F题--四翼飞行器及激光打靶

F题--四翼飞行器及激光打靶
F题--四翼飞行器及激光打靶

2017年杭州电子科技大学第17届校电子设计竞赛题

F题四翼飞行器及激光打靶

一、任务

设计并制作一架四轴飞行器,然后完成激光打靶。飞行区域俯视图如下图所示,D、E、F处放置一个靶,靶的尺寸如下图所示。

1米

(1)AB直线距离3米

(2)B至D和B至E的水平距离1米

3)A/B/C色斑直径20厘米

(4)轨迹导引线宽不小于4厘米

二、基本要求

(1)飞行器摆放于A位置,一键启动飞行器,飞行器直立升起,升起高度大于1米;维持时间大于5秒,之后重新降落回A位置;

(2)飞行器摆放于A位置,一键启动飞行器,飞行器直立升起,升起高度可设定,范围50~200厘米;在设定高度保持时间大于5秒,之后重新降落回A位置。(3)飞行器摆放于A位置,一键启动飞行器,飞过C点,跨过示高线,然后降落到B位置;

(4)飞行器摆放于A位置,一键启动飞行器,飞过C点,跨过示高线,继续飞至B

点,然后返回降落到A点位置;

三、发挥部分

飞行器携带一个激光管,模拟完成激光打靶。

(1)飞行器摆放在A区,一键式启动后,飞过C点,跨过示高线,飞向B区,并在1分钟内从空中完成向D点(D点离B点为1米)激光打靶,然后降落在B区并停机。

(2)飞行器摆放在A区,一键式启动后,飞过C点,跨过示高线,并在1分钟内从空中完成向E点(E点离B点为1米)激光打靶,然后降落在B区并停机。(3)飞行器摆放在A区,一键式启动后,飞过C点,跨过示高线,并在30秒内从空中完成向F点(F点离B点为1米)激光打靶,然后降落在B区并停机。(4)其他创新

四.说明

(1).设计报告长度为正文6页,正文内容应包括:方案比较、参数计算、硬件原理图、程序框图、测试条件(包括仪器)、测试结果及分析等,程序代码可作为附页;

(2).设计报告只须提交PDF电子版, 5月14日晚8:00前用电子邮件直接发给刘圆圆老师(liuyuanyuan@https://www.360docs.net/doc/696638086.html,)每份报告文件名按下列格式编排: 题目编号+竞赛编组号+队长姓名。

五. 参考评分标准

基于STM32的四旋翼飞行器设计

摘要 四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通飞行器相比,具有结构简单、故障率低和单位体积能够产生更大升力等优点,所以在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。 本设计采用stm32f103zet6作为主控芯片,3轴加速度传感器mpu6050作为惯性测量单元,通过2.4G无线模块和遥控板进行通信,最终使用PID控制算法以PWM方式控制电子调速器驱动电机实现了四轴飞行器的设计。 关键词:四轴飞行器,stm32;mpu6050,2.4G无线模块.PID.PWM

Abstract Quadrocopter has broad application prospect in the area of military and civilian because of its advantages of simple structure. Small size, low failure rate, taking off and landing ertically . etc. it is suitable for having task in narrow space. This design uses STM32f103zet6 as the master chip, and triaxial accelerometer mpu6050 inertial measurement unit, via 2.4G wireless module and remote control panel for communication. Finally using pid control algorithm with pwm drives the electronic speed controller to change moto to realize the design of quadrocopter. Key word : quadrocopter,stm32,mpu6050,2.4G wireless module ;pid; pwm

激光打靶系统的设计

目录 1 引言 (1) 2 概述 (2) 2.1 激光打靶系统概述 (2) 2.2 本设计方案思路 (3) 2.3 研发方向和技术关键 (3) 2.4 主要技术指标 (3) 3 总体设计 (4) 3.1 激光的检测 (4) 3.2 靶位的划分 (4) 3.3 编码标准 (5) 3.4 成绩的传送和处理 (5) 3.5 其他说明 (5) 4 硬件设计 (6) 4.1 信号放大电路 (6) 4.2 整形电路 (8) 4.3 编码电路 (9) 4.4 串行传送 (11) 4.5 电平转换 (13) 5 软件设计 (14) 5.1 总体方案 (14) 5.2 程序流图 (14) 5.3 模块说明 (15) 6 制作与调试 (18) 6.1 硬件电路的布线与焊接 (18) 6.2 调试 (18) 7 结论 (20) 致谢 (21) 参考文献 (22) 附录 (23)

