地铁直流1500V供电系统保护

地铁直流1500V供电系统保护
地铁直流1500V供电系统保护

摘要:本文以直流1500V双边供电的牵引变电所为例,介绍了地铁直流牵引变电所内各开关柜的保护配置,并详细阐述了主要保护的原理,如大电流脱扣保护、电流上升率保护、定时限过流保护、低电压保护、双边联跳保护、接触网热过负荷保护、框架保护等。最后,对于目前的保护原理中存在的不足之处,本文也做了分析,如多辆列车短时间内相继启动可能会造成保护误动,小电流(尤其是有电弧的情况)短路故障与正常运行电流的区分,以及框架保护的选择性问题。

关键词:地铁直流保护

0 引言

在我国,地铁是城市公共交通的重点发展方向,设备国产化又是发展的主要原则。在地铁直流供电继电保护领域内,国产保护设备还处于起步阶段,目前,国内主要城市的地铁直流保护设备均来自国外,例如广州地铁二号线选用的是德国Siemens公司的DPU96,武汉轻轨选用的是瑞士sechron公司的SEPCOS。通过对部分国外产品的研究,笔者认为,直流保护设备的原理并不是十分复杂,功能实现在理论上也没有任何障碍,希望通过本文的抛砖引玉,在将来的不久,能够看到国产的直流保护设备在我国甚至国际市场成为主流。

1 一次系统简介

图1显示了一个典型的牵引变电所的电气主接线图,该所将主变电所来的交流高电压(典型值:33kV)经整流机组(包括变压器及整流器)降压、整流为直流1500V,再经直流开关柜向接触网供电。我国上海和广州地铁的直流牵引供电系统均是如此,北京地铁采用的是第三轨受流器(上海和广州地铁则是架空接触网),其馈电电压为750V。由于750V馈电电压供电距离短、杂散电流大,现在多采用1500V。图2显示的是采用双边供电的上行接触网的分区段示意图(下行亦相同),一个供电区由相邻的2个牵引变电所同时供电,这种双边供电的方式提高了供电的可靠性,同时分区段的方式使故障被隔离在某个区段以内,而不致影响其它供电区段,因而被广泛采用。本文中所讨论的保护原理均基于1500V架空接触网双边供电方式。

图1 典型牵引变电所电气主接线参考图

图2 双边供电接触网分区段示意图

图3 短路电流与列车运行电流示意图

2牵引变电所内直流保护的配置

牵引变电所内的直流保护系统必须在系统发生故障时快速、准确地切除故障,同时又要避免列车正常运行时一些电气参数的变化引起保护装置误跳闸。后备保护的存在增加了故障切除的可靠性,同时也增加了与主保护配合的难度,所以保护的配置也不宜过多。不同的牵引变电所其电气特性不同,运行要求不同,所以保护装置的整定值不同,甚至保护的配置亦不相同。通常,牵引变电所内的直流保护安装于开关柜中,其可能的配置如下:

A.馈线柜(图1中对应211,212,213,214开关柜):

a.大电流脱扣保护(over-current protection);

b.电流上升率保护(di/dt protection);

c.定时限过流保护(definite-time over-current protection);

d.低电压保护(under-voltage protection);

e.双边联跳保护(transfer intertrip protection);

f.接触网热过负荷保护(cable thermal overload protection);

g.自动重合闸(automatic re-closure)。

B.进线柜(图1中对应201,202开关柜):

a.大电流脱扣保护(over-current protection);

b.逆流保护(reverse current protection)。

C.负极柜:

a.框架保护(frame fault protection)。

D. 轨道电压限制装置

a. 轨道电压限制保护

3主要保护的原理

牵引变电所内的直流系统的故障形式主要有:短路故障,过负荷故障,过压故障等等,最常见的也是危害最大的是短路故障。从本质上讲,短路故障有两种类型,一种是正极对负极短路,另一种是正极对大地短路。所内配置的多数保护都是为了切除前一种故障,框架保护则是为了切除后一种故障。

对于前一种故障,多数是由于架空接触网对钢轨短路所引起的,短路点离牵引变电所的距离决定了短路电流的大小。远端短路故障电流的峰值与列车启动时的电流峰值相近,甚至小于该电流,所以,远端短路故障电流与列车启动电流的区分,是牵引变电所直流保护的难点。另外,列车受电弓过接触网分段时,也会有一个峰值较高的电流出现。

图3是典型的近、远端故障电流与列车受电弓过接触网分段时的电流时间特性示意图。

以下介绍牵引变电所内的主要的直流保护的工作原理:

3.1 大电流脱扣保护

主保护,与交流保护中的速断保护类似,用以快速切除金属性近端短路故障。这种保护是直流断路器内设置的固有保护,没有延时性,它通过断路器内设置的脱扣器实现。当通过断路器的电流超过整定值时,脱扣器马上动作,使断路器跳闸。

一般来说,该保护的整定值要通过计算和短路试验得出,整定值要比最大负荷下列车正常启动的电流大,也要比最大短路电流小。

3.2 电流上升率保护

广泛使用的中远端短路主保护,它在多数情况下能正确区分列车正常运行电流和中远端短路电流,主要用于切除大电流脱扣保护不能切除的故障电流较小的中、远端短路故障,其工作原理如下:

电流上升率保护触发的条件是唯一的,即当电流的变化率di/dt>A,A是电流上升率的定值。满足触发条件di/dt>A时,电流上升率保护启动(该时刻记为t)。该保护启动后,产生跳闸的条件只要在以下两个条件中满足任意一个即可:

1.经过时间T1后,di/dt仍然大于B;

2.经过时间T2后,ΔI>L,ΔI=I t+T2 -I t;

如图3,在t时刻,列车受电弓过接触网分段后重新与接触网连接,此时电流的绝对数值I t较小,而di/dt 由于充电效应则较大,短路电流和列车运行电流均可满足启动条件,但经过适当的延时后,对于列车运行电流来讲,由于充电效应维持的时间很短,电流已经经过了一个从很小到数倍于正常电流,再到正常电流的过程,此时,di/dt通常是负值,ΔI也很小,所以出发跳闸的条件一个也不满足,电流上升率保护返回;对于短路电流来讲,此时,短路仍然存在,只要距离不是非常远,通常一定满足条件1和2,致使保护跳闸。

单列列车t时刻启动时,可能di/dt>A,保护启动,但经过时间T1后,di/dt

值得注意的是,定值T1、T2、A、B、L的选取非常重要,它决定了保护动作的正确性和快速性。

3.3 定时限过流保护

电流上升率保护的后备保护,通常该保护的电流整定值Idmt较小,一般按馈线最大负荷考虑,以达到切除远端短路故障的目的,其动作延时Tdmt也较长,以避开列车启动的时间,广州地铁二号线牵引供电系统中该保护设计的Idmt为3000A,延时Tdmt为30秒。

当电流第一次超过定值时,保护启动,在延时Tdmt的时间段内电流一直超过定值,可认为是短路电流,触发跳闸,如果中间任一时刻电流没有超过定值,保护自动返回,等待下次启动。

3.4低电压保护

其作用和定时限过流保护一样,作为电流上升率保护的后备保护,一般与其它保护形式互相配合,不作为单独的保护使断路器调跳闸。它的整定值U min及延时Tdmt必须列车正常运行时的运行情况互相配合,应考虑最大负载下列车的启动电流和启动持续时间,还要考虑在一个供电区内多部列车连续启动的情况。

当发生短路故障时,直流输出电压迅速下降很多,当输出电压

3.5双边联跳保护

对于采用双边供电的接触网,它是广泛使用的一种保护手段,正如上文所介绍,在一个供电区内的接触网由两个变电所对其供电的,当其中一个所的直流馈线断路器因为某些保护跳闸的同时,还会发出联跳指令,使为同一个供电区供电的直流馈线断路器都跳闸。

它能切除故障电流特别小的远端短路故障,跳闸命令是由感知到较大近端短路故障电流的相邻站发出的。只要给一段接触网供电的两个牵引站有一个正确跳闸,另一个立刻也会跳闸,因而可靠性很高,确保满足GB50517-92<<地下铁道设计规范>>的第8.2.21条“在事故状态下接触网短路电流的保护,应保证单边供电接触网区段一条馈线的开断和双边供电接触网区段两条馈线的开断”。双边联跳保护的原理如下:

