Ginsenoside Rd Attenuates

Ginsenoside Rd Attenuates
Ginsenoside Rd Attenuates

Ginsenoside Rd Attenuates Myocardial Ischemia/ Reperfusion Injury via Akt/GSK-3b Signaling and Inhibition of the Mitochondria-Dependent Apoptotic Pathway

Yang Wang1.,Xu Li1.,Xiaoliang Wang2,Waynebond Lau2,Yajing Wang2,Yuan Xing1,Xing Zhang1, Xinliang Ma2*,Feng Gao1*

1Department of Physiology,Fourth Military Medical University,Xi’an,China,2Department of Emergency Medicine,Thomas Jefferson University,Philadelphia, Pennsylvania,United States of America

Abstract

Evidence suggests Ginsenoside Rd(GSRd),a biologically active extract from the medical plant Panax Ginseng,exerts antioxidant effect,decreasing reactive oxygen species(ROS)formation.Current study determined the effect of GSRd on myocardial ischemia/reperfusion(MI/R)injury(a pathological condition where ROS production is significantly increased)and investigated the underlying mechanisms.The current study utilized an in vivo rat model of MI/R injury and an in vitro neonatal rat cardiomyocyte(NRC)model of simulated ischemia/reperfusion(SI/R)injury.Infarct size was measured by Evans blue/TTC double staining.NRC injury was determined by MTT and lactate dehydrogenase(LDH)leakage assay.ROS accumulation and apoptosis were assessed by flow cytometry.Mitochondrial membrane potential(MMP)was determined by5,59,6,69-tetrachloro-1,19,3,39-tetrathylbenzimidazol carbocyanine iodide(JC-1).Cytosolic translocation of mitochondrial cytochrome c and expression of caspase-9,caspase-3,Bcl-2family proteins,and phosphorylated Akt and GSK-3b were determined by western blot.Pretreatment with GSRd(50mg/kg)significantly augmented rat cardiac function,as evidenced by increased left ventricular ejection fraction(LVEF)and6d P/d t.GSRd reduced myocardial infarct size,apoptotic cell death,and blood creatine kinase/lactate dehydrogenase levels after MI/R.In NRCs,GSRd(10m M)inhibited SI/R-induced ROS generation(P,0.01),decreased cellular apoptosis,stabilized the mitochondrial membrane potential(MMP),and attenuated cytosolic translocation of mitochondrial cytochrome c.GSRd inhibited activation of caspase-9and caspase-3, increased the phosphorylated Akt and GSK-3b,and increased the Bcl-2/Bax ratio.Together,these data demonstrate GSRd mediated cardioprotective effect against MI/R–induced apoptosis via a mitochondrial-dependent apoptotic pathway.

Citation:Wang Y,Li X,Wang X,Lau W,Wang Y,et al.(2013)Ginsenoside Rd Attenuates Myocardial Ischemia/Reperfusion Injury via Akt/GSK-3b Signaling and Inhibition of the Mitochondria-Dependent Apoptotic Pathway.PLoS ONE8(8):e70956.doi:10.1371/journal.pone.0070956

Editor:Qingbo Xu,King’s College London,University of London,United Kingdom

Received May2,2013;Accepted June24,2013;Published August16,2013

Copyright:?2013Wang et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License,which permits unrestricted use,distribution,and reproduction in any medium,provided the original author and source are credited.

Funding:This work was supported by grants from the National Basic Research Program of China(No.2013CB531204),the State Key Program of National Natural Science Foundation of China(No.81030005),and the National Natural Science Foundation of China(No.81270301).

Competing Interests:The authors have declared that no competing interests exist.

*E-mail:fgao@https://www.360docs.net/doc/6e6881298.html,(FG);xin.ma@https://www.360docs.net/doc/6e6881298.html,(XLM)

.These authors contributed equally to this work.

Introduction

Ginseng,the root of Panax ginseng C.A.Mayer(Araliaceae),is a popular traditional Chinese medicinal herb.Although the mechanisms responsible for ginseng’s various effects remain largely unknown,several active ingredients termed ginsenosides have been isolated from the plant[1–3].Ginsenoside Rd,Dammer-24(25)-ene-3b,12b,20(S)-triol-(20-O-b-D-glucopyranosyl)-3-O-b-D-glucopyranosyl-(1R2)-b-D-gluco-pyranoside(GSRd, C48H82O18?3H2O,molecular weight1001,Figure1),one of the major P.ginseng isolates,scavenges free radicals[4,5],inhibits Ca2+-influx via receptor and store-operated Ca2+channels[6], and protects against neuronal apoptosis[4,7].Therefore,in addition to being highly lipophilic and capable of easily diffusing across biological membranes,GSRd may have significant advan-tageous cardiac effects.However,it has not been investigated whether GSRd exerts protective effect against myocardial ischemia-reperfusion(MI/R)injury,or by what potential mechanisms.

