sine积分和cosine积分级数

sine积分和cosine积分级数
sine积分和cosine积分级数

对数判别法

一个比拉阿比判别法更精细的正项级数判别法 摘要:本文用级数∑ ∞ =3 ln 1 n p n n 做比较标准,得到一个比拉阿比判别法更为精细又应用方便的判别法,笔者称之为“对数判别法”。 关键词:比较判别法 级数判别法的极限形式 拉格朗日中值定理 对数判别法 目前较常用而又精细的正项级数判别法是拉阿比判别法,然而此判别法有时精确度仍然不够。以下本文就以级数∑ ∞ =3 ln 1 n p n n 做比较标准,得到一个比拉阿比判别法更为精细又应用方便的判别法——“对数判别法”。 我们先看级数∑ ∞ =3ln 1 n p n n 的敛散性:当1>p 时级数收敛;当1≤p 时级数发散。这个结论可用柯西积分判别法证明(具体证明请参见邓东皋、尹小玲编著《数学分析简明教程》),本文不再细述。 先考虑发散的情况。由比较判别法有:设数列}{n u 是正项数列,若n 足够大时,有 n n n n u u n n ln ) 1ln()1(1++< + 成立,则∑∞ =1 n n u 发散。 为了应用方便我们来寻求像拉阿比判别法那样的“极限形式”: n n n n u u n n ln )1ln()1(1++<+n n n u n nu n n ln ln )1ln(1)1(1-+< -+?+, 由拉格朗日中值定理知,对任意n ,存在)1,(+∈n n n ξ,使得 n n n ξ1 ln )1ln(= -+, 故 n n n n u u n n ln ) 1ln()1(1++<+1]1)1([ln 1 <-+?+n n n u n nu n ξ, 要使n 足够大时有1]1)1([ ln 1 <-++n n n u n nu n ξ成立,只需

求定积分的方法

系(院)数学与信息科学学院 专业数学与应用数学 年级 姓名 论文题目求定积分的若干方法指导教师职称副教授 2010 年5月20日 1

目录 摘要 (3) 关键词 (3) Abstract (3) Keywords (3) 前言 (3) 1. 定义法求定积分 (3) 1.1 定义法 (3) 1.2 典型例题 (4) 2. 换元法求定积分 (5) 2.1 换元积分法 (5) 2.2 典型例题 (5) 3. 分部法求定积分 (8) 3.1 分部积分法 (8) 3.2 典型例题 (8) 4. 区间性质求定积分 (9) 4.1 常见的三种题型 (9) 4.2 典型例题 (9) 5. 有理函数求积分 (11) 5.1 有理函数积分法 (11) 5.2 典型例题 (11) 参考文献 (13) 2

3 求定积分的若干方法 摘 要:本文主要考虑定积分的计算方法,对一些常用的方法和技巧进行归纳和总结,主要方法包括定义法、换元积分法、分部积分法等,并对每种方法给出了典型例题. 关键词:定积分;换元积分法;分部积分法;有理函数积分 Methods of Calculation on Definite Integral Abstract: In this paper, we study the calculation of definite integral and some usual methods and techniques for computation and described. The chief methods include definition integration, act-for-Yuan integration, and integration by parts and so on. So, different subjects should use different calculation methods in order to simplify the calculation. Key Words: definite integral ;act-for-Yuan integration ;integration by parts ; integral rational function . 前言 由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的 数学分支就继解析几何之后产生了,这就是微积分学.微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造.一个定积分的计算,首先要求准确性,其次是快速性,而这两个目的的实现就需要有好的方法和技巧.本文主要以求解定积分的各种方法为主线,对其分别概述,举例,并加以分析说明,从而得出对于不同的题型应当运用合适的方法来解决的结论.学习中应着眼于基本方法的积累,有了这种积累,才会孕育出技巧. 1 定义法求定积分 1.1 定义法 已知函数()f x 在],[b a 上可积,由于积分和的极限唯一性,可做],[b a 的一个