图2显示了一条接触网的两段,左边一段由牵引变电所A和B(简称A站和B站,下同)供电,右边一段则由B站和C站供电,当短路点发生在靠近A站的c位置时,A站的大电流脱扣保护首先动作,而B站则由于短路电流小等因素,大电流脱扣和di/dt等保护均无法动作,位于A站的双边联跳保护则发出联跳命令,将B站的213开关跳开。当B站退出运行时,则B站越区隔离开关2133合上,双边联跳保护根据B站2133的位置判断另一端是由C站213开关供电,跳闸的对象则为C站213开关。

3.6 框架保护

框架保护适用于直流设备的正极对机柜外壳(与大地相连)或接触网对架空地线短路时的情况。

如图4所示,在正常无短路状态下,钢轨(负极)与地的绝缘良好,几乎没有漏电流通过A点,当故障f1发生时,即直流设备的正极对机柜外壳短路时,故障电流I f1由正极通过A点,经泄漏电阻R l回流至负极,框架保护检测位于A点的机柜外壳对地的漏电流I f1,超过整定值则迅速动作。通常,在地和负极之间还安装一个排流柜,当排流柜投入运行时,其等效电阻值远小于R l,I f1大大增加,这样,即使钢轨(负极)与地的绝缘非常良好,泄漏电阻R l非常大,由于排流柜提供了漏电流I f1的通道,大大提高了框架保护动作的灵敏性。

当故障f2发生时,即接触网与架空地线发生短路时,由于A点离故障点较远,故漏电流较小,检测A点漏电流不能检出故障,此时框架保护检测外壳和负极之间的电位差。在正常无短路状态下,外壳和负极之间的电位差很小,故障f2发生时电位差迅速变得很大,框架保护可以迅速动作。而对于正极对机柜外壳短路的情况,若未投入排流柜,钢轨(负极)与地的绝缘亦很好,漏电流可能不足以启动框架保护,但电压检测元件则可使之迅速动作。

通常,电流检测元件作为框架保护的主保护,电压检测元件作为后备保护。

框架保护动作的结果是:迅速跳开本站内所有的直流开关、交流侧进线开关及邻所向本区段供电的直流开关,并需由人工复归后方可重新合上开关;

3.7轨道电压限制保护

轨电位限制装置控制

一控制原则

规电轨电位限制装置的控制分两种,一种是通过检测轨道电压实现,另一种是通过人工施加试验电压实现,如下图:

正常运行,轨电位限制装置检测轨道和大地之间的电压,该电压经过V11模块整流后施加给R10;而人工施加的试验电压,是通过S24旋纽把交流220V电压经过V12整流模块整流后施加给R10。F21、F22继电器分别检测R10上的电压,当该电压上升到92V时,经过一定的延时(0.5秒),F21继电器动作,发出合闸命令;当电压上升到150V时,F22继电器动作,发出合闸命令。由F21继电器动作使断路器合闸的方式我们称为“一段动作(U?)”,由F22继电器动作使断路器合闸的方式我们称为“二段动作”(U??)

二、控制过程

1.合闸

合闸的原则是想尽办法让合闸继电器K02受电,使由它驱动得断路器合闸线圈得电,从而使断路器合闸。

正常运行时,断路器处在“分闸”位置,K01继电器的常闭接点(1、2)闭合,使K83继电器受电,它的常开接点(15、18)接通。因此当F21继电器延时动作后,11、14这对接点接通,使合闸继电器K02得电,断路器合闸。当继电器F22动作后接通11、14接点,也能使断路器合闸。

但是,它们之间有一定的区别:如果是因为F21动作从而使断路器合闸,那么延时10秒后断路器会自动分闸,在规定的时间内反复三次,断路器合闸不再分开;如果是因为F22继电器动作从而使断路器合闸,,此时F22会闭锁分闸回路,使断路器不会延时分开。

2.分闸

断路器分闸的原则是使分闸继电器K01受电,使由它驱动的断路器分闸线圈得电,从而使断路器分闸。

当断路器合闸后,断路器的辅助接点(S1的23、24)闭合,使继电器K81受电,经过10秒的延时后,继电器动作,该继电器的15、18接点闭合,而继电器K84的常闭接点接通,因此分闸继电器K01受电,使断路器分闸。

3.8 接触网热过负荷保护

接触网热过负荷保护,其保护的目的是消除热过负荷故障,而非短路故障,其工作原理主要是根据接触网的电阻,接触网上流过的电流,计算出接触网的发热量,从而再根据接触网的热负荷特性及环境条件推算出接触网的电缆温度。当测量的电缆温度超过T alarm给出报警,超过T trip则跳开给该接触网供电的直流开关。开关跳开后,电缆逐渐冷却,当温度进一步下降,低于T reclosure,则重新合上直流开关。图5给出了接触网热过负荷保护动作的时序图。

图4 正极对地短路故障示意图图

5 接触网热过负荷保护动作时序图

4存在的问题

4.1 关于多辆列车短时间内相继启动

在接触网的同一供电区段内,若在短时间内出现两辆/多辆列车相继启动,第一辆列车启动引起电流上升率保护或定时限过流保护启动,而另一辆列车的启动恰巧引起电流上升率保护或定时限过流保护跳闸,这种可能性在理论上是存在的。至于解决的方案,英国ENOTRAC公司的观点认为,人工智能或神经元网络可能是最佳的解决办法,具体的实施方法尚不得而知。

4.2 关于小电流短路故障

小电流短路故障主要是由于故障点距离牵引所很远,或者,短路点的电弧大引起电阻也增大。两者皆可导致以上介绍的各种保护均无法正确动作。当短路点靠近其中一端的牵引所时,近端短路电流往往较易检测,近端牵引所跳开本所开关并联跳邻所开关;但若短路点位于相邻两个牵引所中间的接触网上,可能发生两个牵引所的保护均无法检测小电流短路故障的问题。对于两个牵引所距离太远的情况,可以从设计上避免;而对于大电弧的情况,笔者认为需要对电弧的特性进行大量的研究,从而给带电弧的电流建立精确的数学模型,使其能够正确地被保护装置所识别。

4.3 关于框架保护的选择性

框架保护面临的是小电流接地故障,它易于感知,却无法象大电流短路故障那样易定位。如图1所示,当接地点位于整流器出口的A位置时,只需要跳开交流进线开关105和直流进线开关201即可;当接地点位于B位置时,只需要跳开所有直流开关;当接地点位于C位置时,只需要跳开直流馈线开关214并联跳右邻站的直流馈线开关213(如图2)。但由于框架保护的电压和电流检测原理都无法给故障定位在A点、B 点还是C点,所以选择性较差。小电流接地故障的定位一直是个难题,如同三相交流中性点不接地系统的单相接地故障一样,寻找准确的定位方法还需要进一步的探索。

5结论

目前,地铁直流牵引变电所内配置的直流保护,基本上能够快速切除大多数短路、接地故障,但仍然存在一些世界性的难题。国内保护设备制造商完全有能力制造出目前广泛使用的这些直流保护。

地铁变电站PLC自动化系统设计

地铁变电站PLC自动化系统设计 用PLC来实现地铁变电站自动化的RTU功能,能够很好地满足“三遥”的要求。本系统采用了Modicon Quantum系列PLC,来实现变电站自动化的RTU功能。 1 引言 地铁的供电系统为地铁运营提供电能。无论地铁列车还是地铁中的辅助设施都依赖电能。地铁供电电源一般取自城市电网,通过城市电网一次电力系统和地铁供电系统实现输送或变换,然后以适当的电压等级供给地铁各类设备。 地铁全面采用变电站自动化设计,由于变电站数量多、设备多,在加上其完善的综合功能,信息交换量大,而且要求信息传输速度快和准确无误。在变电站综合自动化系统中,监控系统至关重要,是确保整个系统可靠运行的关键。 变电站自动化系统,经过几代的发展,已经进入了分散式控制系统时代。遥测、遥信、遥控命令执行和继电保护功能等均由现场单元部件独立完成,并将这些信息通过通讯系统送至后台计算机系统。变电站自动化的综合功能均由后台计算机系统承担。 将变电站中的微机保护、微机监控等装置通过计算机网络和现代通信技术集成为一体化的自动化系统。它取消了传统的控制屏台、表计等常规设备,因而节省了控制电缆,缩小了控制室面积。 2 地铁变电站自动化系统组成 在本地铁变电站自动化系统设计中,采用分层分布式功能分割方案。