1 引言 目前的射击打靶训练,基本以实弹训练为主,国防开支大,危险系数高。传统的报靶方法是人工报靶,由报靶员根据经验确定靶数,带有很大的个人主观因素,可靠性、公正性差,效率低。因此有必要研制一种切合部队实际的,在非实弹射击条件下进行射击精度训练的打靶训练器,这样既能保证部队训练质量又能减少弹药消耗、节约国防费用,具有重大的国防意义。 以光代弹,可以模拟多种武器的射击情况,并可检验射击效果。这种新型的部队训练模拟器材是部队训练器材的一次革命,是和平时期部队训练的有效手段之一。一些发达国家,如美国、英国、德国等都在积极进行激光射击模拟训练器材的研制,并已开发出多种系列产品,其中最突出的是美国的“米勒斯”系列,它可模拟36种武器,性能好、准确而且逼真,大大推动了部队的训练工作。 八十年代以来,我国也有单位在进行激光模拟训练器的研究和探索,将激光射击模拟器用于部队训练,取得了很好的训练效果,提高了部队的战斗力。但在可靠性和数据处理等方面尚有许多技术问题有待改进,主要是以下几点:激光光斑太大,与实际步枪子弹口径7.62mm相差太多;探测器数量少会导致设计精度不高;探测器数量多会使得价格昂贵,无法推广;只能粗略指示命中与否,不能准确显示命中靶环环数和方位。因此,我们拟从这些方向作进一步的研究探索。 本设计采用半导体激光器和半导体面阵列探测器来模拟子弹射击和射击靶标,具有模拟逼真,精度高等特点。主要从信号处理部分来设计实现激光打靶系统,每次射击能精确的显示5-10环的结果及脱靶情况,每个环数又可分为八个偏移方向。该系统简单实用,既能保证训练的质量又能减少弹药的消耗,是理想的公安、军队等部门训练使用的模拟打靶系统。

四翼飞行器设计最新版 (1)

四旋翼飞行器设计 飞行器设计小组 组员:李阳,张响,马具彪,袁学松 指导老师:李培

目录 一四旋翼飞行器的发展背景 (3) 二四旋翼飞行器结构 (4) 三工作原理 (6) 1 四旋翼飞行器工作原理概述 (6) 2四旋翼飞行器运动状态 (6) 四零件数据详情 (12) 五外观设计 (14) 六内部设计 ............................................................错误!未定义书签。七四翼飞行器组装基本步骤 . (19) 八特点及其应用 (23) 1.飞行器的功能特点 (23) 2.飞行器的运用 (23) 3.未来前景 (23) 九参考文献 (24)

一四旋翼飞行器的发展背景四旋翼飞行器属飞行器的一种,属于人工智能与自动化机器的一种。在当今社会中,因体积小,功能多,而广泛使用。但由于构造复杂不易操作等原因,四旋翼飞行器的发展一直比较缓慢。近年来,由于新型材料、飞控技术的发展,微型四旋翼飞行器的发展非常迅速。南京航空航天大学研究出飞行器理论和数学建模,模糊控制等技术,促进了我国飞行器的发展。北京航空航天大学自主掌握共轴双翼机的自主控制与研发工作。浙江大学,清华大学研究出,机载GPS和数学建模机器人视觉。在国家的指导与鼓励下,很多所高校,积极响应,促进了我国四旋翼飞行器的发展。 国外已经对四旋翼飞行器做了大量研究,起步比国内早很多。在导航,自主飞行技术等方面领先国内。国外已经把飞行器广泛运用在军事勘察,工业监测,农业预防等多方面。

二四旋翼飞行器结构 四旋翼飞行器共有四个翼,均匀分布在前后左右,且四旋翼均在同平面内,左右上下完全对称。每个旋翼下都附有一个发动机,以提供动力。在飞行器的中心是一个飞行控制器,来控制飞行器的速度和方向。结构形式以及三视图如图1.1、图1.2所示。 图1.1四旋翼飞行器结构图