级数与广义积分 考研

1.利用有上界的非空数集必有上确界证明:单调增加的有界数列必有极限. 2.证明:x 1 sin 在)1,0(上不一致连续,但在)0)(1,(>a a 上一致连续. 3.若),3,2,1(1 31211222ΛΛ=++++=n n x n , 用柯西收敛准则判定数列{}n x 的收敛性. 4.(1)证明:2sin )(x x f =在),0(+∞上不一致连续. (2)若n n n x 2 cos 23cos 22cos 21cos 132+++++ =Λ ),3,2,1(Λ=n , 用柯西收敛准则判定数列{}n x 的收敛性. 5.设E 是非空有上界的实数集. (1)给出E 的上确界a E =sup 的定义; (2)若,sup E a E ?=证明:在数集E 中可取出严格单调增加的数列{}n x ,使得.lim a x n n =→∞ 6. 证明:20 0.x dx > 7.判断下述各论断的对错,正确的请给出证明,错误的请举出反例. (1) {}.,0)(lim 收敛则数列都有若对于每一个正整数n n p n n a a a p =-+∞ → (2) 若 ?+∞ )(dx x f 收敛,且.0)(lim )(lim =+∞ →+∞ →x f x f x x 存在,则 8.广义积分)10(sin 0 ≤, 级数1 n n a n λ∞ =∑收敛. 11.利用-p 级数的敛散性判别级数 ∑ ∞ =+-1 ])1 1([n n n e 的敛 散性. 12.设),,3,2,1(0Λ=>n a n 且级数∑∞ =1n n a 发散,试判断下列级数的收敛性: (1);112 ∑ ∞ =+n n n a n a (2).11 ∑ ∞ =+n n n a a 13.设级数.)(1 1 2 1绝对收敛试证:,绝对收敛收敛,∑ ∑ ∑∞ =∞ =∞ =--n n n n n n n n b a b a a 14.设.),1(,01 ∑==≥>n k k n n a S n a 证明:级数∑ ∞ =1 2 n n n S a 收敛. 15.设...),(01 1 1 发散证明: 记发散且 ∑ ∑ ∑ ∞ ==∞ =+= ∈>n n n n i i n n n n S a a S a N n a

最新高考-高考数学定积分 精品

§6.3定积分 【复习目标】 (1)通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背 景;借助几何直观体会定积分的基本思想,了解定积分的概念;会求简单的定积分。 (2)通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基 本定理的含义。 【重点难点】 定积分的几何意义;利用定积分性质化简被积函数;求定积分值。 【知识梳理】 (1)概念 设函数f (x )在区间[a ,b ]上连续,用分点a =x 0

定积分高考试题

定积分与微积分 一、知识回顾: 1.用定义求定积分的一般方法是: ①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和: 1 ()n i i b a f n ξ=-∑; ④取极限: () 1 ()lim n b i a n i b a f x dx f n ξ→∞ =-=∑? 2.曲边图形面积:()b a S f x dx =?; 变速运动路程2 1 ()t t S v t dt =? ; 变力做功 ()b a W F r dr = ? . 3.定积分有如下性质: 性质1 =?b a dx 1 性质2 =? b a dx x kf )( (其中k 是不为0的常数) (定积分的线性性质) 性质3 ?=±b a dx x f x f )]()([2 1 (定积分的线性性质) 性质4 ??? +=c a b c b a dx x f dx x f dx x f )()()( 其中(b c a <<) 4.定积分的计算(微积分基本定理) (1)(牛顿——莱布尼兹公式)若)(x f 是区间],[b a 上的连续函数,并且)()(x f x F =',那么有 二、常考题型: 一选择题 1.由直线与曲线y=cosx 所围成的封闭图形的面积为( ) A 、 B 、1 C 、 D 、 2.由曲线y=x 2 ,y=x 3 围成的封闭图形面积为( ) A 、 B 、 C 、 D 、 ? -==b a b a a F b F x F dx x f ) ()()()(