系统纵向分三层,即变电站管理层、网络通讯层和间隔设备层。分层式设计有利于系统功能的划分,结构清晰明了。系统采用集中管理、分散布置的模式,各下位监控单元安装于各开关柜内,上位监控单元通过所内通信网络对其进行监视控制。变电站自动化系统需要对35kV 交流微机保护测控装置、直流1500kV牵引系统微机保护测控装置、380/220V监测装置、变压器及整流器的温控装置、直流/交流电源屏等设备进行监控和数据采集。 由于可编程序控制器技术经过几十年的发展,已经相当成熟。其品种齐全,功能繁多,已被广泛应用于工业控制的各个领域。用PLC来实现地铁变电站自动化的RTU功能,能够很好地满足“三遥”的要求。本系统采用了Modicon Quantum系列PLC,来实现变电站自动化的RTU功能。Quantum具有模块化,可扩展的体系结构,用于工业和制造过程实时控制。对应于变电站的电压等级和点数的多少,可以选用大、中、小型不同容量的PLC产品。 随着当地保护装置功能的日益强大,可以通过与保护装置的通讯来实现遥控和遥信功能。一些特殊要求的情况下,采用DI、DO、AI模块来实现遥控和遥信。使用PLC的DI模块来实现遥信、用PLC的DO模块来实现遥控、用PLC的AI模块来实现遥测、用PLC的通信功来完成与微机保护单元的通讯。利用PLC的各种模块可以很方便的实现“三遥”基本功能。 3 地铁变电站自动化系统设计 3.1 系统结构

供配电系统的设计毕业论文

供配电系统的设计毕业论 文 目录 摘要 (2) 第一章绪论 (3) 1.1 供配电所设计的意义 (3) 1.2 供配电所设计的要求 (3) 1.3 本文的主要容 (4) 第二章全厂设计资料 (5) 第三章负荷计算和无功补偿 (8) 3.1 负荷计算的目的和意义 (8) 3.2 负荷计算 (8) 第四章主接线的选择 (12) 4.1 接线方案的选择 (12) 4.2 主接线的选择及确定 (12) 第五章短路电流计算 (15) 5.1 短路电流计算 (15) 5.2 短路电流计算结果 (17) 第六章全厂主设备的选择 (19) 6.1 电气设备选择 (19) 6.2 所选设备参数 (20) 第七章防雷与接地 (21) 7.1 防雷设备 (21) 7.2 接地装置 (21)

结论 (22) 参考文献 (23) 致谢 (24) 第一章绪论 1.1 供配电所设计的意义 工厂供电设计的任务是保障电能从安全、可靠、经济、优质、地送到工厂的各个部门。众所周知,电能是现在工业生产的主要能源和动力。是用其它形式能转化为电能,电能又易于转换为其它形式的能量以供应用。电能的输送的分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化。因此,电能在现代工业及整个国民经济生活中应用极为广泛。 电能在工业生产中的重要性,并不在于他在产品成本中或投资总额中所占的比重多少,而在于工业生产实现电气化以后可以大大增加产量,提高产品质量,提高劳动生产率,降低成本。因此,一个稳定可靠的供配电系统对发展工业生产,实现现代化的工业,具有十分重要的意义。由于能源节约是工厂供电工作的一个重要方面,而能源节约对于国家建设经济性社会具有更重要的战略意义。因此在当今全球资源紧的局势下,一个好的供配电系统设计,对于节约能源、保护环境、支援国家经济建设,也具有重大的作用。 1.2 供配电所设计的要求 工厂供电工作要更好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作,就必须达到一下基本要求: 1、工厂供电设计必须严格遵守国家的有关法令、法规、标准和规,执行国家的有关方针、政策,如节约有色金属,以铝代铜,采用低能耗设备以节约能源等。 2、必须从全局出发,按照负荷的等级、用电容量、工程特点和地区供电规划统筹规划,合理确定整体设计方案。 3、工厂供电设计应做到供电可靠、保证人身和设备安全。要求供电电能质量合

浅谈地铁低压配电与照明的配电箱

浅谈地铁低压配电与照明的配电箱 摘要:地铁低压配电系统是地铁供电网络中全方位的服务功能,承担了除给电动车组供电以外给所有低压负荷提供电能的重要任务,保证所有动力照明设备配电的安全、可靠、有效、经济。本文具体对地铁低压配电和照明配电箱进行了简要论述。 关键词:地铁;低压配电;照明;配电箱 地铁低压配电系统是地铁供电网络中全方位的服务功能,承担了除给电动车组供电以外给所有低压负荷提供电能的重要任务,保证所有动力照明设备配电的安全、可靠、有效、经济。本文具体对地铁低压配电和照明进行了简要论述。主要是对以往地铁工程中出现的问题和积累的经验进行了总结,并提出了预防和解决问题的一些方法。 地铁工程中,配电箱(柜)数量和种类都相对较多,是电气系统乃至车站整个系统的关键设备之一,因此配电箱(柜)产品质量的好坏及安装质量的好坏将直接影响地铁工程的功能和安全。下面就针对地铁工程的特点,简要阐述在配电箱(柜)选型安装等各个环节中需要注意的几个问题。 一、配电箱选型 配电箱选型主要从以下几方面进行考虑 1、箱体材质 箱体材质主要分为普通钢制、不锈钢、聚碳酸酯等材质,根据设计要求及配电箱不同的工作环境应该采用不同的材质。 1)普通钢制:在封闭房间及相对干燥的工作场所一般采用普通钢制。比如配电间、环控电控室、环控机房等。 2)不锈钢:相对潮湿的场所宜采用不锈钢材质。比如消防泵房、污废水泵房、排水泵房等,室外一般也采用不锈钢材质。有时考虑到观感,公共区也采用不锈钢材质。 3)聚碳酸酯:主要是耐腐蚀、耐酸碱,一般在区间隧道采用该材质。 需要特别注意的是,同一房间或同一部位,配电箱材质应尽量统一、避免同一房间内出现不同材质的配电箱,以免给人观感上不协调。 公共区配电箱若为控制箱即设计有指示灯、按钮、显示屏等,为防止乘客误动,配电箱外面应加一道便于观察的可视门,如果设计为非控制箱则不必加可视门,像自动扶梯、垂直电梯配电箱就不必加可视门。