2015年全国大学生电子设计大赛四旋翼飞行器论文

2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题) 2015年8月15日

摘要 本文对四旋翼碟形飞行器进行了初步的研究和设计。首先,对飞行器各旋翼的电机选择做了论证,分析了实际升力效率与PWM的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。 本飞行器采用瑞萨R5F100LEA单片机为主控制器,通过四元数算法处理传感器MPU6000采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。整个控制系统包括电源模块、传感器检测模块、电机调速模块、飞行控制模块及微处理器模块等。角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。本系统经过飞行测试,可以达到设计要求。关键字:R5F100LEA单片机、传感器、PWM、PID控制。

目录 1系统方案 (1) 1.1电机的论证与选择 (1) 1.2红外对管检测传感器的论证与选择 (1) 1.3电机驱动方案的论证与选择 (2) 2系统控制理论分析 (2) 2.1控制方式 (2) 2.2 PID模糊控制算法 (2) 3控制系统硬件与软件设计 (4) 3.1系统硬件电路设计 (4) 3.1.1系统总体框图 (4) 3.1.2 飞行控制电路原理图 (4) 3.1.3电机驱动模块子系统 (5) 3.1.4电源 (5) 3.1.5简易电子示高模块电路原理图 (6) 3.2系统软件设计 (6) 3.2.1程序功能描述与设计思路 (6) 3.2.2程序流程图 (6) 4测试条件与测试结果 (7) 4.1 测试条件与仪器 (7) 4.2 测试结果及分析 (7) 4.2.1测试结果(数据) (7) 4.2.2测试分析与结论 (8) 附录1:电路图原理 (9) 附录2:源程序 (10)

激光打靶游戏机讲解

激光打靶游戏机 激光打靶游戏机 类别:电子综合 本例介绍用常用的元器件来制作激光武器,并且用它来进行射击游戏。工作原理射击游戏机由激光玩具手枪和光电靶机组成。图 (a)是装在玩具手枪中的激光发射电路。用手扣动扳机SB时,其动断触点断开,动合触点闭合。电流通过电阻R和激光二极管VD对电容C进行瞬时充电,激光二极管VD 发出红色的激光束。当射击完成后,动合触点断开,动断触点闭合,电容C通过动断触点放电,为下次射击做准备。图(b)是光电靶机电路图。IC 1是4 一2输入端与非门数字集成电路CD4011,其中D1和D2构成一个低频多谐振荡器,D3和D4构成另一个低频振荡器。合上开关S,当激光玩具枪击中靶机时,光敏电阻R2的电阻变小,三极管VT导通,D1的一个输人端由低电平变为高电平。同时,电源电流通过三极管VT对电容C1充电。电路开始振荡,由D2输出方波信号加到IC2数字集成电路CD4017的CP端,使输出端YO一Y3依次输出高电平。当输出端Y4为高电平时,高电平通过二极管VD1加到R端使之清零,又使YO为高电平。如此循环,就使得装在靶机面板上的4只发光管VD2一VD5依次发光,形成缓慢变化的光环。同时,当D2输出高电平时,D3和D4组成的振荡器振荡使压电片B发出“嘟、嘟……”的声音。直到电容C1的电放完,使D1的一个输人端为低电平,Dl和D2构成的振荡器停止振荡为止。元器件选择IC1用4一2输入与非门CD4011。IC2用十进制计数分频器CD4017. 三极管VT 选用9015型硅PNP小功率三极管,要求电流放大系数β>150。发光管VD2一VD5用Φ3mm红色发光二极管。光敏电阻R2用MG41一22型等,要求亮阻<3 kΩ.暗阻>1MΩ. 激光笔选用市售塑料外壳玩具激光笔。按钮开关SB用带有动合触点和动断触点的。压电片B用协27 mm压电陶瓷蜂鸣器,如FI'一2 卞、HTD27A一1型等。开关S.用钮子开关。电池用4节5号电池。制作与调试在激光笔中引出两条导线,可用小圆形敷铜板叠放在纽扣电池上进行改制。将激光笔装在玩具枪的内部前端。按钮开关装在扳机连杆的下方并用AB胶固定,内部再焊上电容。要求扣动扳机时,能发出激光,随即熄灭即可。靶机的制作方法:按图7一18(b)制成线路板后,一般无需调试即能工作。找一个四方形的塑料外壳,在面板上中间挖一小孔将光敏电阻装上并胶牢。再把4只发光管等距离排列并固定在面板上。把压电陶瓷片装上共鸣腔也装在面板上,并在面板上开一些小孔便于传声。把电池盒和线路板固定在塑料外壳内,外形如图(c)所示。使用时,用激光玩具枪瞄准并扣动扳机射击,击中时发出响声并显现光环。一段时间射击熟练之后,可逐步增加射击距离。

