膨胀系数等。 ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。利用轴对称或子结构时要注意场合,在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题。 ANSYS软件平台提供了网格映射划分和自由适应划分的策略。映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以控制。自由网格划分用于空间自由曲面和复杂实体,采用三角形、四边形、四面体进行划分,采用网格数量、边长及曲率来控制网格的质量。

ANSYS自适应网格划分

ANSYS自适应网格划分(1) 何为网格自适应划分? ANSYS程序提供了近似的技术自动估计特定分析类型中因为网格划分带来的误差。(误差估计在ANSYS Basic Analysis Procedures Guide第五章中讨论。)通过这种误差估计,程序可以确定网格是否足够细。如果不够的话,程序将自动细化网格以减少误差。这一自动估计网格划分误差并细化网格的过程就叫做自适应网格划分,然后通过一系列的求解过程使得误差低于用户指定的数值(或直到用户指定的最大求解次数)。 自适应网格划分的先决条件 ANSYS软件中包含一个预先写好的宏,ADAPT.MAC,完成自适应网格划分的功能。用户的模型在使用这个宏之前必须满足一些特定的条件。(在一些情况下,不满足要求的模型也可以用修正的过程完成自适应网格划分,下面还要讨论。)这些要求包括: 标准的ADAPT过程只适用于单次求解的线性静力结构分析和线性稳态热分析。 模型最好应该使用一种材料类型,因为误差计算是根据平均结点应力进行的,在不同材料过渡位置往往不能进行计算。而且单元的能量误差是受材料弹性模量影响的。因此,在两个相邻单元应力连续的情况下,其能量误差也可能由于材料特性不同而不一样。在模型中同样应该避免壳厚突变,这也可能造成在应力平均是发生问题。 模型必须使用支持误差计算的单元类型。 模型必须是可以划分网格的:即模型中不能有引起网格划分出错的部分。 自适应网格划分可用单元 2-D Structural Solids PLANE2 2-D 6-Node Triangular Solid PLANE25 Axisymmetric Harmonic Solid PLANE42 2-D 4-Node Isoparametric Solid PLANE82 2-D 8-Node Solid PLANE83 Axisymmetric Harmonic 8-Node Solid 3-D Structural Solids SOLID45 3-D 8-Node Isoparametric Solid SOLID64 3-D Anisotropic Solid SOLID73 3-D 8-Node Solid with Rotational DOF SOLID92 3-D 10-Node Tetrahedral Solid SOLID95 3-D 20-Node Isoparametric Solid 3-D Structural Shells SHELL43 Plastic quadrilateral Shell

ansys自适应网格分析:2D矩形板的稳态热对流

2D矩形板的稳态热对流的自适应分析 一个2D矩形区域的稳态热对流见图1,模型的参数见表1,由于在AB边上的外界温度为T=100C,而在BC边上的外界温度为T=0C,则在它们的交点处(即B点),会出现一个奇异区,在BE区间将有温度的高梯度的跨越,因此,要求采用自适应网格划分进行多次分析,最后得到一个满足计算精度要求的温度计算结果。 图1 2D矩形区域的稳态热对流 表1模型参数 建模要点: ①首先定义分析类型,对于稳态传热分析,设置,并选取热分析单元,输入材料的热传导系数; ②建立对应几何关键点,注意给出需要关注的高梯度区域的E点,连点成线,再连线成面; ③定义热边界条件,包括给定边界温度,边界的对流系数 ④设定自适应网格划分,不多于10次划分,或精度误差在5%以内 ⑤在后处理中,用命令<*GET>来提取相应位置的计算分析结果。 1 设置计算类型,定义单元类型 单元类型选择的是Solid Quad 4node 55