环网供电技术地铁供电中的应用 程敏

环网供电技术地铁供电中的应用程敏 发表时间:2019-07-08T11:52:37.463Z 来源:《电力设备》2019年第4期作者:程敏 [导读] 摘要:近年来,随着城市建设的高速发展,城市人口不断增加,城市的交通拥挤问题也越来越严重,因此,越来越多的城市正在扩建或者准备建设地铁,环网供电技术是地铁正常运行的供电保障本文先对环网供电技术进行解释,然后分析常见的地铁供电方式,接着对环网供电在地铁中的应用及其可靠性进行探讨。 (中国电建集团江西省水电工程局有限公司湖南省醴陵市 412200) 摘要:近年来,随着城市建设的高速发展,城市人口不断增加,城市的交通拥挤问题也越来越严重,因此,越来越多的城市正在扩建或者准备建设地铁,环网供电技术是地铁正常运行的供电保障本文先对环网供电技术进行解释,然后分析常见的地铁供电方式,接着对环网供电在地铁中的应用及其可靠性进行探讨。 关键词:地铁;供电环网电缆敷设 1 前言 地铁的安全稳定运行离不开供电系统的支持。一般来说,地铁的供电系统就是将城市电网的电能输送到各个地铁站,由于不同的供电系统存在较大差异,所以电网供电方式也存在不同,所以包括集中供电、分散供电以及混合供电等。由于集中供电系统可以保证供电的可靠稳定,而且还可以减少运营管理成本,所以成为城市地铁供电系统的主要工作方式就是集中供电系统。通过地铁供电系统自建的主变电所将城市的电网电能转换为地铁供电所需电能,并且利用环网电缆将电能传输到各个地铁站。由于地铁站之间的线路均位于地下而且区间结构非常复杂,所以在环网电缆敷设的过程中经常会遇到许多特殊的问题,必须要加以深入研究。 2 环网供电概述 (1)环网供电的概念。城市的地铁主干线一般采用环形线路,这种线路是一个连续的配电线路,能够形成闭合的环形电路,它的起点和终点是在同一组母线上连接的,而为了增加运行过程中的灵活性,往往在每个区段内都会设置各自的断路器,通常情况下,我们采用分段断路器将母线分为两段,再将两个端口连接在线路保护器的两端,线路保护器是一种纵差保护电路,这种保护器在线路发生故障时,能够通过保护器将故障电路从主线路中隔离出来,而不会影响到其他正常部分的电路工作。 (2)供电方式。环形电网可以划分为两种运行形式,即开环运行和闭环运行,而地铁中的供电系统主要是以闭环运行来展开的。这样可以将闭环供电不间断供电的特性发挥出来。而对于继电保护装置来说,由于其在装置的整定方面存在较大的困难,所以通常采用开环运行。如果严格按照规定,对于开环点的选取是要经过一系列的计算和设计之后才能够确定的,但是在实际的工作过程中,我们是选取环网干线的中间位置来展开开环点的设置,如此一来,开环点就可以很好地将故障点隔离开来,现如今,我们国内的中压(10~35kV)环形电网都采用的是开环的运行模式。 3 常见的地铁供电方式 3.1采用集中式的供电方式 由于地铁线的长度过长,而电容量又受到限制,所以就必须在地铁站内建立专门的供电站,这一供电站要承担向地铁中的中压环形电网供电的责任。这种供电方式的好处是:供电不容易受到外界因素的影响,具有较高的可靠性;供电站内有专用的载调压变压器,能够为一些专用电路进行供电,供电的质量比较好;进行调度管理时,具有较强的自由度,当具有了优良的调度管理体系之后,地铁供电站所具有的高效性和可靠性的效能就可以最大的发挥出来;该供电方式的检修工作相对来说比较简单,所涉及到的建设工程量比较小,比较容易实现。而缺点在于:投入的资金量比较大,对于整个地铁站内供电系统的调度统筹要求比较高。 3.2采用分散式的供电方式 由于地铁沿线所引入的城市电网电源比较多,而区域内的变电所对地铁车站内采用直接降压的方式来完成供电的供电方式。这种供电方式的优点:投入的资金数量比较少,能够方便的实现城市电网的同意规划和管理。而所存在的缺陷就是:正常的供电过程容易受到其他的外界因素影响。由于与城市电网的连接较多,这就加大了城市电网统一规划和管理的难度,如果出现供电故障则难以获取较为合适的解决办法;而整流机在工作的时候会产生大量的告辞谐波,这也会对城市电网的正常运行产生较大的影响。 3.3采用混合式供电方式 将集中式和分散式的供电方式进行有效的结合所形成的一种全新的供电方式。其主要有两种形式:①将集中式和分散式的供电方式进行并联,然后在整个地铁环线的供电网中,一部分采用集中式供电,另一部分采用分散式供电;②对地铁站的中压环线中主要采用集中供电的办法进行供电,而将集中供电站变为分散供电站的取电点,从而建立起分散式供电站的完整体系。 4 环网供电技术在地铁供电系统中的应用 4.1环网接线 我们常说的“N-1安全原则”是电网在供电过程中必须满足的一个基本原则,并且在实际工作中我们是通过对电网的接线方式和设备的运行率的调整来完成电网的安全运行的。传统的电网接线方式是单环网的接线方式,这种方式的供电网络,一旦出现线路故障,就必须花费大量的时间和经济,进行人工倒闸、维修,然后才能够恢复供电,基于此,我们可以发现这种方式的供电手段的稳定性相对来说较差,根本不能满足现阶段铁路运行的基本需求。而在地铁供电系统采用了双环形的供电网络之后,由于有两个独立的平行电源,即便是一个电源出现了问题,也不会影响到另一个备用电源的正常供电,这种采用并联方式将两个电源或者一个电源的不同母线连接起来的接线方法可以很好的保证地铁供电系统的稳定性。当整个供电系统正常工作时,所有的开关都处于打开的状态,而当某一路段的供电线路出现问题时,即刻通过开关的转换,将线路负荷转移到另外一个供电线路上,以保证地铁供电系统的正常。由此可见,利用合并开关的方式,将线路的故障控制在某一个封闭的单元内部,而不影响其他路段的正常供电,这种方式可以极大地提升供电的可靠性。这种始终留有备用线路的接线方式可以保证,当工作线路出现问题时,可以采用备用线路完成正常的供电任务,如此一来,将地铁供电的可靠性提升到了一个全新的层面之上,更提升了线路的综合利用率。 4.2地铁中压交流环网系统 为了达到调度方便,运行稳定的目的,在设计供电网络时应当做到以下几点:(1)线路的连接一定要尽可能的简单,运行过程要尽量灵活可靠,并具有较高的经济性;(2)对于供电网络的线路容量设计时,应当留有一定的容量空间;(3)地铁供电系统的线路应当按照

地铁牵引供电系统

地铁牵引供电系统保护 来源:中国论文下载中心 [ 08-12-11 10:20:00 ] 作者:黄德胜编辑:studa0714 【摘要】作者根据自己的实践经验,提出牵引变电所两种不可或缺的保护:牵引变电所内部联跳、因馈线开关没有远后备保护,故应设开关失灵拒动保护。迅速切断电源是一切继电保护的最终目的,直流电路尤其如此。为迅速切断电源,在短路电流上升过程中将其遮断,是直流保护应当遵循的基本原则。文中分析了三种保护上“死区”形成的原因,为使馈线开关保护更加完善,直流馈线应设开关失灵拒动保护,以使列车运行更加安全。 【关键词】牵引变电所内部联跳馈线开关开关失灵拒动短路电流死区。 一、概述 地铁直流牵引供电系统的保护,可以分为两部分:牵引整流机组保护和直流馈线保护。牵引供电系统保护的最大特点就是系统的“多电源”和保护的“多死区”。所谓多电源, 既当牵引网发生短路时, 并非仅双边供电两侧的牵引变电所向短路点供电, 而是全线的牵引变电所皆通过牵引网向短路点供电。所谓多死区, 是因牵引供电系统本身构成的特点和保护对象的特殊性而形成保护上的“死区”。任何保护的最基本要求就是当发生短路故障时, 首先要迅速“切断电源”、“消除死区”, 针对这两点, 牵引供电系统除交流系统常用的保护外, 还设置了牵引变电所内部联跳、牵引网双边联跳、di/dt △I 等特殊保护措施, 这就可以完全满足牵引供电系统发生故障时切断电源、消除死区的要求。对任何供电系统的继电保护而言, 可靠性总是第一位的, 而对直流牵引供电系统, 速动性可以看成和可靠性是同等重要的, 所以直流侧保护皆采用毫秒级的电器保护设备, 如直流快速断路器、di/dt △I 保护等, 目的就是在直流短路电流上升过程中将其遮断, 不允许短路电流到达稳态值。至于选择性, 在直流牵引供电系统中则处于次要位置, 其保护的设置应是“宁可误动作, 不可不动作”。误动作可以用自动重合闸进行矫正; 不动作则很可怕, 因为牵引供电系统短路时产生的直流电弧, 如不迅速切断电源,电弧可以长时间维持燃烧而不熄灭; 而交流电弧则不同, 其电压可以过零而自动熄灭。 关于地铁牵引供电系统的常用保护,已为业内人士所熟知,这里不再多作介绍。下面谈一下容易被人忽视的两种保护。 二、引变电所内部联跳保护 牵引变电所内部联跳的定义:当发生短路故障引起两台整流机组直流引入断路器或交流断路器同时跳闸时,应迅速跳掉全部直流馈线断路器,以及时切断电源。见图(01)