激光打靶 毕业设计

杭州电子科技大学信息工程学院 本科毕业设计 (2016届) 题目 系电子通信系 专业 班级 学号 学生姓名 指导教师 完成日期2016年5月

诚信承诺 我谨在此承诺:本人所写的毕业论文《XXXXXXXX》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。 承诺人(签名): 年月日

摘要 本毕业设计主要设计自主研发的激光打靶系统的信号处理过程,继而实现整个打靶系统。激光打靶系统主要包括半导体激光枪、光电探测器和信号处理电路,信号处理过程是整个系统的关键。激光打靶的打靶过程,由激光枪发射激光脉冲信号,光电靶接收激光脉冲信号,经过系列信号处理过程最终得到打靶的结果。光电靶由许多块的光电探测器组成,每块不同位置的光电探测器对应不同编号,从打靶的实际情况出发,确定了相应的编号规则。打靶的成绩由激光所击中的光电探测器的编号来判定。 激光打靶系统的主要信号处理过程包括:信号的放大、编码和数据传输。信号由光电探测器检测后传送到相应的放大电路,放大电路采用集成运算放大器。按原先对光电探测器的编码规则采用多路优先编码器对信号进行编码。最后把编码值以串口的形式传送到计算机,利用计算机的强大功能对打靶结果进行各种处理。与计算机之间的串行数据传输由89C2051单片机实现。89C2051单片机的程序,使用keil编译器进行设计和调试完成,其主要功能是控制数据的串行传送,实现与计算机的串口通信。 该信号处理系统实现了对信号的良好检测。与计算机之间的串口通信可以实现数据在计算机上的显示、统计、储存等功能,为打靶者提供非常直接、准确的打靶结果,有利于提高打靶效果。 关键词:激光打靶;信号处理;信号编码;串行传输

未来飞行器设计要点

目录一.世界经济的发展等因素,城市的特点 二.代步工具的发展历程,以及其类型和特点 三.代步工具历史产品介绍 四.设计灵感与产品设计 五.产品设计 六.细节演示 七.未来代步工具的材料及其工业设计 八.展板

人们随着时代的发展,使出行代步工具发展的很快。要想从一个城市,快速到达另一个城市,人们又想方设法的使“出行代步工具”得到了进一步的发展。不外乎至使地上跑的,水中游的,天上飞的代步工具,发展的尽乎完美的快捷和舒适。 本次设计基于世界城市发展的背景之下,通过分析和研究城市化进程、城市居民出行方式以及代步工具的发展历程,结合人性化设计、人机工程学和设计心理学等工业设计相关理论来深入分析城市居民代步工具设计中使用者的生理和心理需求,探讨其更符合城市居民人性化设计需求的可行性方案。 一.世界经济的发展等因素,城市的特点 我国现代城市交通的发展具有两大特征: 城市交通与城市对外交通的联系加强了,综合交通和综合交通规划的概念更为清晰。 随着城市交通机动化程度的明显提高,城市交通的机动化已经成为现代城市交通发展的必然趋势。 1.发展规律 现代城市交通重要表象是“机动化”,其实质是对“快速”和“高效率”的追求。 城市交通拥挤一定程度上是城市经济繁荣和人民生活水平提高的表现。随着城市交通机动化的迅速发展,城市机动交通比例不断提高,机动交通与非机动交通、行人步行交通的矛盾不断激化,机动交通与守法意识薄弱的矛盾日渐明显。