Toxic reactive oxygen species(ROS)generated during MI/R both directly and indirectly affect cardiomyocyte function, promoting apoptosis and necrosis[8].Mitochondria are both a major endogenous source and target of ROS,including superox-ide anions,hydrogen peroxide,peroxynitrite,and hydroxyl radicals.Mitochondrial dysfunction increases ROS production, exacerbating oxidant-induced apoptosis[9,10].During early reperfusion,ROS burst alters intracellular redox states,modifies the inner mitochondrial membrane potential(MMP),and releases mitochondrial-cytochrome c into the cytosol,ultimately activating caspase-3in the final apoptotic pathway[11,12].Preventing ROS production and preserving mitochondrial integrity are therefore protective against MI/R injury.Clinical evidence demonstrates GSRd potently suppresses ROS generation[4,13].It remains unknown whether GSRd may decrease MI/R-induced ROS

generation,or whether GSRd may inhibit the mitochondrial-dependent apoptotic pathway.

The phosphatidylinositol-3-kinase (PI3K)/Akt pathway is car-dioprotective against MI/R injury [14–16].Additionally,PI3K/Akt pathway activation attenuates mitochondria-mediated apop-tosis [17,18].Serine/threonine kinase Akt is a primary mediator of the downstream effects of phosphatidylinositol-3kinase (PI3K),preserving mitochondrial integrity by phosphorylating molecules such as the Bcl-2family and GSK-3b [19].Glycogen synthase kinase 3b (GSK-3b )is a serine/threonine kinase;phosphorylated GSK-3b is cardioprotective against MI/R injury [20].Although GSRd has been demonstrated to be anti-apoptotic by activating PI3K/Akt [21],whether GSRd suppresses mitochondrial-depen-dent apoptosis during MI/R via PI3K/Akt/GSK-3b signaling remains unknown.

Therefore,the aims of this study were:1)to determine whether GSRd exerts any cardioprotective effect against MI/R injury;2)to determine whether GSRd may decrease oxidative stress in rats subjected to MI/R;and if so,3)to investigate the responsible underlying mechanisms.

Materials and Methods Animals and reagents

This study was performed in adherence with the National Institutes of Health Guidelines for the Use of Laboratory Animals,and was approved by the Fourth Military Medical University Committee on Animal Care.Male Sprague-Dawley (SD)rats weighing 270–320g were provided by the Experimental Animal Center of the Fourth Military Medical University (Xi’an,China).All animals were allowed free access to food and water,and were maintained at 22–24u C under a 12hour:12hour light-dark cycle.GSRd (purity 98%,Tai-He Biopharmaceutical Co.Ltd,Guangz-hou,China)stock solutions were prepared in saline containing 10%1,3-propanediol (v/v).Fetal bovine serum (FBS)and Dulbecco’s modified Eagle’s medium (DMEM)were from Gibco (Grand Island,NY,USA).TUNEL apoptosis kit was from Roche Diagnostics (Mannheim,Germany).Propidium iodide (PI),Annexin-V,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT),29,79-dichorofluoresceine diacetate (DCFH-DA),and 5,59,6,69-tetrachloro-1,19,3,39-tetraethyl-benzimidazol-carbocyanine iodide (JC-1)were from Sigma-Aldrich Inc.(St.Louis,MO,USA).Antibodies against Bcl-2,Bax,caspase3,caspase9,cytochrome c,and b -actin were from Santa Cruz

Biotechnology (Santa Cruz,CA,USA).Antibodies against Akt,phospho-Akt (Ser473),GSK-3b ,and phosphor-GSK-3b (Ser9)were from Cell Signaling Technology (Beverly,MA,USA).All other reagents were of standard biochemical quality from commercial suppliers.

Myocardial ischemia/reperfusion (MI/R)model in rats

Adult male Sprague-Dawley rats were fasted overnight,and anesthetized via intraperitoneal (IP)administration of 50mg/kg pentobarbital sodium.A micro-catheter was inserted into the left ventricle through the right carotid artery to measure the left ventricular pressure.Myocardial ischemia was produced after exteriorizing the heart via a left thoracic incision,and placing a 6–0silk slipknot suture around the left anterior descending coronary artery approximately 2–3mm from its origin.Ischemia was monitored and confirmed by ST segment elevation upon electrocardiogram (ECG).After 30minutes ischemia,the slipknot was released,and myocardial reperfusion for 3hours.Rats were randomly assigned to one of the following treatments (n =8/group):1)Sham group,receiving vehicle IP injection (10ml/kg saline)and operative procedures without coronary slipknot;2)MI/R group,receiving vehicle IP injection (10ml/kg saline)30min-utes prior to coronary I/R;and 3)MI/R +GSRd group,receiving GSRd IP injection (50mg/kg)30minutes prior to coronary I/R,a dose established from prior investigations [13,22].