城轨供电系统课程设计分配表及指导手册

城市轨道交通供电系统课程设计 学院:自动化学院适用专业:电气工程及其自动化 课程设计名称:城市轨道交通供电系统课程设计课程代码: 学分数:1 学时数:16 一、课程设计目的 本课程设计是学生在学完《城市轨道交通供电系统》课程之后进行的一个综合性的教学实践环节。通过本课程设计,一方面使学生获得综合运用学过的知识进行城市轨道交通供电主变电所、牵引变电所、降压变电所的设置、主接线的设计、相关的计算、各主要元件的选型等的基本能力,另一方面能巩固与扩大学生的电气综合设计知识,为毕业设计做准备,为后续课程的学习及今后从事科学研究、工程技术工作打下较坚实的基础。 通过本课程设计,学生能运用电气基础课程中的基本理论和实践知识,正确地解决城市轨道交通供电主变电所、牵引变电所、降压变电所的相关设计等问题,提高学生的设计能力,学会使用相关的手册及图册资料: 1、了解城市轨道交通供电系统的构成、功能; 2、掌握外部电源的方案与确定原则; 3、掌握主变电所、牵引变电所、降压变电所的构成与设置方法,掌握主接线的设计及相关的供电计算; 4、学习主变电所、牵引变电所、降压变电所相关设计。 二、课程设计的要求 学生要按照课程设计指导书的要求,根据题目所给原始参数进行设计。本课程设计的基本步骤是: 1、能根据题目提供的已知条件,按照地铁设计规范及相关的设计标准进行设计。 2、通过学习应熟悉城市轨道交通供电设计的一般规定; 3、正确理解城市轨道交通供电设计的基本任务; 4、掌握城市轨道交通一次供电系统设计的步骤;熟悉相关的供电计算; 5、掌握牵引供电计算、负荷计算以及短路类型、短路点的确定; 三、课程设计的主要内容 本课程设计主要内容如下: 1、杂散电流的腐蚀防护设计; 2、变电所平面布置图的画法; 3、变电所主接线图的画法;

浅谈地铁低压供电系统故障检修及处理 罗海粟

浅谈地铁低压供电系统故障检修及处理罗海粟 发表时间:2018-12-19T15:52:45.633Z 来源:《基层建设》2018年第31期作者:罗海粟 [导读] 摘要:地铁最为人们出行的绿色首选,人们对其安全十分重视,在地铁里有许多用电设备,其中低压配电设备十分复杂,如何设计低压配电系统,对地铁供电安全性和可靠性影响很大。 成都地铁运营有限公司成都 610000 摘要:地铁最为人们出行的绿色首选,人们对其安全十分重视,在地铁里有许多用电设备,其中低压配电设备十分复杂,如何设计低压配电系统,对地铁供电安全性和可靠性影响很大。只有优化配电方案,才能减少能源消耗,降低资金投入,并实现系统维修操作性的提升。探讨地铁低压供电系统故障检修及处理措施。 关键词:地铁;低压供电系统;故障检修;处理 引言: 地铁机电设备的运行都需要通过低压供电系统提供电源,这些机电设备运行的稳定性、可靠性以及安全性,在很大程度上取决于低压供电系统。一旦地铁低压供电系统有故障问题发生,就会中断电力的供应,进而导致地铁运输全部瘫痪。为此,为了确保城市地铁建设与发展,就必须对地铁低压供电系统稳定性的提升予以重视与研究,并针对此提出有效的故障检修与处理方法。 1应急电源照明装置故障 通常情况下,在立式双备份控制器启动后,如果发现设备运行失效或者不正常,大多是因为没有采用正确的插接方式,因此,在启动设备后,一旦发现设备运行失效,或者运行正常但有中断问题出现时,就要采取以下措施:选取两个与设备配套的螺钉,然后将其固定在机框上,检查直流输入线,对接触情况进行观察与判断,并及时改正接触不良或者接反等问题。或者接反了直流输入。因此在发现输出中断问题时,大致可以确定有接触不良等问题出现在了设备当中,或者是因为电压过低,如此就会导致欠压保护问题的出现。在控制模块中,如果指示灯反应正常,但是有警报声出现在控制器中,那么就要对系统进行全方位的检查,关注有没有负载情况的出现。如果是因为直流问题造成的故障,就要检查其输入电压。控制模块指示灯无法指示相应的故障,有的故障查看只能够通过上位机通信进行操作。这一故障主要是因为负载或直流问题造成的,例如负载过载或者短路,直流输入欠压或过压等。当故障发生于指示灯控制模块时,并有声光警报的出现,那么就要对系统的逆变模块进行检查,如果内部故障指示灯反应正常,为了使控制模块不再对模块故障进行指示,就要将该模块拔出,然后对其进行更换,系统会对新的逆变模块进行检测,这一过程大约需等待1min,如果系统中任一模块有故障,就会指示出这些模块故障。当控制模块一直发出警报时,上下控制板频繁切换,并且存在输出缺失现象,此时就要对直流输入电压的情况进行检查,如果为DC176~264,则说明直流输入电压没有异常。当有欠压或过压现象出现在直流中,控制模块就会发出持续性的警报。如果存在直流欠压问题,为了确保蓄电池组过放电得到避免,应将输出切断。如果控制模块没有警报发出,上下控制板却在没有输出的情况下具有较高的切换频率,那么就要更换控制模块,如果依然没有解决问题,就要检查机框内的排线情况。 2.2400V低压开关柜故障 一台变压器失电后,母联断路器未投入:可将母联断路器摇入工作位置(母联断路器不在工作位置,任何时候摇动断路器,必须确认该断路器处于分闸状态;转换开关置于就地或手动状态,断路器摇入工作位置后,将转换开关置于自动位置);将转换开关扭至自动位置(Ⅰ路进线断路器控制转换开关未置于自动位置,扭至自动位置后母联断路器4秒内会合闸);若母联柜指示灯未亮,则FU熔断器熔断,更换熔断器(母联断路器控制回路失电,更换熔断器时,须将转换开关置于手动状态,更换完成后将转换开关置于自动位置);Ⅰ路进线柜仪表室内PLC有红灯亮,将其控制电源插头(24V+、24V-、PE三根线)拔出,等待待10秒插回原处(PLC死机,拔、插过程中须将转换开关置于手动状态,完成后将转换开关置于自动位置)。变压器恢复供电后,进线断路器不自复:将转换开关扭至自动位置;Ⅰ路进线柜仪表室内PLC有红灯亮,将其控制电源插头(24V+、24V-、PE三根线)拔出,等待待10秒插回原处;更换控制回路熔断器。手动电气状态下合不上闸:正常情况,手动电气合闸前检查电气闭锁(有其他断路器的电气闭锁未解除);更换合闸线圈(合闸线圈烧坏);将转换开关扭至手动位置(控制回路转换开关未置于手动状态);更换控制回路熔断器。手动机械状态下合不上闸:手动储能后再按机械合闸按钮(未储能,一般不允许手动机械合闸,母联断路器禁止机械合闸);机械故障(需摇出断路器查明原因,一般不允许手动机械合闸,母联断路器禁止机械合闸)。框架断路器跳闸后,合不上闸:复归机械信号按钮(信号未复归);合闸后,再次保护跳闸(故障未解除,禁止合闸)。塑壳断路器合不上闸:反时针旋转操作手柄至-45°后,重新合闸(跳闸后未复归);重新调整传动方轴的长度,使其插入操作手柄内,重新合闸(断路器的传动方轴未插入外部手柄);更换该断路器(断路器内部机械故障)。框架断路器电气状态下不能分闸:将控制回路转换开关置于手动或就地位置,重新分闸(控制回路转换开关未置于手动或就地位置);检查控制回路熔断器是否熔断,更换已烧坏的熔断器(控制回路失电);更换分励线圈(凡需开盖维修断路器时,必须将断路器本体移至地面,并释能后进行);断路器内部机械故障,拆除断路器查明原因(未查明原因前禁止操作)。指示灯不亮,指示灯与触摸屏显示不一致:更换熔断器;更换指示灯;更换辅助点或扩展继电器。 3防淹门控制柜故障 水位危险报警、防淹门关闭请求报警:对水泵房水位进行检查;控制防淹门控制柜触屏,将水位报警设置值调整为200cm,上涨速度报警50cm/s。如果因为区间水位信号、水位设定值错误而造成故障,要检查水位信息是否符合综合监控信息。信号系统同意关门报警:检查10KA继电器;检查防淹门是否保持正常的门体状态,对柜内接触器进行调整,确保1~6KM不能吸合。门体关闭报警:检查36KA继电器,找到故障原因,做相应处理。若是6SK行程开关触点出现故障,则要解决其问题。锁定装置状态丢失报警:将控制柜中的指示灯全部都关闭处理;检查2SK、4SK行程开关触点,如果存在问题要合理处理。检查43KA继电器线圈有无故障存在。防淹门故障报警:PLC死机后,将PLC重新开启。观察防淹门UPS有无报警。对UPS输出电压进行测量,若UPS故障则进行更换,从而为信号系统的稳定运行提供保障。防淹门离线报警:查找PLC中的故障,若死机则要重新启动PLC;检查防淹门UPS有无发出报警,对UPS输出电压进行检查;检查4QF吸合情况,以及其下端2FU保险有无被熔断。要根据故障采用相应故障,确保信号系统能够正常工作。 结语: 地铁安全运行关系千家万户,地铁低压供电系统的稳定、安全、可靠是地铁安全运行的重要保障,在设计时要充分考虑各个细节,在维护、检修时要小心谨慎,分析原因,查找故障源头,及时排除故障。