交通需求越来越大,而城市交通设施的建设就数量而言,永远赶不上城市交通的发展,这是客观的必然。 现代城市交通机动化的迅速发展也势必对人的行为规律和城市形态产生巨大影响,城市交通机动化的发展也会成为城市社会经济和城市发展的制约因素。现代城市交通的复杂性要求我们对城市交通要进行综合性的战略研究和综合性的规划,城市规划要为城市和城市交通的现代化发展做好准备。 2. 城市综合交通规划的内容 城市人群出行方式的发展,历史与现状,以及促使居民出行方式发生变化的关键因素。 刚建国时期——交通不便大城市电车、汽车比较多见,黄包车,自行车是比较普遍的代步工具。在一般的中小城市,有少量的自行车和人力车。农村,北方有马车、人力板车,南方有航船、牛车,步行是最普遍的出行方式 改革开放前——有所改善,以自行车为主“一五”计划期间兴建宝成铁路、鹰厦铁路;新藏、青藏、川藏公路修到“世界屋脊”,密切了祖国内地同边疆的联系,也便利了经济文化的交流;1957年,武汉长江大桥建成,连接了长江南北的交通。 国家整体交通水平有所提高.改革开放前,城市的交通资源极为有限,人们出行除了用双脚行走之外,可以代步的交通工具也就是公交车和自行车了。但是公交线路少,车厢经常拥挤不堪。相比之下,最方便的交通工具当然是自行车,中国曾被称作“自行车王国”,可

四旋翼飞行器论文(原理图 程序)..

四旋翼自主飞行器(B题) 摘要 系统以R5F100LE作为四旋翼自主飞行器控制的核心,由电源模块、电机调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF模块,瑞萨MCU综合飞行器模块和传感器检测模块的信息,通过控制4个直流无刷电机转速来实现飞行器的欠驱动系统飞行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个PID控制回路,即位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。

目录 1 系统方案论证与控制方案的选择............................................................................................. - 2 - 1.1 地面黑线检测传感器............................................................................................................. - 2 - 1.2 电机的选择与论证................................................................................................................. - 2 - 1.3 电机驱动方案的选择与论证................................................................................................. - 3 - 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 - 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 - 2.2 PID控制算法结构分析.......................................................................................................... - 3 - 3 硬件电路设计与实现................................................................................................................. - 5 - 3.1飞行控制电路设计.................................................................................................................. - 5 - 3.2 电源模块................................................................................................................................. - 6 - 3.3 电机驱动模块......................................................................................................................... - 6 - 3.4 传感器检测模块..................................................................................................................... - 7 - 4 系统的程序设计......................................................................................................................... - 8 - 5 测试与结果分析......................................................................................................................... - 9 - 5.1 测试设备................................................................................................................................. - 9 - 5.2 测试结果................................................................................................................................. - 9 - 6 总结........................................................................................................................................... - 10 - 附录A 部分程序清单.................................................................................................................. - 11 -

电子设计大赛国赛_四旋翼自主飞行器A题

2013年全国大学生电子设计竞赛课题:四旋翼自主飞行器(B 题) 【本科组】 2013年9月7日

摘要 为了满足四旋翼飞行器的设计要求,设计了以微控制器为核心的控制系统和算法。首先进行了各单元电路方案的比较论证,确定了硬件设计方案。四旋翼飞行器采用了固连在刚性十字架交叉结构上的4个电机驱动的一种飞行器,以78K0R CPU內核为基础,围绕新的RL78 CPU內核演化而来的RL78/G13作为控制核心,工作频率高达32MHz,工作电压1.6V-5.5V,适合各种类型的消费类电子和工业应用, 满足8/16位微控制器的需求,有助于降低系统功耗,削减总系统的构建成本。采用9926B MOS管芯片的驱动直流电机,该驱动芯片具有内阻小、负载电流大、且控制简单的特性。通过采用MPU-6050整合的3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,实现了四旋翼飞行器运动速度和转向的精准控制。通过HC-SR04超声波测距模块实现了对四旋翼飞行器飞行高度的准确控制。通过激光传感器,实现了四旋翼飞行器沿黑线前进,在规定区域起降,投放铁片等功能,所采用的设计方案先进有效,完全达到了设计要求。 关键词:四旋翼自主飞行器,E18-D50NK光电传感器,寻线,超声波,单片机。