Isolation of primary neonatal rat cardiomyocytes and simulated ischemia/reperfusion (SI/R)

Neonatal rat cardiomyocytes (NRCs)were isolated from 1–2day old Sprague-Dawley rats.Briefly,excised hearts were washed in Hanks balanced salt solution (HBSS;Ca 2+-Mg 2+free).Ventricles were freed of associated tissues,minced,subjected to 5–60.125%trypsin washes (37u C),filtered,and centrifuged at 1,000rpm for 10minutes.Supernatant was resuspended in DMEM containing 20%fetal bovine serum,penicillin (100U/mL),and streptomycin (100U/mL).Resuspended cells were placed in a petri dish in a humidified incubator (5%CO 2,37u C)for 90minutes to promote dish surface attachment of non-myocytes suspended in solution.Cells were harvested and seeded onto 60-mm culture dishes.5-Bromo-29-deoxyuridine (100m M)was added during the first 48hours to inhibit non-myocyte proliferation.Simulated I/R (SI/R)was employed as previously described [23].Briefly,simulated ischemia buffer (composition in mM:NaCl 98.5,KCl 10,MgSO 41.2,CaCl 21.0,HEPES 20,sodium lactate 40,pH 6.8)and simulated reoxygenation buffer (composition in mM:NaH 2PO 40.9,NaHCO 320.0,CaCl 21.0,MgSO 41.2,HEPES 20.0,NaCl 129.5,KCl 5.0,glucose 5.5,pH 7.4)were prepared in advance.Confluent-beating cells in 6-well plates were subjected to medium replacement with simulated ischemia buffer,incubated in a hypoxic chamber (of humidified atmosphere 5%CO 2/0%O 2balanced with N 2at 37u C)for 3hours,and then reoxygenated in a standard incubator for 2hours with medium replacement with re-oxygenation buffer.Cells subjected to control conditions were cultured with normal Tyrode solution (pH 7.4)in a humidified atmosphere of 5%CO 2/21%O 2balanced with N 2at 37u C for 5hours.Four separate NRC groups were tested:

1)Control group,incubated with Tyrode solution for the entire experimental period;

2)SI/R group,incubated with simulated ischemia buffer for 3hours hypoxia,followed by 2hours

re-oxygenation;

Figure 1.The chemical structure of GSRd.The molecular formula of GSRd (C 48H 82O 18?3H 2O).Its molecular weight is 1001.doi:10.1371/journal.pone.0070956.g001

3)Vehicle group,subjected to 0.2%(v/v)DMSO administration 30minutes prior to SI/R;

4)SI/R +GSRd group,subjected to GSRd (10m M)administra-tion 30minutes prior to SI/R,a dose selected based upon dose-response experiments and previous investigations [5,24].

Determination of cardiac function

MI/R-induced cardiac dysfunction was determined by invasive hemodynamic evaluation methods.A micro-catheter was inserted into the left ventricle via the right carotid artery to measure the left ventricular pressure (LVP).ECG and LVP were simultaneously recorded on a polygraph (RM-6200C;Chengdu,Instrument,Chengdu,China).Computer algorithms measured left ventricular systolic pressure (LVSP),left ventricular end-diastolic pressure (LVEDP),first derivative of left ventricular pressure (6d P /d t max ),and heart rate (HR)at baseline,after 30minutes ischemia,and after 1,2,and 3hours of reperfusion.

Determination of myocardial infarct size

After reperfusion conclusion,the coronary artery ligature was retied.4mL of 2%Evans blue dye (Shanghai Chemical Reagents,Shanghai,China)was injected into the aorta.Dye was circulated and uniformly distributed,except in the cardiac region previously perfused by the occluded coronary artery (defining the ischemic region or area at risk,AAR).Cardiectomy was rapidly performed.Hearts were frozen at 220u C and sliced into 1-mm sections perpendicular to the base-apex.Slices were incubated in 1%TTC in phosphate buffer at 37u C for 10minutes (pH 7.4).Morpho-metric measurements of AAR and infarct area (INF)were performed by image analysis system (Image-Pro plus;Media Cybernetics,Bethesda,MA).Myocardial infarct size was expressed

as percentage of infarct area (INF)over total AAR (INF/AAR 6100%).

Determination of in vivo necrosis and cell death

Myocardial cellular damage and necrosis were evaluated by measuring plasma levels lactate dehydrogenase (LDH)and creatine kinase (CK).Blood samples (1mL)were drawn after 3hours reperfusion.LDH and CK levels were measured in blinded manner by spectrophotometry (DU 640;Beckman Coulter,Brea,CA)in duplicate.

Determination of myocardial apoptosis

Myocardial apoptosis was determined by a commercially available terminal deoxynucleotidyl nick-end labeling (TUNEL)assay per manufacturer’s protocol.TUNEL-positive cardiomyo-cytes in ischemic myocardium were counted in double-blinded fashion.The percentage of TUNEL-positive cells was determined by dividing the number of positive-staining nuclei by the total number of nuclei in a given field of view (at 200microscopic magnification).