探析SCADA系统在地铁供电方面的应用价值

探析SCADA系统在地铁供电方面的应用价值 发表时间:2019-06-03T11:38:22.400Z 来源:《电力设备》2019年第3期作者:卢小彪 [导读] 摘要:SCADA 系统(Supervisory Control And Data Acquisition,综合监控和数据采集系统,又称为远动系统)贯穿于麦加轻轨铁路项目供配电系统的监视和控制部分,是提高供电可靠性及供电质量的重要保证,是提高电力调度水平和效率,实现电力调度自动化与现代化的重要依据,是保障地铁供电安全的关键环节之一。 (济南轨道交通集团第一运营有限公司山东济南 250000) 摘要:SCADA 系统(Supervisory Control And Data Acquisition,综合监控和数据采集系统,又称为远动系统)贯穿于麦加轻轨铁路项目供配电系统的监视和控制部分,是提高供电可靠性及供电质量的重要保证,是提高电力调度水平和效率,实现电力调度自动化与现代化的重要依据,是保障地铁供电安全的关键环节之一。 关键词:SCADA 系统;地铁供电;应用价值 1 SCADA 系统介绍 地铁供配电系统担负着向地铁各系统提供动力能源的任务。按照功能它可分为高压电源系统、牵引供电系统和动力照明供电系统。高压电源系统负责将城市电网高压电变为地铁牵引供电系统和动力照明系统所需要的电压,由主变电站组成;牵引供电系统负责轨道电动车辆运行的电能,由牵引所和接触网组成;动力照明供电系统提供车站和区间各类照明、扶梯、风机、水泵等动力机械设备电源和通信、信号、自动控制等设备的电源,由降压所组成。一般,我们习惯于按照变电站降压等级分类,即主变电站(BSS)、牵引所(TSS)、降压所(SSS)。SCADA 系统(Supervisory Control And Data Acquisition,综合监控和数据采集系统,又称为远动系统)贯穿于麦加轻轨铁路项目供配电系统的监视和控制部分,是提高供电可靠性及供电质量的重要保证,是提高电力调度水平和效率,实现电力调度自动化与现代化的重要依据,是保障地铁供电安全的关键环节之一。 2 SCADA 系统在地铁供电系统的应用价值 2.1 提高电力调度效率 在地铁运营过程中,若没有 SCADA 系统,则在电力调度工作中需要采用人工电话调度方式,而这种方式工作效率极低,送电时间一般在 85min 以上,对其他停送电作业效率造成了严重的阻碍。而采用 SCADA 系统后,可以利用 SCADA 系统自带远程遥控功能,实现全线路停送电卡片遥控,从而在25min 内实现停送电,有效提高了电力调度效率。 2.2 提高地铁运行经济效益 以某地地铁 1 号线为例,其内部供电系统具有 2 座110kV 主变电所,32 个车站变电所,2 个车辆段变电所及 2 个停车场变电所,共计38 个变电所。若该地地铁电力体系中没有 SCADA 系统,则变电所运行中必须配置值班人员,以每个值班点配置值班人员 6 人计算,共需值班人员 228 人,以每年年薪 8×10 4 元计算,每年可节省人力资源开支 1.824×10 7 元。 2.3 提高故障处理效率 在城市轨道交通供电体系中,SCADA 系统是非常重要的组成模块,对整体城市轨道交通的稳定运行有非常重要的作用。在地铁非正常运营阶段,电力调度人员可利用 SCADA 系统远程遥控功能,迅速调整地铁运行方式,保证电力资源正常供应,避免地铁供电长时间中断导致的地铁列车晚点。 3 SCADA 系统在地铁供电方面的应用模式 3.1 系统概况 某城市地铁于 2010 年开始引入电力 SCADA 系统,在2015 年完成了整体控制中心及 10 个 RTU 安装及验证工作,同时进行了 SCADA 系统试运行。基于该区域地铁用户的特殊性,相较于我国其他电网,该地铁中应用的 SCADA 系统在系统构造及功能方面具有诸多差异。 3.2 系统组成 该地铁供电体系中 SCADA 系统主要包括遥感通信、远程遥控、遥测数据分析、报警等模块。其中,遥感通信在地铁中主要分为位置遥感通信、维护遥感通信 2 个方面,针对不同信息的特点,可采取对应的信息处理措施。在位置遥感通信中,可通过模拟盘、遥控检查校核,获得各类开关状态的返讯,而维护遥感通信主要是针对地铁电力输送端口不同电气设备维护继电器动作进行返讯,以便保证系统检测信息的及时发出。 远程遥控主要是指变电站无人操作运作形式。在实际运行中,遥控功能主要为单步操作、紧急停电、顺序操作等不同的形式。其中,单步操作主要为电力输送枢纽任意开关的独立闭合或开启控制。顺序操作主要依据适当的排列组合形式,将1 个或 2 个以上的变电枢纽开关进行闭合、开启控制,紧急停电操作主要指供电故障发生后,由行车调度人员直接发出的断电操作控制信号。 相较于我国内部大型电网,地铁遥测数据较简单,主要为电压、电流 2 种模拟量信息的输入。利用数字式电度表经电平转换后,可向RTU 直接输入脉冲量。在 SCADA 系统内部遥测数据处理,主要在专门的方案图或场站图内,实时展示对应模拟量数值。同时通过模拟量越限报警限度的设置,可为终端模拟量预警提供有效的意见。 SCADA 系统中,报警体系主要为 CROMOS 报警,主要针对 RTU 现场相关报警信息及 SCADA 系统内软硬件故障信息,或通信网络故障风险,通过不同等级故障划分,利用域报警或行报警的方式,自动定义报警处理需求。 3.3 系统功能 在地铁供电方面,SCADA 系统主要功能为时钟同步控制、电力调度、电力监控等。其中,在时钟同步控制方面,SCADA 系统调度自动化主要站点可利用 2 个或多个 GPS 接收装置,引入高精密度时钟,在系统内部通过 NTP 实现调度自动化主要站点 SCADA 系统关联设备时钟同步。在某一事件发生后,地铁电力输送站点自动化系统会自动上传相关事件SOE 记录,并利用四线专线通道以 1250b/s 的波特率进行信息传输。在电力网络稳定运行的情况下,变电站自动化助战每帧报文长度约为 250 个字符,而在相关事件发生后,SCADA 系统可在2.0s 内接收到该事件 SOE 记录;而在地铁运行故障时,可以通过 10s 内输送大量短信息,可有效保证整体站点内部时钟系统时间同步。 电力监控主要是利用双以太网进行组态系统设置,由编程或操作人员以手动控制的形式进行服务器、前置通信机主备通道的自由切换。若在地铁电力系统运行中,出现某一网卡异常或台机推出,SCADA 系统可以依据前期状态监控自动调用备用设备或备用网卡,保证系统稳定运行。在具体应用中,SCADA 系统主要以 RS485 总线方式与监控终端相连,而就地监控模块则是采用 PLC 与变送器结合的形式,

地铁直流牵引供电系统馈线保护方法研究.