3.由曲线y=,直线y=x ﹣2及y 轴所围成的图形的面积为( ) A 、 B 、4 C 、 D 、6 4. ? +1 )2(dx x e x 等于( ) A 、1 B 、e ﹣1 C 、e D 、e 2 +1 5. ? 4 2 1 dx x dx 等于( ) A 、﹣2ln2 B 、2ln2 C 、﹣ln2 D 、ln2 6. dx x ?--2 2 )cos 1(π π等于( ) A 、π B 、2 C 、π﹣2 D 、π+2 7. 已知则? -= a a xdx 2 1 cos (a >0),则?a xdx 0cos =( ) A 、2 B 、1 C 、 D 、 8. 下列计算错误的是( ) A 、 ?- =π π 0sin xdx B 、 ? = 1 32dx x C 、 ?? -=22 2 cos 2cos π ππ xdx xdx D 、 ?- =π π0sin 2 xdx 9 计算dx x ? -2 24的结果是( ) A 、4π B 、2π C 、π D 、 10. 若 0)32(0 2=-? dx x x k ,则k 等于( ) A 、0 B 、1 C 、0或1 D 、以上均不对 11.下列结论中成立的个数是( ) ①∑?=?= n i n n i dx x 133 1 031;②∑?=?-=n i n n i dx x 131031)1( ;③∑?=∞→?=n i n n n i dx x 1331031lim 。 A .0 B .1 C .2 D .3 12.根据定积分的定义,?202 dx x =( ) A . ∑=?-n i n n i 1 21)1( B . ∑=∞→?-n i n n n i 121)1(lim C . ∑=?n i n n i 122)2( D . ∑=∞→?n i n n n i 122 )2(lim 13.变速直线运动的物体的速度为v(t),初始t=0时所在位置为0s ,则当1t 秒末它所在的位置 为 ( ) A . ? 1 )(t dt t v B .dt t v s t ? + 1 0)( C .00 1 )(s dt t v t -? D .dt t v s t ?-1 0)(

常见不定积分的求解方法

常见不定积分的求解方法的讨论 马征 指导老师:封新学 摘要介绍不定积分的性质,分析常见不定积分的各种求解方法:直接积分法、第一类换元法(凑微法)、第二类换元法、分部积分法,并结合实际例题加以讨论,以便于在解不定积分时能快速选择最佳的解题方法。 关键词不定积分直接积分法第一类换元法(凑微法)第二类换元法分部积分法。 The discussion of common indefinite integral method of calculating Ma Zheng Abstract there are four solutions of indefinite integration in this discourse: direct integration; exchangeable integration; parcel integration. It discussed the feasibility which these ways in the solution of integration, and it is helpful to solve indefinite integration quickly. Key words Indefinite integration,exchangeable integration, parcel integration.

0引言 不定积分是《高等数学》中的一个重要内容,它是定积分、广义 积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础, 要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是 常见不定积分的解法。不定积分的解法不像微分运算时有一定的法 则,它要根据不同题型的特点采用不同的解法,积分运算比起微分运 算来,不仅技巧性更强,而且也已证明,有许多初等函数是“积不出 来”的,就是说这些函数的原函数不能用初等函数来表示,例如 ?-x k dx 22sin 1(其中10<

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3)n u x n =L 是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++∈L L 为定义在E 上的函数项级数,简记为1()n n u x ∞ =∑ 。 2、具有下列形式的函数项级数 200102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-++-+∑L L

正项级数敛散性地判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,,,N N n N p N ε+?>?∈?>?∈有12n n n p u u u ε+++++ +<。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1 n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

高考数学定积分的定义

教案6:定积分的定义与性质 一、课前检测 1. 2 21(21)x x dx ++=? ; 2. 由抛物线2y x =与直线2y x =-围成的平面图形的面积 为 . 3. 用力把弹簧从平衡位置拉长10 cm,此时用的力是200 N ,变力F 做的功W 为 J. 二、知识梳理 1.定积分的概念:设函数()f x 在区间[,]a b 上有定义,将区间[,]a b 等分 成n 分小区间,每个小区间长度为x ?(x ?= ),在每个小区间上 取一点,依次为12,,,,i n x x x x ,作和n S = .如果x ?无限 趋近于0(亦即n 趋向于+∞)时,n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分,记为S = ,其 中 称为被积函数, 称为积分区间, 称为积分下限, 称为积分上限, 2.微积分基本定理:对于被积函数()f x ,如果()()F x f x '=,则 ()b a f x dx ?= . 3.定积分的运算性质:⑴()b a kf x dx ?= ; ⑵[()()]b a f x g x dx ±=? ;⑶()b a f x dx =? .()a c b << 4.定积分的几何意义:在区间[,]a b 上曲线与x 轴所围成图形面积的 (即x 轴上方的面积减去x 轴下方的面积); ⑴当()f x 在区间[,]a b 上大于0时,()b a f x dx ?表示由直线