An additional test was performed to assess myocardial apoptosis with greater specificity.Cardiac caspase-3activity was determined via caspase-3colorimetric assay kit (Chemicon,Temecula,CA).In brief,myocardial tissue was homogenized in ice cold lysis buffer for 30seconds.The homogenates were centrifuged.Supernatants were collected,and protein concentrations were measured by bicinchoninic acid method.To each well of a 96-well plate,supernatant containing 200m g of protein was loaded and incubated with 25m g caspase-3substrate N-acetyl-Asp-Glu-Val-Asp (DEVD)-p-nitroanilide at 37u C for 1.5hours.The optical density was measured at 405nm with a SpectraMax-Plus microplate spectrophotometer.Caspase-3activity was

calculated

Figure 2.Ginsenoside Rd improves rat cardiac function after 30minutes ischemia and 3hours reperfusion.Values presented are mean 6SEM.Abbreviations:LVSP,left ventricular systolic pressure;LVEDP,left ventricular end diastolic pressure;6LVd P /d t max ,the instantaneous first derivation of left ventricle pressure;MI/R,myocardial ischemia/reperfusion (30minutes/3hours).n =8/group.**P ,0.01vs.Sham,#P ,0.05,##

P ,0.01vs.MI/R.

doi:10.1371/journal.pone.0070956.g002

Figure3.Ginsenoside Rd reduced rat myocardial injury(infarct size,necrosis,and apoptosis)post MI/R.(A)Myocardial infarct size in rats subjected to30minutes I,followed by3hours R.Blue-staining represents non-ischemic tissue,red-staining represents the area at risk,and pale areas indicate infracted regions.Myocardial infarct size(INF)expressed as percentage of area at risk(AAR).(B)Plasma creatine kinase(CK)and lactate dehydrogenase(LDH)levels.(C)Left:Representative photomicrographs of in situ detection of apoptotic cardiomyocytes by terminal deoxynucleotidyl nick-end labeling(TUNEL)staining in MI/R heart tissue.Green fluorescence indicates TUNEL-positive apoptotic nuclei;blue fluorescence indicates total cardiomyocyte nuclei.Original magnification2006;Right:Percentage of TUNEL-positive nuclei in heart tissue sections.

(D)Myocardial caspase-3activity.All values presented are mean6SEM.n=8/group.**P,0.01vs.Sham,#P,0.05,##P,0.01vs.MI/R.

doi:10.1371/journal.pone.0070956.g003

Figure4.Ginsenoside Rd ameliorated SI/R-induced in vitro cell injury(viability,death,and apoptosis).(A)GSRd treatment alone(0.1–50m M)for24hours did not alter NRC viability,suggesting no GSRd-induced toxicity at concentrations up to10m M(n=8;*P.0.05vs.Control).(B) Cellular viability as determined by MTT assay after SI/R(3hours hypoxia followed by2hours reoxygenation).(C)Cellular death post GSRd treatment alone for24hours as determined by LDH leakage into medium(n=8;*P.0.05vs.Control).(D)LDH assay in cells administered GSRd(0.1,1,10m M) 30minutes prior to SI/R.(E)SI/R-induced apoptosis as determined by Annexin V-FITC/PI flow cytometry in control and vehicle groups.(F)10m M GSRd significantly reduced SI/R-induced apoptosis as determined by Annexin V-FITC/PI flow cytometry.All values presented are mean6SEM. **P,0.01vs.Control,#P,0.05,##P,0.01vs.SI/R.These experiments were performed in triplicate with similar results.

doi:10.1371/journal.pone.0070956.g004

using a standard curve and expressed as fold increase over the mean value of sham MI.Determination of cellular viability

Cellular viability was determined by MTT assay.NRCs were distributed into a 96-well plate (density 16105cells/well),and pretreated with different GSRd concentrations (0.1–50m M).After experimental treatment,MTT was added to each well (final concentration 0.5mg/mL).Plates were incubated for 4hours at 37u C.Absorbance of blue formazan derivative,indicating viability,was measured at 570nm via microplate reader (Bio-Rad Laboratories,CA,USA).All measurements were performed in duplicate.

Determination of in vitro cellular injury

Cellular injury was determined by LDH release.0.2mL of culture medium from NRCs post H/R treatment was analyzed by spectrophotometry via commercial assay kit (UV-120-02,Shang-hai,China),per manufacturer’s protocol.Cellular LDH release was expressed as the percentage of total cell LDH activity.All measurements were performed in duplicate.

Determination of apoptosis by flow cytometry

The NRC apoptotic ratio was determined by flow cytometry with annexin V-FITC/PI staining per manufacturer’s protocol.In brief,NRCs were plated upon a six-well plate,and pretreated with 10m M GSRd for 30minutes followed by SI/R treatment.After experimental treatment,cells were collected,washed with calcium-free PBS,and resuspended in binding buffer.Cells were treated with annexin V-FITC and PI,placed in the dark at room

temperature for 15minutes,and analyzed by a Beckton-Dickinson flow cytometer (FACS).

Measurement of intracellular reactive oxygen species

ROS generation was determined by fluorescent probe DCFH-DA.Cell-permeable non-fluorescent DCFH-DA oxidizes to the highly fluorescent 2,7-dichlorofluorescin in ROS presence.NRCs were plated upon a six-well plate,and pretreated with 10m M GSRd for 30minutes followed by SI/R treatment.Cells were harvested by trypsinization.After two PBS washings,10m M DCFH-DA was added for 20minutes at 37u C in the dark.Fluorescence intensity was measured by flow cytometry (Coulter,USA)at excitation wavelength 488nm,and emission wavelength 525nm.