2 定义材料参数这里只需要设置材料的热导率,因为只是稳态分析,跟瞬态分析不同,瞬态分析除了要设置材料的热导率之外,还需要设置材料的比热容,密度

3 建立几何模型 这里的几何模型非常简单,只是一个矩形,只是要注意的是,这里特意设置了一个E点,用来查看“奇异区”的温度。 Main Menu: Preprocessor→Modeling→Create→Keypoints→In Active CS→NPTKeypoint number:1,X,Y,Z Location in active CS: 0,0,0→Apply→同样输入其余4个关键点坐标,坐标分别为(0.6,0,0),(0.6,1.0,0),(0,1.0,0),(0.6,0.2,0)→OK→Lines →Lines→Straight Line →分别连接各关键点(1-2)、(2-5)、(5一 3)、(3→4)、(4一1)→0K→Areas→Arbitrary→By Line→选择所有的直线→OK 4 模型加约束 因为此次是自适应网格划分求解,所以不需要手动划分网格。 ANSYS Utility Menu: Plo tCtrls →Numbering..…(出现Plot Numbering Control 对话框)→KP:On,LINE:on→OK ANSYS Main Menu→ Preprocessor → Loads → Define Loads→Apply→Thermal→Temperature→On Keypoints →点关键点1→OK(出现Apply TEMP on Keypoints对话框)→Lab2:TEMP:VALUE: 100;KEXPND:Yes→Apply →点关键点2→OK(出现Apply TEMP on Keypoints 对话框)→Lab2:TEMP;VALUE:100;KEXPND:Yes →OK ANSYS Main Menu: Preprocessor→Loads→Define Loads → Apply →Thermal →Convection→On Lines→点直线2(L2)→OK(出现Apply CONV on Lines 对话框)→VALI:750.0;VAL2I:0.0→OK→On Lines(Main Menu下)→点直线3(L3)→OK(出现Apply CONV on Lines对话框)→VALI:750.0; VAL2I:0.0→OK→On Lines(Main Menu下)→点直线4(L4)→OK(出现Apply CONV on Lines对话框) →VALI:750.0;VAL2l:0.0→OK

ABAQUS+ALE自适应网格技术

ABAQUS ALE自适应网格技术 为了方便理解,先整体介绍一下ALE网格自适应方法的基本过程,一个完整的ALE过程可以分为若干个网格remesh子过程,而每一次remesh的过程可以分为两步: 1生成一个新的网格(create a new mesh),利用各种算法以及控制策略生成一个良好的网格,主要包括划分的频率和算法。 2环境变量的转换(advection variales),也就是将旧网格中的变量信息利用remapping技术转换到新网格中,也有不同算法,其中包括静变量(应力场,应变场等)的转换与动变量(速度场,加速度场等)的转换。 上面的两步在软件设置上面,可认为是对网格划分区域的控制(ALE Adaptive Mesh Domain)和算法的控制(ALE Adaptive Mesh Controls)。 1 ALE区域的控制 (1)几何区域选择(set) ※ No ALE adaptive mesh domain for this step 该分析步没有使用ALE技术。 ※Use the ALE adaptive mesh domain below 将以下区域定义为ALE区域。 (2)ALE Adaptive Mesh Controls 自适应技术控制选项,后面介绍 (3)Frequency 频率控制,主要是对整个step time中网格remesh的次数进行控制。Reme sh次数n可以由n=Increment number /Frequency来表达其意义,当frequenc y的值为i时,表示每i个增量步进行一次remesh。 一个典型的ALE过程,在每5-100个增量步就需要一次remesh,对于拉格朗日问题,改参数默认值为10,若变形实在太大,可适当调高,以增加网格重画的强度,对于爆炸,碰撞等变形时间极短的问题求解,则在每一个增量步都需要一次remesh,这时Frequency的值需要设置得很小,比如设为1,当然,ada

ANSYS网格划分详细介绍

ANSYS网格划分详细介绍 众所周知,对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。在ANSYS中,大家知道,网格划分有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。在这里,我们仅对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些问题作简要阐述。一、自由网格划分 自由网格划分是自动化程度最高的网格划分技术之一,它在面上(平面、曲面)可以自动生成三角形或四边形网格,在体上自动生成四面体网格。通常情况下,可利用ANSYS 的智能尺寸控制技术(SMARTSIZE命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如45

号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG命令将模型中的退化形式的四面体单元变化为非 退化的四面体单元,减少每个单元的节点数量,提高求解效率。在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由LESIZE命令的LAYER1和LAYER2域控制)是非常有用的。二、映射网格划分 映射网格划分是对规整模型的一种规整网格划分方法,其原始概念是:对于面,只能是四边形面,网格划分数需在对边上保持一致,形成的单元全部为四边形;对于体,只能是六面体,对应线和面的网格划分数保持一致;形成的单元全部为六面体。在ANSYS中,这些条件有了很大的放宽,包括: 1 面可以是三角形、四边形、或其它任意多边形。对于四边以上的多边形,必须用LCCAT命令将某些边联成一条边,以使得对于网格划分而言,仍然是三角形或四边形;或者用AMAP命令定义3到4个顶点(程序自动将两个顶点之间的

相关文档
最新文档