,(),0x a x b a b y ==≠=和曲线所围成的曲边梯形的面积,这也是定积分的几何意义. ⑵当()f x 在区间[,]a b 上小于0时,()b a f x dx ?表示由直线 ,(),x a x b a b y ==≠=和曲线所围成的曲边梯形的面积的 . ⑶当()f x 在区间[,]a b 上有正有负时,()b a f x dx ?表示介于直线 ,()x a x b a b ==≠之间x 轴之上、之下相应的曲边梯形的面积的 . 5.定积分在物理中的应用:⑴匀变速运动的路程公式,作变速直线运动的物体所经过的路程s ,等于其速度函数()v t 在时间区间[,]a b 上的定积分,即s = . ⑵变力做功公式,一物体在变力()F x (单位:N )的作用下作直线运动,如果物体沿着与F 相同的方向从x a =移动到()x b a b =<(单位:m ),则力F 所作的功为W = . 三、典型例题分析 例1.求定积分 ⑴21 ?(2x 2 -1x )d x ; ⑵32?(x +1x )2d x ; (3)30π?(sin x -sin2x )d x ; 变式训练:求定积分:222||x x dx --?;

无穷限广义积分的计算(1)

指导教师:陈一虎 作者简介:陈雪静(1986-),女,陕西咸阳人,数学与应用数学专业2008级专升本1班. 无穷限广义积分的计算 陈雪静 (宝鸡文理学院 数学系,陕西 宝鸡 721013) 摘 要: 文章归纳总结了利用数学分析、复变函数、积分变换、概率论统计理论等知识计算无穷限广义积分的几种方法.在学习中运用这几种方法可开拓视野,激发学习数学的兴趣. 关键词: 广义积分;收敛;计算方法 广义积分是《高等数学》学习中的一个难点知识,广义积分的概念不仅抽象,而且计算方法灵活,不易掌握.广义积分包括两大类,一类是积分区间无穷型的广义积分,另一类是积分区间虽为有穷,但被积函数在该区间内含有有限个无穷型间断点(瑕点)的广义积分.一般的判别法是对积分区间无穷型的广义积分,先将积分限视为有限的积分区间按常义积分处理,待积分求出原函数后再考查其极限是否存在,在用此极限去判定原积分是否收敛.对于第二类广义积分,我们可将积分区间改动,使被积函数在改动后的积分区间内成为有界函数再按常义积分处理,求出原函数之后考查它在原积分区间上的极限是否收敛.但是有些被积函数的原函数不易求出或无法用初等函数表示,使得广义积分无法用常规方法计算,因此需寻求其它的计算方法.本文主要研究无穷限广义积分的计算方法,主要方法包括利用广义积分定义、参量积分、变量代换、二重积分、留数定理、级数展开、概率论知识以及拉普拉斯变换等方法. 1 无穷限广义积分的定义 定义1 设函数()f x 在区间[,)a +∞上连续,取t a >.如果极限 lim ()d t a t f x x →+∞? 存在,则称此极限为函数()f x 在无穷区间[,)a +∞上的反常积分(也称作广义积分),

正项数收敛判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质: 若级数 1 n n u ∞ =∑与 1 n n v ∞ =∑都收敛,c d 是常数,则 1 ()n n n cu dv ∞ =+∑收敛,且满足

广义积分敛散性判别法的应用

安.师专攀报(自泊科学蔽)1995年旅魂翔 2)若、‘1,。0)的敛散性推导得出的。这在分析教材 中都有介绍。 在使用判别法时,关键在于如何选取入与d,使得符合判别法的条件,从而得出相应的结 论—收敛或发散。一般来说.这种选取是较为困难的。因此,选取入、d,就成为教学中的难点,在分析教材中的例,都是预见选好了入,求出d,据判别法得出相应结论。具体做习题时,在选取入后;还要结合考虑x性(x)的极限,当入,d符合判别法条件l)或幻后,才有相应的结论。对入、d 用“尝试法洲对号入座”,一般不易掌握,但是考虑判别法的特点,还是有一定规律可循的。我们通过对下述例题的讨论,看怎样选取入与d。 例‘讨论几兴dx的敛散性 解一”是被积分函数‘(x,一兴的瑕点·”0<·<,时,in·<”,叮>”, 考虑极限31imx了 工一。+ 一Inx 、反二一1im一Inx~1sm4x寺一。‘一。十x一皿一。十 。___3___.,~~,、,,‘,_ 送里入~丁丈1,d~U,砍原积分收双。悦 分析讨论:能否取入一告呢?‘ 由极限lim、奋 x~。+ 一InX V下~lim(一inx)~一co,不满足O<入<1,O簇d<十、的条件。x一O+ 怎样确定入呢?我们考虑极限limx‘ x~。十 Inx 侧丁~1jm,要使该极限值为有限,而O<久