Measurement of mitochondrial membrane potential

Mitochondrial membrane potential (MMP)was evaluated by cationic dye JC-1.In normal cells,JC-1aggregates in mitochon-dria,fluorescencing red.In apoptotic cells,JC-1accrues in the cytosol,as a green fluorescencing monomer.At the experiment’s conclusion,16106cells were harvested by trypsinization.After two PBS washings,cells were incubated with JC-110m g/mL for 15minutes at 37u C in the dark.Cells were harvested,suspended in PBS,and analyzed by flow cytometry.

Western blot analysis

Whole cell extracts were prepared as follows:Cultured NRCs were washed twice with cold PBS and immersed in lysis buffer (composition:50mM HEPES,pH 7.4,0.1%Chaps,5mM DTT,0.1mM EDTA,and 0.1%Triton X-100).Cell lysates were centrifuged.Protein concentrations in the supernatants

were

Figure 5.Ginsenoside Rd reduces intracellular ROS generation in NRCs subjected to SI/R.Intracellular ROS accumulation was measured via fluorescence probe DCFH-DA.Fluorescent intensity was determined at excitation wavelength 488nm and emission wavelength 525nm via flow cytometry.Values presented are mean 6SEM.**P ,0.01vs.Control,#P ,0.05vs.SI/R.These experiments were performed in triplicate with similar results.

doi:10.1371/journal.pone.0070956.g005

determined by Bradford Protein Assay Kit (Bio-Rad,CA,USA).Equal samples were loaded onto and separated by 12%SDS-polyacrylamide gel electrophoresis.Proteins were transferred to nylon membranes by electrophoretic transfer system (Bio-Rad).Membranes were blocked in 5%skim milk for 1hour at room temperature.Incubation with primary antibody commenced overnight at 4u C,followed by secondary antibody conjugated to horseradish peroxidase for 2hours.Immunoblot was visualized with ChemiDocXRS (Bio-Rad Laboratory,Hercules,CA),and analyzed with LabImage software.

Statistical analysis

All values are presented as mean 6SEM.Differences were evaluated by AVOVA followed by Bonferroni correction for post hoc t -test,where appropriate.P values less than 0.05were considered significant.All statistical tests were performed with GraphPad Prism software,version 5.0(GraphPad Software,San Diego,CA).

Results

Ginsenoside Rd improves rat cardiac function after MI/R

GSRd had no effects on blood glucose,blood pressure and cardiac function in the absence of MI/R.No significant hemodynamic differences existed between groups at baseline conditions.Additionally,there were no significant differences in heart rate (HR)and mean arterial pressure (MAP)between any groups during MI/R.Pretreatment with GSRd enhanced 6LV dP /dt max after 3hours reperfusion compared to MI/R group (Figure 2).Additionally,GSRd markedly decreased LVEDP post-I/R compared to MI/R group (P ,0.01).Hemodynamic data support GSRd improved rat cardiac systolic and diastolic function after MI/R.

Ginsenoside Rd reduced rat myocardial injury (infarct size,necrosis,and apoptosis)post MI/R

Myocardial infarct size and plasma CK and LDH were measured to assess myocardial injury post I/R.Representative AAR and INF images are shown in Figure 3A.No myocardial infarction was observed in sham-group hearts.30minutes MI followed by 3hours R resulted in significant infarction in MI/R group rats compared to sham (36.0%61.5%versus sham,P ,0.01).GSRd treatment significantly decreased infarct size (20.9%62.3%versus 36.0%61.5%MI/R-group,P ,0.01).There was no significant difference in AAR between all groups.

Cardiomyocyte necrosis is characterized by cellular content release.To determine whether GSRd attenuated MI/R-induced cardiomyocyte necrosis,plasma CK and LDH levels were measured after reperfusion conclusion.Plasma CK and LDH levels increased to 3,3246228and 2,3276143U/L respectively in the MI/R-group (Figure 3B).GSRd treatment markedly de-creased CK and LDH levels (2,2386160and 1,3206109U/L respectively,P ,0.01)in the MI/R group.These indicators support GSRd decreased in vivo myocardial necrosis post-MI/R.Apoptosis is the major mechanism of cell death immediately following a short period of ischemia with ensuing reperfusion,and was assessed by two methods,TUNEL staining and caspase-3activity.As expected,TUNEL-positively staining cells were minimally detected (3.0%61.2%)in the sham-group (Figure

3C),

Figure 6.Ginsenoside Rd increases mitochondrial membrane potential (MMP)in NRCs subjected to SI/R.MMP was measured with fluorescent dye JC-1.10m M GSRd was administered 30minutes prior to SI/R.Fluorescent intensity of JC-1was determined at excitation wavelength 488nm and emission wavelength 530nm via flow cytometry.Values presented are mean 6SEM.**P ,0.01vs.Control,##P ,0.01vs.SI/R.These experiments were performed in triplicate with similar results.doi:10.1371/journal.pone.0070956.g006

whereas the MI/R group exhibited a significant number of TUNEL-positively cells (16.3%61.8%).GSRd pretreatment significantly reduced TUNEL-positively staining cells (11%62.3%).Myocardial caspase-3activity is a very specific indicator of cardiomyocyte apoptosis.Consistent with TUNEL results,the MI/R group exhibited significantly increased caspase-3activity (3.060.2versus 0.960.2,P ,0.01,Figure 3D).GSRd substantially reduced caspase-3activity compared to the MI/R-group (1.960.3versus 3.060.2,P ,0.05).Together,these data suggest GSRd decreased post-MI/R myocardial apoptosis in vivo.