现代电子技术年第期总第期!通信与信息技术" 地铁直流牵引供电系统馈线保护方法研究 丁丽娜!韩红彬 西南交通大学电气工程学院" 摘 四川成都 #$%%&$’ 要(针对目前国内地铁直流馈线保护方法不是很成熟!本文介绍了地铁直流牵引供电系统中采用的几种直流馈线 保护方法!详细分析了大电流脱扣保护)*电流上升率及电流增量保护.过流保护.双边联跳保护.接触网热过负荷保,+*-护!自动重合闸保护的基本保护原理!并举例说明了如何通过对电流上升率!电流增量/和电流上升持续时间-的测量来区分故障情况和正常运行情况)为地铁馈线保护的配置提供了理论基础) 关键词(馈线0直流0保护0地铁 3 中图分类号(12&$45 文献标识码(6文章编号($%%&8&2%%:’%%5%&9" ;<=<>?@ABCD?BE<@EFBCGPQRS?>@EFBC LMTTUPLP=E

浅谈地铁供电系统的构成及形式

浅谈地铁供电系统的构成及形式 发表时间:2017-01-20T09:45:47.700Z 来源:《基层建设》2016年31期作者:李玉 [导读] 随着科学技术的发展,各大城市在大力建设地铁的同时,对供电系统的研究也不断深入。本文结合电气自动化在地铁中的应用,着重了解地铁供电原理,预防电力短路造成的安全事故,确保地铁安全运营。 深圳市地铁集团有限公司运营总部 摘要:地铁供电系统的安全是保障地铁车辆正常运行的基础。随着科学技术的发展,各大城市在大力建设地铁的同时,对供电系统的研究也不断深入。本文结合电气自动化在地铁中的应用,着重了解地铁供电原理,预防电力短路造成的安全事故,确保地铁安全运营。 关键词:地铁;供电;短路 1、地铁供电系统构成 根据功能的不同,地铁供电系统一般划分为以下几部分:外部电源;主变电所;牵引供电系统;动力照明系统;杂散电流腐蚀防护系统;电力监控系统。 1.1外部电源 外部电源是地铁供电系统主变电所接入的城市电网电源,其中形式分别有混合式供电、集中式供电、分散式供电等,而集中式通常是从城市电网110kV或66kV侧引入两回电源。比如北京地铁采用110kV外部电源,沈阳地铁采用66kV外部电源,但是必须至少有一回电源为专线。 1.2主变电所 主变电所的功能是接受城网高压电源,经降压为牵引变电所、降压变电所提供中压电源(通常为35kV或10kV),主变电所适用于集中式供电。主变电所接线方式为线变式或桥型接线。 1.3牵引供电系统 牵引供电系统的功能是将交流中压经降压整流变成直流1500V或直流750V电压,为地铁列车提供牵引供电,系统包括牵引变电所与牵引网,牵引网包括接触网与回流网。接触网有架空接触网(直流1500V)和接触轨(直流1500V或750V)两种悬挂方式,大多数工程利用走行轨兼作回流网;少数工程单独设置回流轨。 1.4动力照明供电系统 动力照明供电系统的功能是将交流中压(35kV或10kV)降压变成交流220/380V电压,为运营需要的各种机电设备提供电源。 1.5杂散电流腐蚀防护系统 杂散电流腐蚀防护系统的功能是减少因直流牵引供电引起的杂散电流并防止其对外扩散,尽量避免杂散电流对城市轨道交通主体结构及其附近结构钢筋、金属管线的电腐蚀,并对杂散电流及其腐蚀保护情况进行监测。 1.6电力监控系统 电力监控系统的功能是实时对地铁变电所、接触网设备进行远程数据采集和监控。在城市轨道交通控制中心,通过调度端、通信通道和变电所综合自动化系统对主要电气设备进行四遥控制,实现对整个供电系统的运营调度和管理。 2、地铁运营供电形式 地铁供电主要有第三轨供电和接触网供电。 2.1第三轨供电是在钢轨的左侧铺设一条特殊的“受流轨”,与轨道平行的第三轨,形状与钢轨相似,截面的形状亦为“工”字形,但体积小,直流电作为牵引动力。列车运行时靠车辆底部的电刷接触受流轨而传导电力。价格低廉,技术含量低,易于铺设,安全系数低。 2.2接触网供电,电网在列车上方,通过受电弓直接输入直流电,类似于电车。此法安全系数高,技术含量高,接触网铺设难度大,费用高。 3、为预防各种地铁电力故障,常采取馈线保护措施,形成自动化断电,从而降低损失。 3.1电力故障主要有短路故障、过负荷故障、过压故障等。 3.2针对电力故障所采取的馈线保护措施,主要有:大电流脱扣保护、电流上升率及电流增量保护、定时限过流保护、双边联跳保护、接触网热过负荷保护、自动重合闸保护等。 3.2.1大电流脱扣保护 大电流脱扣主保护被用于快速切除近端短路的故障,通常安装在断路器本体内。 工作原理为:假设列车在所有正常运行状况时的最大瞬时工作电流为Im,定值整定为I>KIm(其中,K为安全系数),一旦检测到瞬时电流超过定制,会立即跳闸,切断电源。 3.2.2电流上升率及电流增量保护 此馈线主保护使用比较广泛,它能切断近端短路电流,也能切除大电流脱扣保护不能切除的故障电流较小的远端短路故障。 工作原理为:电流上升率及电流增量保护由瞬时跳闸和延时跳闸两个原件并列组成,任何一个原件都可以直接跳闸。 3.2.3定时限过流保护 定时限过流保护有两个定值,启动电流I和延时时间T。当电流超过I时,保护启动,定时器也同时启动,在定时器时限未到达的这段时间内,若电流超过定制,则在定时器时限T到达后跳闸;反之,若电流回落至定值以下,保护返回。 3.2.4双边联跳保护 对于采用双边供电的接触网,应用比较广泛。对于同区间供电的两个变电站,由第一个感知到短路故障电流的站发出跳闸命令,跳开本站开关,同时发出联跳命令给联跳装置,再由联跳装置向临站发出跳闸信号,临站收到信号后,跳开开关。 3.2.5接触网热过负荷保护 本保护措施,主要是消除热过负荷故障,不一定是短路故障影响。 工作原理:根据接触网的电阻率、电阻率修正系数、长度、横截面积、电流,计算出接触网的发热量,从而根据接触网和空气的比热等热负荷特性及通风量的等环境条件,由公式给出接触网的电缆温度Tmax。当电缆温度超过Tmax时,则跳开该接触网空点开关,开关跳

电气工程及其自动化专业论文范文

学号: XXXXXXXXXXXXXXX 毕业论文(设计)说明书轨道交通供电系统的SCADA系统应用论文 学生××× 专业名称电气工程及其自动化 指导教师××× 网络教育学院

2011年 6 月 10 日 学号:XXXXXXXXXXXXXXX 华南理工大学网络教育学院毕业论文(设计)轨道交通供电系统的SCADA系统应用论文 ××× 指导教师:××× 网络教育学院 专业名称:电气工程及其自动化 论文提交日期: 2011年6月10日论文答辩日期: 2011年6月18日论文评阅人:×××××××××

华南理工大学网络教育学院专业本科生毕业论文开题情况表

目录 目录 (5) 摘要 (7) 第一章概述 (9) 1.1国城市轨道交通的发展 (9) 1.2轨道交通供电系统的重要性及其要求 (10) 1.2.1系统的总体功能 (10) 1.2.2系统的基本要求 (11) 1.3供电系统的构成 (12) 1.4 SCADA系统的角色和意义 (13) 1.5本设计的主要工作 (14) 第二章轨道交通供电系统介绍 (15) 2.1设备分类 (15) 2.2设备的功能和型式 (15) 2.2.1高压开关设备 (15) 2.2.2中压开关设备 (15) 2.2.3低压开关设备 (17) 2.2.4直流开关柜 (19) 2.2.5 微机保护装置 (19) 2.3本章小结 (21) 第三章 SCADA系统的设计 (22) 3.1概述 (22)