定积分高考试题精选

定积分高考试题精选 1、(2013江西卷(理))若222 2123111 1,,,x S x dx S dx S e dx x ===???则123S S S 的大小关系为 ( ) A .123S S S << B .213S S S << C .231S S S << D .321S S S << 【答案】B 2、(2013北京卷(理))直线l 过抛物线C: x 2 =4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 ( ) A . 4 3 B .2 C . 83 D . 162 3 【答案】C 3、(2013湖南卷(理))若 20 9,T x dx T =? 则常数的值为_________. 【答案】3 4、(2013湖北卷(理))一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()25 731v t t t =-+ +(t 的单位:s ,v 的单位:/m s )行驶至停止,在此期间汽车继续行驶的距离(单位:m )是( ) A .125ln5+ B .11 825ln 3 + C .425ln5+ D .450ln 2+ 【解析】令 ()257301v t t t =-+ =+,则4t =。汽车刹车的距离是402573425ln51t dt t ?? -+=+ ?+? ??,故选C 。 【相关知识点】定积分在实际问题中的应用 5、【2012湖北理3】已知二次函数()y f x =的图象如图所示,则它与 x 轴所围图形的面积为 A .2π 5 B .43 C .32 D .π2 【答案】B 【解析】根据图像可得: 2()1y f x x ==-+,再由定积分的几何意义,可求得面积为 1 2311114 (1)()33 S x dx x x --=-+=-+=?. 6、【2012江西理11】计算定积分 =+? -dx x x 1 1 2)sin (___________。 【答案】 3 2 【命题立意】本题考查微积分定理的基本应用。 【解析】 3 2)cos 31()sin (1 131 1 2=-=+--?x x dx x x 。 7、【2012山东理15】设0a >.若曲线y x =与直线,0x a y ==所围成封闭图形的面积为2 a ,则a =______. 【答案】9 4 =a 【解析】由已知得2 23023032|32a a x x S a a ====?,所以3221 =a ,所以9 4=a 。 8、【2012上海理13】已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,2 1 (B 、)0,1(C ,函数

高考定积分练习题

高考定积分应用常见题型大全 一.选择题(共21小题) 1.(2012?福建)如图所示,在边长为1的正方形中任取一点P,则点P恰好取自阴影部分的概率为() A.B.C.D. 2.(2010?山东)由曲线2,3围成的封闭图形面积为() A.B.C.D. 3.设f(x)=,函数图象与x轴围成封闭区域的面积为() A.B.C.D. 4.定积分的值为() A.B.32 C.3﹣2 D.62 5.如图所示,曲线2和曲线围成一个叶形图(阴影部分),其面积是() A.1B.C.D. 6.=() A.πB.2C.﹣πD.4 7.已知函数f(x)的定义域为[﹣2,4],且f(4)(﹣2)=1,f′(x)为f(x)的导函数,函数′(x)的图象如图所示,则平面区域f(2)<1(a≥0,b≥0)所围成的面积是()

A.2B.4C.5D.8 8.∫01与∫01相比有关系式() A. ∫01<∫01B. ∫01>∫01 C. (∫01)2=∫01D. ∫01∫01 9.若,,则a与b的关系是() A.a<b B.a>b C.D.0 10.的值是() A.B.C.D.11.若f(x)=(e为自然对数的底数),则=() A.2 ﹣e B.C. ﹣e2 D. ﹣2﹣e 12.已知f(x)=2﹣,则() A.3B.4C.3.5 D.4.5 13.设f(x)=3﹣﹣1|,则∫﹣22f(x)() A.7B.8C.7.5 D.6.5 14.积分=() A.B.C.πa2D.2πa2 15.已知函数的图象与x轴所围成图形的面积为()A.1/2 B.1C.2D.3/2 16.由函数(0≤x≤2π)的图象与直线及1所围成的一个封闭图形的面积是()