Ginsenoside Rd ameliorated in vitro cell death (viability,death,and apoptosis)post SI/R

To first determine the effects of GSRd alone upon NRCs,cells were treated with varying concentrations of GSRd (0.1–50m M).GSRd alone at these concentrations for 24hours was not cytotoxic by MTT and LDH leakage assay (Figure 4A,4C).Concentration response curves determining cellular viability are shown in Figure 4B.Peak cellular viability was observed at GSRd dose 10m M.

Cellular viability and LDH leakage are indices of NRCs injury.After being subject to SI/R,cellular viability in the vehicle group was significantly reduced 41%60.6%compared to control,and

LDH leakage increased 16.33%62.3%compared to control (all P ,0.01).GSRd (0.1,1,and 10m M)markedly reduced SI/R-induced cell death,respectively increasing viability rate to 59%61.8%,63%63.9%,and 69%63.7%and decreasing LDH leakage to 11%61.7%,10.3%60.9%,and 7.3%60.9%(P ,0.01,Figure 4B,4D).Together,these results indicate GSRd significantly preserved cellular viability post-SI/R injury in a dose-dependent manner (at concentrations up to 10m M).

Cellular apoptosis was assessed by flow cytometry (Figure 4E).Annexin V/PI double staining demonstrated significant apoptotic increase in vehicle group compared to control post SI/R (19.9%61.1%versus 3.1%60.2%,P ,0.01).10m M GSRd markedly decreased apoptosis (6.3%60.7%,P ,0.01,Figure 4F).Taken together,these in vitro results support GSRd as a potent cardioprotective agent,in consistent fashion with in vivo data.

Ginsenoside Rd reduces intracellular ROS generation,increases mitochondrial membrane potential (MMP),and decreases cytochrome c release in NRCs subjected to SI/R

Intracellular ROS levels were assessed by determining DCF fluorescence intensity via flow cytometry.SI/R induced rapidly and significantly increased DCF fluorescence (P ,0.01,Figure

5A).

Figure 7.Ginsenoside Rd inhibits mitochondrial-mediated apoptosis in NRCs subjected to SI/R.(A )Representative western blot for cytochrome c release.SI/R increased cytosolic translocation of mitochondrial cytochrome c.Densitometric analysis demonstrates 10m M GSRd inhibited mitochondrial cytochrome c release.(B )Representative western blot for Bcl-2and Bax expression after various experimental treatments.Densitometric analysis demonstrates SI/R reduced the Bcl-2/Bax ratio,but GSRd increased the Bcl-2/Bax ratio.(C )Representative western blot for SI/R-induced casepase-3and caspase-9activation.Densitometric analysis demonstrates 10m M GSRd reduced expression of cleaved caspase-9and caspase-3.All values presented are mean 6SEM.n =6;**P ,0.01vs.Control,#P ,0.05,##P ,0.01vs.SI/R.doi:10.1371/journal.pone.0070956.g007

However,pretreatment of NRCs prior to SI/R significantly decreased DCF fluorescence (P ,0.05,Figure 5B),suggesting GSRd significantly reduced ROS generation during SI/R in NRCs.

Mitochondrial membrane potential (MMP)is an important early determinant of the mitochondrial apoptotic pathway.We investi-

gated the effects of GSRd upon MMP and cytochrome c release.MMP detection was performed utilizing JC-1dye to assess mitochondrial membrane depolarization.NRCs subjected to SI/R exhibited substantially decreased mitochondrial depolarization compared to control (P ,0.01,Figure 6A).Pretreatment with 10m M GSRd significantly stabilized the MMP (P ,0.01,Figure 6B).Mitochondrial depolarization releases several apoptogenic proteins,most notably cytochrome c into the cytosol.Western blot analysis demonstrated SI/R increased mitochondrial cytochrome c release into cytosol,and 10m M GSRd decreased cytochrome c release (0.960.03versus 0.760.02,P ,0.05,Figure 7A).Together,these results suggest GSRd may attenuate apoptosis by potentially involving the mitochondrial apoptotic pathway.

Ginsenoside Rd modulates Bcl-2and Bax expression in NRCs subjected to SI/R

Next,we determine whether GSRd protects against SI/R-induced apoptosis in NRCs by modulating the Bcl-2family proteins.SI/R treatment decreased Bcl-2(an anti-apoptotic protein)expression,and increased Bax (a pro-apoptotic protein)expression,decreasing the Bcl-2/Bax ratio (Figure 7B).Pretreating NRCs with 10m M GSRd prior to SI/R promoted Bcl-2expression and inhibited Bax expression,increasing the Bcl-2/Bax ratio (Figure 7B).

Ginsenoside Rd decreases caspase-3activity in NRCs subjected to SI/R

Caspases regulate cellular apoptosis.Cytochrome c release activates caspase-9,which activates caspase-3.SI/R significantly increased expression of both cleaved caspase-9and caspase-3,which was attenuated by 10m M GSRd pretreatment (Figure

7C).