四旋翼自主飞行器(B 题) 【本科组】 1系统方案 本系统主要由电源模块、电机驱动模块、光电循迹模块模块、超声波测高模块、姿态传感器模块组成,下面分别论证这几个模块的选择。 1.1 电源模块的论证与选择 方案一:采用线性元器件LM7805三端稳压器构成稳压电路,为单片机等其他模块供电,输出纹波小,效率低,容易发热。 方案二:采用元器件2596为开关稳压芯片,效率高,输出的纹波大,不容易发热。 方案三:采用线性元器件2940构成稳压电路,为单片机等其他模块供电,输出纹波小,效率高,不容易发热,综合性能高。 综合以上三种方案,选择方案三。 1.2 电机驱动模块的论证与选择 方案一:采用三极管驱动,由于输出电流很大,容易发热, 方案二:采用L298N电机驱动模块,通过电流大,容易发热,使得电机转速变慢,载重量变小。 方案三:采用场效应管9926B芯片组成的电机驱动模块,驱动能力好。能承受的最大电流为7.5A,符合要求。 综合以上三种方案,选择方案三。 1.3 光电循迹模块的论证与选择 方案一:采用CCD摄像头采集图片经过算法处理循迹,前瞻性比较好、循迹效果好,但是处理程序复杂、成本高。 方案二:采用红外对管,有效距离太短,不能满足实际循迹要求。 方案三:采用E18-D50NK光电传感器,这是一种集发射与接收于一体的光电传感器, 检测距离可以根据要求进行调节。探测距离远、受可见光干扰小、前瞻性较好、抗干扰性较好。

四轴飞行器结题报告

学校名称: 队长姓名: 队员姓名: 指导教师姓名:2013年9月6日

摘要 本次比赛我们需要很好地控制飞行器,让它自主完成比赛应该完成的任务。 本文的工作主要针对微型四旋翼无人飞行器控制系统的设计与实现问题展开。首先制作微型四旋翼无人飞行器实验平台,其次设计姿态检测算法,然后建立数学模型并设计姿态控制器和位置控制器,最后通过实验对本文设计的姿态控制器进行验证。设计机型设计全部由小组成员设计并制作,部分元件从网上购得,运用RL78/G13作为主控芯片,自行设计算法对飞行器进行,升降,俯仰,横滚,偏航等姿态控制。并可以自行起飞实现无人控制的自主四轴飞行器。 关键字:四旋翼无人飞行器、姿态控制、位置控制

目录 第1章设计任务.................................................................................... 错误!未定义书签。 1.1 研究背景与目的........................................................................ 错误!未定义书签。 1.2 .................................................................................................... 错误!未定义书签。 1.3...................................................................................................... 错误!未定义书签。第2章方案论证.................................................................................... 错误!未定义书签。 2.1...................................................................................................... 错误!未定义书签。 .................................................................................................... 错误!未定义书签。 .................................................................................................... 错误!未定义书签。 2.2 ........................................................................................................... 错误!未定义书签。第3章理论分析与计算........................................................................ 错误!未定义书签。 ........................................................................................................... 错误!未定义书签。第4章测试结果与误差分析................................................................ 错误!未定义书签。 4.1...................................................................................................... 错误!未定义书签。 4.2...................................................................................................... 错误!未定义书签。 4.3...................................................................................................... 错误!未定义书签。 4.4 .................................................................................................... 错误!未定义书签。 ........................................................................................................... 错误!未定义书签。第5章结论心得体会............................................................................ 错误!未定义书签。 5.1 .................................................................................................................. 错误!未定义书签。.................................................................................................................. 错误!未定义书签。 2设计任务: 基本要求 (1)四旋翼自主飞行器(下简称飞行器摆放在图1所示的A区,一键式