广义积分

第九章 广义积分习题课 一、主要内容 1、基本概念 无穷限广义积分和无界函数广义积分敛散性的定义、绝对收敛、条件收敛。 2、敛散性判别法 Cauchy 收敛准则、比较判别法、Cauchy 判别法、Abel 判别法、Dirichlet 判别法。 3、广义积分的计算 4、广义积分与数项级数的关系 5、广义积分敛散性的判别原则和程序 包括定义在内的广义积分的各种判别法都有特定的作用对象和原则,定义既是定性的――用于判断简单的具体广义积分的敛散性,也是定量的――用于计算广义积分,其它判别法都是定性的,只能用于判断敛散性,Cauchy 判别法可以用于抽象、半抽象及简单的具体广义积分的敛散性,比较判别法和Cauchy 判别法用于不变号函数的具体广义积分和抽象广义积分判别法,Abel 判别法和Dirichlet 判别法处理的广义积分结构更复杂、更一般。 对具体广义积分敛散性判别的程序: 1、比较法。 2、Cauchy 法。 3、Abel 判别法和Dirichlet 判别法。 4、临界情况的定义法。 5、发散性判别的Cauchy 收敛准则。 注、对一个具体的广义积分敛散性的判别,比较法和Cauchy 法所起作用基本相同。 注、在判断广义积分敛散性时要求: 1、根据具体题型结构,分析特点,灵活选择方法。 2、处理问题的主要思想:简化矛盾,集中统一,重点处理。 3、重点要掌握的技巧:阶的分析方法。 二、典型例子 下述一系列例子,都是要求讨论其敛散性。注意判别法使用的顺序。 例1 判断广义积分?+∞+=0q p x x dx I 的敛散性。 分析 从结构看,主要是分析分母中两个因子的作用。 解、记?+=101q p x x dx I ,?+∞+=12q p x x dx I

08第八讲 积分判别法

数学分析第十二章数项级数积分判别法 第八讲

数学分析第十二章数项级数 定理12.9(积分判别法) 积分判别法由于比式和根式判别法的比较对象是几何级数,局限性较大,所以还需要建立一些更有效的判别法. 设[1,)f +∞为上非负减函数,+1()d f x x 与反常积分∞ ?同时收敛或同时发散. 证由假设[1,)f 为+∞上非负减函数, f 在[1, A ]上可积,于是 对任何正数A ,那么正项级数()f n ∑

数学分析第十二章数项级数-≤≤-=?1()()d (1),2,3,. n n f n f x x f n n 依次相加可得1 122 1()()d (1)().(12)m m m m n n n f n f x x f n f n -===≤≤-=∑∑∑?若反常积分收敛,有 111()(1)()d (1)()d . m m m n S f n f f x x f f x x +∞==≤+≤+∑?? 根据定理12.5, 级数()f n ∑收敛. 则由(12)式左边, 对任何正整数m ,

数学分析第十二章数项级数反之, 若()f n ∑为收敛级数, 一正整数m (>1)有 -≤≤=∑?11()d (). (13)m m f x x S f n S 1 0()d , 1.A n f x x S S n A n ≤≤<≤≤+?因为f (x )为非负减函数, 法, 可以证明+1()()d f n f x x 与∞∑? 是同时发散的.112 21()()d (1)().(12)m m m m n n n f n f x x f n f n -===≤≤-=∑∑∑?则由(12)式右边,对任故对任何正数A ,都有111.2,()d .f x x +∞ ?根据定理反常积分收敛用同样方

高考定积分分类汇总及答案

第十四节 定积分与微积分基本定理(理) 一、选择题1.(2013·江西卷)若S 1=错误!x 2d x,S 2=错误!错误!d x ,S 3=错误!e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 13>S 1>S 2.故选B. A .3 B.4 C .3.5 ?D .4.5 答案 C 3.如图所示,图中曲线方程为y =x 2-1,用定积分表达围成封闭图形(阴影部分)的面积是( ) A .错误! B .??02(x2-1)d x C.错误!|x2-1|d x D .错误!(x2-1)d x+错误!(x2-1)d x 解析 面积S =错误!(1-x2)d x +错误!(x2-1)dx =错误!|x 2-1|dx ,故选C.