Figure 8.Ginsenoside Rd increases phosphorylation of Akt and GSK-3b in NRCs subjected to SI/R.Densitometric analysis demonstrates GSRd increased the ratio of P-Akt/Akt and P-GSK-3b /GSK-3b ,which was significantly blocked by Akt-inhibitor LY294002.Values presented are mean 6SEM.n =6;#P ,0.05,##P ,0.01vs.SI/R,&&P ,0.01vs.SI/R +GSRd.

doi:10.1371/journal.pone.0070956.g008

Figure 9.Schematic diagram depicting protective signaling of GSRd in MI/R-induced apoptosis.GSRd inhibits the apoptotic signaling cascades initiated by MI/R-generated ROS.Arrows (R )indicate activation or induction,and segments ending with a (w )indicate inhibition/blockade.Solid lines (—)indicate mechanisms strongly supported by the current study,and dotted lines (--)indicate hypothesized connections requiring further investigations.doi:10.1371/journal.pone.0070956.g009

Ginsenoside Rd increases phosphorylation of Akt and GSK-3b in NRCs subjected to SI/R

To further investigate the molecular mechanism underlying GSRd-mediated cardioprotection,we determined P-Akt/Akt and P-GSK-3b/GSK-3b in NRCs post SI/R by western blot.There was no significant difference in Akt and GSK-3b expression between treatment groups at baseline(Figure8).Consistent with previous reports,SI/R alone increased phosphorylation of Akt and GSK-3b.Pretreatment with10m M GSRd significantly increased phosphorylation of Akt and GSK-3b(and consequently increased P-Akt/Akt and P-GSK-3b/GSK-3b ratios,P,0.01).Pretreatment with PI3K inhibitor LY294002blocked GSRd-mediated phos-phorylation of Akt and GSK-3b.

Discussion

Several important observations were made in the present study. Firstly,we demonstrate that pretreatment with GSRd attenuated in vivo MI/R injury in a rat model(evidenced by improved cardiac function,reduced infarct size,and reduced myocardial apoptosis after MI/R),and reduced in vitro SI/R injury in cultured NRCs(evidenced by increased cardiomyocyte viability, decreased cardiomyocyte LDH activity,and reduced cardiomyo-cyte caspase-3and-9cleavage).Secondly,we provide the first evidence that GSRd reduces intracellular ROS generation in cardiomyocytes,and inhibits myocardial apoptosis induced by SI/ R via the mitochondrial-dependent apoptotic pathway.Finally,we demonstrate Akt/GSK-3b signaling pathway activation signifi-cantly contributes to the anti-apoptotic effect of GSRd.

The medical herb ginseng is used worldwide.Ginsenosides, triterpene saponins,are a major ginseng component.More than 40ginsenosides have been identified.Previous studies demonstrate ginsenosides have significant protective effects in the cardiovascu-lar system[25–27].Wang et al.studied MI/R injury in an in vivo rat model,and reported ginsenoside reduced infarct size and improved resultant myocardial pathologic changes[28].In a cell culture model,Chen et al.reported panax notoginseng saponins prevented cardiomyocyte apoptosis induced by glucose and oxygen deprivation injury via PI3K/Akt signaling[29].The ginsenoside GSRd is highly lipophilic,and easily diffuses across biological membranes[5].Heretofore,its effects against MI/R injury have never been investigated.Ginsenoside Rb1and Re have been demonstrated to exert direct depressant action upon cardiomyocytes contraction,mediated in part via increased NO production,reducing afterload and improving cardiac pump function[30].In our current study,GSRd augmented cardiac function,increasing6LVd P/d t max and decreasing LVEDP,and reduced intracellular cardiomyocytes ROS generation.Further investigation will be necessary to dissect the mechanisms responsible for such divergent phenomenon.Nevertheless,our study supports in consistent fashion the potential beneficial clinical applications of GSRd.

During physiological conditions,a critical balance exists between free radical production and the endogenous antioxidant system[31,32].Pathological conditions such as ischemia and reperfusion tilt the balance in favor of ROS overproduction, increasing oxidative stress,a major apoptotic stimulus.Pharma-ceutics inhibiting ROS formation or antagonizing ROS toxicity are cardioprotective against reperfusion injury[12,33,34].In the current study and many others,MI/R injury caused infarction and cardiac dysfunction.SI/R injury in cultured NRCs induced significant cell death.GSRd both limited infarct size and augmented cardiac function in the employed rat MI/R model.GSRd attenuated cellular damage(measured by MTT viability and LDH activity assays)in cultured NRCs subjected to SI/R. Cardiomyocyte apoptosis is one of the major pathogenic mechanisms underlying MI/R injury[34].Cumulative evidence suggests that ROS,implicated in reperfusion toxicity,can trigger cardiomyocyte apoptosis via the mitochondrial apoptosis pathway [11,35,36].ROS released during the early phase of myocardial reperfusion strongly oxidizes cardiomyocytes already been dam-aged by ischemia.Cardiomyocytes are rich in mitochondria,a major endogenous source and susceptible target of ROS damage [37].Mitochondrial-mediated apoptosis plays an important role in MI/R injury pathogenesis[8].Under normal conditions, cytochrome c is located within mitochondria.During intracellular ROS overproduction,collapse of the mitochondrial membrane potential(MMP)results in mitochondrial permeability transition pore(mPTP)opening,and rapidly releasing cytochrome c into the cytoplasm.Once released,cytochrome c binds the C-terminal domain of the apoptotic protease activating factor-1(Apaf-1), inducing a conformation change.The activated Apaf-1/cyto-chrome c complex promotes caspase activation[38].Caspases transduce and execute apoptotic signaling[11].Caspase-3(of the terminal common apoptotic pathway)is also activated by caspase-9,which is activated by the mitochondria-mediated apoptotic pathway.In the current study,we demonstrate GSRd pretreat-ment mitigated SI/R-induced intracellular ROS,MMP,and mitochondrial release of cytochrome c into the cytosol,suggesting involvement of the mitochondrial pathway in GSRd-mediated cardioprotection.