激光打靶系统的信号处理过程

摘要 本毕业设计主要设计自主研发的激光打靶系统的信号处理过程,继而实现整个打靶系统。激光打靶系统主要包括半导体激光枪、光电探测器和信号处理电路,信号处理过程是整个系统的关键。激光打靶的打靶过程,由激光枪发射激光脉冲信号,光电靶接收激光脉冲信号,经过系列信号处理过程最终得到打靶的结果。光电靶由许多块的光电探测器组成,每块不同位置的光电探测器对应不同编号,从打靶的实际情况出发,确定了相应的编号规则。打靶的成绩由激光所击中的光电探测器的编号来判定。 激光打靶系统的主要信号处理过程包括:信号的放大、编码和数据传输。信号由光电探测器检测后传送到相应的放大电路,放大电路采用集成运算放大器。按原先对光电探测器的编码规则采用多路优先编码器对信号进行编码。最后把编码值以串口的形式传送到计算机,利用计算机的强大功能对打靶结果进行各种处理。与计算机之间的串行数据传输由89C2051单片机实现。89C2051单片机的程序,使用keil编译器进行设计和调试完成,其主要功能是控制数据的串行传送,实现与计算机的串口通信。 该信号处理系统实现了对信号的良好检测。与计算机之间的串口通信可以实现数据在计算机上的显示、统计、储存等功能,为打靶者提供非常直接、准确的打靶结果,有利于提高打靶效果。 关键词:激光打靶;信号处理;信号编码;串行传输

ABSTRACT The main aim of this thesis is to design and realize signal processing of a self-developed laser target shooting system and then realize the whole laser target shooting system. The laser target shooting system consists of semiconductor laser gun, photoelectric detector, and signal processing circuit, which is the key part of the whole system. Laser target shooting process go though following steps: laser gun emitted a pulse of laser, which would be received by the laser target and the results of shooting will be shown on screen of computer by series signal processing. The laser target consists of some silicon photoelectric units that were encoded with different numbers according to certain rule. The result of the shooting will be got when detecting the number of the photoelectric unit that receives the laser pulse. The signal processing of the laser target shooting system mainly consists of signal amplification, signal encoding and data transmission. The inspected photoelectric signal was then amplified by operator amplifiers, coded by multiplex priority encoder according to the prearranged rule, and then transferred to computer by 89C2051 MCU through its serial port. And then computer can process the signal. The program of 89C2051 MCU is designed in keil and debugged using keil compiler. It is designed to control the data transmission with computer. The designed signal processing system can detect signal effectively. Through the serial data transmission, computer can process the shooting result, such as display, statistics and storage etc. It provide direct and exact shooting result for trainer, so it can increase the efficiency of the shooting training. Key words:laser target shooting;signal amplification;signal encode;serial data transmission

固定翼设计涉及的几个方面技术

1、微型无人机平台 (1)设计要求 基于小型无人机的摄影测量遥感平台还处于起步阶段,还没有一套完整的作业规范。现行的航测规范主要是参照大多数测绘单位现有的技术条件和仪器设备制定的, 而小型无人机作为一种新型的低空对地观测平台,主要在1000m以下的高度进行航拍,且其采用的是高分辨率的数码相机作为成像设备,与传统的航空摄影测量有较大的不同。因此,已有的摄影测量规范在这种新型摄影平台上并不一定能适用。按照传统的 航测作业准则,有以下几点参考指标: 1)飞行速度宜在5O~100km/h之内; 2) 发动机宜在飞机前进方向的后部(以避免湍流的影响); 3) 在发动机出故障时,飞机应可以安全滑翔降落; 4) 相对地面的飞行高度的变化应小于5%; 5) 相邻摄站飞行高度的变化应小于5%; 6) 航摄平台在作业时其水平误差不得大于3。; 7) 测量飞行速度的误差不大于5%; 8) 偏离航线的绝对误差不得大于相片旁向覆盖域的5%; (2)微型无人机遥感设备集成与接口 微型无人机平台可采用的候选遥感设备包括4种高空间分辨率(<1 m×1 m)轻型(<6O kg)机载合成孔径雷达(SAR)和两种轻型光学成像设备。选择适合于具体应用和无人机特点的遥感设备,建立标准设备接口,缩短安装调试周期是集成应用型无人机航 空遥感系统的关键。具体内容包括: 1)针对不同应用要求,通过性能价格比较,选择遥感设备; 2)完成遥感数据获取设备与无人机平台之间的统一接口设计,以便实现不同型号SAR、红外摄像仪和可见光CCD等设备的快速更换; 3) 无人机遥感设备的安装调试。 2、微型无人机飞行控制系统