4.(2012·湖北卷)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为( ) A.错误!B.错误!C.错误! D.错误! 5.(2013·湖北卷)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=7-3t+\f(25,1+t)(t的单位:s,v的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是() A.1+25ln5? B.8+25ln错误! C.4+25ln5 ?D.4+50ln2 解析令v(t)=0,7-3t+\f(25,1+t)=0 ∴3t2-4t-32=0,∴t=4,则汽车行驶的距离为错误!v(t)dt=错误!错误!d t = 错误!错误!错误!=7×4-错误!×42+25ln5-0=4+25ln5,故选C. 6.(2014·武汉调研)如图,设D是图中边长分别为1和2的矩形区域,E是

(完整版)关于利用定积分定义去解决数列极限问题总结

关于利用定积分定义去解决数列极限问题总结 ()()()()()()b 1 1 b n 0 首先研究一下定积分的定义函数f 如果对a,上一切分割及相应的一切积分和,只要分割的细度趋于0,就有一确定的极限,则称该极限为f 在a,上定积分,记为lim 在求部分数列极限问题中,经常会利用定积分的定义去解决,下面我跟大家讲解的再详细具体实用点,在求解过程中方法1:lim 这种做法是从左端n i i a T i n i i a k :x b x b f x dx f x f x dx f x ξξ→=-→∞ =??????=???=?∑?∑?()()()()()()()()()b n 1 11b n n 00b 点开始取函数值方法2:lim 这种做法是从右端点收尾取函数值一般在数列极限问题中我们通常是从右边往左边推,但是我发现在考研真题中上面两个等式 还是不实用,因为考试中通常是对区间取等分间隔=,也就是比如 n 方法1:lim =lim 方法2:n i i a k i n n i i a k k a f x dx f x b a x k b a b a f x dx f x f a n n f x ξξ→∞ =--→∞→∞===?-???--=?+ ? ??? ∑?∑∑?()()()()()()()n n 111b n 0lim =lim 易错点:我可以保证基本每个人都错过,就是在解决具体的真题时候,经常忘了乘错误示范:=lim ?具体求数列极限问题中一般是写成右边这个形式,然后去推测相应的f ,和a,具体数值也就是说要推测三个n n i i k k n a k k b a b a dx f x f a n n b a n k b a f x dx f a n x b ξ→∞→∞==-→∞=??--=?+ ? ?????- ? ? ???- ?+ ? ? ?????∑∑?∑?()()()()1 1 100n n 0量,我感觉有点难,所以我想把这个问题变得再详细具体实用点,我发现在具体应用中不管怎么出,我都可以把a=0,b=1去研究 我是有理由的,大家可以思考下为什么我可以敢这样说,这样做题有一个好处就是只需要推测f 这一个量就可以了, 此时把上面两种方法再修改一下:令a=0,b=1 1 方法1:=lim ,方法2:=lim n k k x k k f x dx f f x dx f n n n -→∞→∞==???? ? ??? ??∑??11 现在问题又来了,在考试的时候涉及到关于数列极限的问题时,怎么才能想到是利用 定积分的定义去求呢? 带着这个疑问,我们再研究一下上面两种方法划横线部分的形式n n ∑

定积分和广义积分的区别与联系

反常积分与定积分有何区别和联系 要想得出定积分和广义积分的区别与联系,我们需要先明确两者的定义。从定义的角度出发,对其进行讨论 定积分:设函数f(x)在区间[a,b]上有界,在[a,b]任意插入n-1个分点, a=x 0a,如果极限 ?+∞→b a b f dx x lim )( 存在,则称此极限为函数f(x)在无穷区间[a,+∞)上的反常积分,记作 ?? +∞→+∞ =b b a dx x f dx x f a )(lim )( 瑕积分:设函数f(x)定义在(a,b]上,而在x=a 的任一右邻域内f(x)无界(此时称x=b 为f(x)的瑕点),若f(x)在任意[a-ε,b](0<ε

相关文档
最新文档