3.2一般要求 (22) 3.3系统构成 (23) 3.4监控对象 (25) 3.4.1 66~110KV设备 (25) 3.4.2主变压器 (26) 3.4.3 10~35KV设备 (26) 3.4.4直流750V或直流1500V设备 (28) 3.4.5 400V设备 (30) 3.4.6配电变压器 (31) 3.4.7交直流电源屏 (31) 3.4.8排流柜 (31) 3.4.9轨道电位限制装置 (31) 3.5技术指标 (32) 3.5.1控制中心主站系统技术指标 (32) 3.5.2变电所综合自动化系统技术指标 (32) 3.6中央监控系统 (33) 3.6.1中央监控系统的功能 (33) 3.6.2中央监控系统网络配置方案 (48) 3.6.3中央监控系统硬件配置方案 (50) 3.6.4系统软件配置方案 (51) 3.7供电复示系统 (51) 3.7.1系统功能 (51)

浅谈地铁低压供电系统故障检修及处理 杨超

浅谈地铁低压供电系统故障检修及处理杨超 发表时间:2018-01-02T11:27:20.303Z 来源:《防护工程》2017年第25期作者:杨超 [导读] 地铁机电设备的运行电源是由低压供电系统来提供的,低压供电系统的稳定和安全,直接决定着机电设备运行的状况。 港铁轨道交通(深圳)有限公司广东深圳 518000 摘要:近年来,地铁工程有效的缓解城市运输压力。对地铁低压供电系统进行了简单介绍,并结合多年工作经验,针对地铁低压供电系统出现故障的检修与处理方法进行探讨与分析,希望能够为我国城市地铁交通建设的发展提供一点理论支持。 关键词:地铁低压供电系统;故障检修;处理 引言 地铁机电设备的运行电源是由低压供电系统来提供的,低压供电系统的稳定和安全,直接决定着机电设备运行的状况。一旦地铁低压供电系统有故障问题发生,就会中断电力的供应,进而导致地铁运输全部瘫痪。为此,为了确保城市地铁建设与发展,就必须对地铁低压供电系统稳定性的提升予以重视与研究,并针对此提出有效的故障检修与处理方法。 1地铁低压供电系统概述 低压动力照明系统、400V配电系统、环控设备配电控制系统、EPS事故照明系统、以及防淹门控制系统等几个部分构成了地铁低压供电系统。地铁低压供电系统是向地铁通信、给排水、电扶梯、防淹门、环控、信号灯设备提供电能的重要保障。由于相关设备种类繁杂,且在地铁站各处分布比较散,使得地铁运营与服务的效率与质量提升存在较大难度。地铁运营正常必须建立在对地铁低压供电系统的有效维护与检修的基础之上,这是保证设备正常运行的重要前提。为此,在实际设计中,必须严格按照规范,对系统进行有效的维护,将故障隐患及时清除,进而有效控制设备受到的影响。 2地铁低压供电系统故障检修与处理措施 2.1 400V低压开关柜故障 母线断路器无反应和变压器的失效是400V低压开关柜故障的重要体现。在这一故障的处理中,需要将母联断路器安摇入工作位置。如果母联断路器没有处在工作区域,那么就需要将断路器设置为分闸状态,采用手动的方式启动转换开关。在工作区域设置断路器,并在自动区域设置装换开关。当转换开关处于自动状态时,如果是FU熔断器出现问题,那么母联柜指示灯就没有反应。一旦发现这一问题,就需要对熔断器进行更换。需要注意的是,回路失电受到母联断路器的控制,应在手动位置设置转换开关,然后对熔断器进行更换,在更换后应复原转换开关的位置;如果I路进线柜仪表室内PLC灯有反应,就要拔出电源插头,然后等待10s,将插头插回原来位置。拔插头应在手动位置设置转换开关时操作,最后还需要在自动位置复原转换开关。电源可以通过变压器获取,如果有故障发生在进线断路器中,就要在自动位置设置转换开关,如果I路进线柜仪表室内反应正常,那么就要拔出控制电源插头,待10s后,将其放回原处;如果有故障发生在控制回路,就要对其进行更换。在手动电气状态下,不可进行合闸。手动电气在合闸前,应注意检查电气闭锁情况,应及时更换损坏了的合闸线圈。在手动位置设置转换开关,更换控制回路熔断器。 如果塑壳断路器出现不能合闸的情况,那就要按逆时针45°的方向旋转操作手柄,在跳闸后,手柄不能复位,那就需要重新操作合闸。为了确保操作手柄中能够插入传动方轴,应采用合理的方式调整传动方轴的长度,如果断路器的传动方轴没有插入到外部手柄中,就要再次合闸。当断路器正常时,只需更换就能够消除故障。对于框架断路器而言,当其处于电气状态时,是不能进行分闸的。应将控制回路的转换开关设置为手动模式,然后再次分闸。应及时检查控制回路熔断器,对其熔断情况进行分析与观察,如果发现有损坏情况,就必须及时对熔断器进行更换。在更换分离线圈时,在检修断路器的过程中如果发现开盖现象,就要将断路器放在地面,充分释放其电能。当故障出现在熔断器内部,要拆除断路器,然后对故障进行检查,应结合实际情况,采取有效的处理方式,使故障问题得到解决。如果没有发现指示灯反映,或者触摸屏的显示情况不一致,就要对出现故障问题的继电器、熔断器或者指示灯进行更换。 2.2应急电源照明装置故障 在一般情况下,立式双备份控制器启动以后,若是发现设备运行出现异常,那大部分的原因是插接方式不正确。因此,在启动设备后,一旦发现设备运行失效,或者运行正常但有中断问题出现时,就要采取以下措施:选取两个与设备配套的螺钉,然后将其固定在机框上,检查直流输入线,对接触情况进行观察与判断,并及时改正接触不良或者接反等问题。或者接反了直流输入。因此在发现输出中断问题时,大致可以确定有接触不良等问题出现在了设备当中,或者是因为电压过低,如此就会导致欠压保护问题的出现。在控制模块中,如果指示灯反应正常,但是有警报声出现在控制器中,那么就要对系统进行全方位的检查,关注有没有负载情况的出现。如果是因为直流问题造成的故障,就要检查其输入电压。控制模块指示灯无法指示相应的故障,有的故障查看只能够通过上位机通信进行操作。这一故障主要是因为负载或直流问题造成的,例如负载过载或者短路,直流输入欠压或过压等。 当故障发生于指示灯控制模块时,并有声光警报的出现,那么就要对系统的逆变模块进行检查,如果内部故障指示灯反应正常,为了使控制模块不再对模块故障进行指示,就要将该模块拔出,然后对其进行更换,系统会对新的逆变模块进行检测,这一过程大约需等待1min,如果系统中任一模块有故障,就会指示出这些模块故障。当控制模块一直发出警报时,上下控制板频繁切换,并且存在输出缺失现象,此时就要对直流输入电压的情况进行检查,如果为DC176~264,则说明直流输入电压没有异常。当有欠压或过压现象出现在直流中,控制模块就会发出持续性的警报。如果存在直流欠压问题,为了确保蓄电池组过放电得到避免,应将输出切断。如果控制模块没有警报发出,上下控制板却在没有输出的情况下具有较高的切换频率,那么就要更换控制模块,如果依然没有解决问题,就要检查机框内的排线情况。 2.3防淹门控制柜故障 (1)当水位处于危险位置时,防淹门会发出警报,并发出关闭请求。此时,需要检查水泵房水位;对防淹门控制柜触屏进行控制,合理设置并调整水位报警值,通常以200cn为宜,上涨报警速度设置为50cm/s。当区间水位信号、水位设定值发现错误,进而导致故障发生,就要对水位信息进行检查,判断其与综合监控信息是否相符。 (2)信号系统发出同意关门的警报时,应对10KA继电器进行检查,观察防淹门的门体状态正常与否,并调整柜内接触器,确保1~6KM

相关文档
最新文档