NCG-1型无人机飞控系统是我公司技术人员自主研发的一套微型无人机控制系统。该系统包含:机载飞控、地面站、通讯设备。可以控制各种布局的无人驾驶飞机,使 用简单方便,控制精度高,GPS导航自动飞行功能强,并且有各种任务接口,方便用 户使用各种任务设备。起飞后即可立即关闭遥控器进入自动导航方式,在地面站上可 以随意设置飞行路线和航点,支持飞行中实时修改飞行航点和更改飞行目标点。单一 地面站控制多架飞机的能力和自动起降的功能也正在开发中。 作为无人机的飞行控制核心设备,系统的主要任务是利用GPS等导航定位信号, 并采集加速度计、陀螺等飞行器平台的动态信息,通过INS/GPS组合导航算法解算无 人机在飞行中的俯仰、横滚、偏航、位置、速度、高度、空速等信息,以及接收处理 地面发射的测控信息,用体积小巧的嵌入式中央处理器形成以机载控制计算机为核心 的电子导航设备,对无人机进行数字化控制,根据所选轨道来设计舵面偏转规律,控 制无人机按照预定的航迹飞行,使其具有自主智能超视距飞行的能力。 (1)自稳能力: 在各种气象条件及外界不可预测影响下,智能测算无人机的各项指标参数,自动 控制无人机的飞行姿态的稳定,确保无人机正常飞行; (2)自航能力: 在保持无人机飞行稳定的前提下,采用各种导航手段,控制无人机按照预先设定 的航迹飞行,执行相应航线任务; (3)状态监控与测控接口: 作为整个无人机系统的控制核心,飞行控制计算机系统实时监控无人机各模块状态,并通过高速接口与地面站实时进行指令和数据的交换。 NCG-1型无人机飞控系统采用了最先进的FutabaPCM1024系列遥控,操作比一般的无人机控制系统更加灵活灵活,飞行姿态控制更加方便。控制系统的舵机是我公司 自主研发的,达到了50Hz更新率,13 位舵机分辨率,使我们的微型无人机能够获取 更高精度的数据。主要特性如下: 集成4Hz更新率GPS,可扩展北斗、GLONASS组合导航; 集成数字式空速、气压传感器,0.1mba高精度,高度测量可扩展无线电高度计; 集成低成本低重量IMU,通过带GPS修正的Kalman滤波计算最贴近真实情况的 飞机姿态,动态精度±2o,消除瞬时加速度、陀螺漂移对姿态计算的影响;

四旋翼飞行器 设计报告

大学生电子设计竞赛 设计报告 摘要:本设计实现基于STM32开发板的十字形四旋翼飞行器,四旋翼由主控制板、陀螺仪、电机模块、超声波测距、电源和投弹打靶模块等六部分组成。其中,控制核心STM32负责飞行器姿态数据接收和飞行姿态控制;陀螺仪采用MPU6050模块,该模块经过卡尔曼滤波处理采集的数据,输出数据,用PID控制算法对数据进行处理,同时,解算出相应电机需要的的PWM增减量,及时调整电机转速,调整飞行姿态,使飞行器的飞行的更加稳定。电机模块通过电调控制无刷直流电机,超声波传感器进行测距,起飞后悬停在一定高度,打靶后降落。 关键词:四旋翼;PID控制;陀螺仪,姿态角,电机控制

2

目录 1系统方案 (1) 1.1控制系统选择方案 (1) 1.2飞行姿态控制方案论证 (1) 1.3角度测量模块的方案论证 (2) 1.4高度测量模块方案论证.............................................. 错误!未定义书签。2理论分析与计算 (2) 2.1控制模块 .................................................................... 错误!未定义书签。 2.2机翼电机 .................................................................... 错误!未定义书签。 2.3飞行姿态控制单元 (3) 3电路与程序设计 (4) 3.1系统总体设计思路 (4) 3.2主要元器件清单......................................................... 错误!未定义书签。 3.3系统框图 .................................................................... 错误!未定义书签。 3.3.1系统硬件框图 ..................................................... 错误!未定义书签。 3.3.2系统软件框图 ..................................................... 错误!未定义书签。4测试方案与测试结果.. (5) 5结论 (6) 3

相关文档
最新文档