The Bcl-2protein family,compromised of both anti-and pro-apoptotic members,are important mitochondrial regulators during cardiomyocyte apoptosis[12].Bcl-2regulates mPTP opening in opposition to Bax,blocking cytochrome c release, inhibiting caspase activity,and decreasing cell apoptosis[39,40]. Therefore,altering the Bcl-2/Bax ratio influences apoptotic balance.Western blot revealed SI/R significantly decreased the Bcl-2/Bax ratio,an effect reversed by GSRd administration, suggesting GSRd-mediated cardioprotection against SI/R injury may occur partially via modulating Bcl-2/Bax expression.

The serine survival kinase Akt is activated downstream of phosphatidylinositol3-kinase(PI3K).Activation of PI3K and Akt is cardioprotective against MI/R injury,and prevents cardiomyo-cyte apoptosis[41,42].Akt overexpression in cultured cardiomyo-cytes preserves mitochondria Bcl-2levels[18].Akt exerts its protective effects via phosphorylation of diverse target molecules (such as Bcl-2family and GSK-3),preserving mitochondrial integrity.A downstream effector of Akt,GSK-3b is phosphorylated at Ser9by Akt;phosphorylated GSK-3b attenuates MI/R injury [20].Phosphorylated GSK-3b suppresses mPTP opening by binding to adenine nucleotide translocase(ANT,one of the mPTP components),thereby reducing the affinity of ANT for cyclophilin D [39].In the present study,SI/R increased Akt and GSK-3b phosphorylation,consistent with previous reports demonstrating cardioprotective PI3K/Akt signaling in settings such as precondi-tioning[19,43].GSRd pretreatment further augmented Akt and GSK-3b phosphorylation and attenuated cellular apoptosis.The PI3K inhibitor LY294002partially blocked the effects of GSRd. Together,these results support mechanistic involvement of Akt/ GSK-3b signaling pathway in GSRd-mediated anti-apoptotic effect.

Several limitations exist in the current study.Phosphorylation of Akt by GSRd and its inhibition by LY294002provide strong supportive evidence for the involvement of Akt/GSK-3b in GSRd-induced MI/R protection.However,it is not clear LY294002completely reverses GSRd’s effect upon cellular

apoptosis.Additionally,while Akt overexpression preserves mitochondrial Bcl-2levels[18],but the specific mechanism by which GSRd activates Akt to modulation the Bcl-2/Bax ratio remains unknown,and warrants further investigation.

Taken together,our results demonstrate for the first time that GSRd exerts cardioprotection against myocardial MI/R injury by both reducing intracellular ROS and inhibiting mitochondria-mediated apoptosis.Activation of Akt/GSK-3b signaling is involved in the cardioprotective effect of GSRd(Figure9).The traditional herbal medicine GSRd may have therapeutic potential attenuating myocardial ischemia/reperfusion injury.Acknowledgments

We thank Dr.Gang Zhao for his kind help with providing GSRd stock solutions.

Author Contributions

Conceived and designed the experiments:YW XLW FG.Performed the experiments:YW XL.Analyzed the data:YW.Contributed reagents/ materials/analysis tools:YW YJW YX XZ.Wrote the paper:YW WBL XLM.

References

1.Lee JH,Kim SR,Bae CS,Kim D,Hong H,et al.(2002)Protective effect of

ginsenosides,active ingredients of Panax ginseng,on kainic acid-induced neurotoxicity in rat hippocampus.Neurosci Lett325:129–133.

2.Attele AS,Wu JA,Yuan CS(1999)Ginseng pharmacology:multiple constituents

and multiple actions.Biochem Pharmacol58:1685–1693.

3.Leung KW,Cheung LW,Pon YL,Wong RN,Mak NK,et al.(2007)

Ginsenoside Rb1inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen beta receptor.Br J Pharmacol152:207–215.

4.Ye R,Li N,Han J,Kong X,Cao R,et al.(2009)Neuroprotective effects of

ginsenoside Rd against oxygen-glucose deprivation in cultured hippocampal neurons.Neurosci Res64:306–310.

5.Ye R,Han J,Kong X,Zhao L,Cao R,et al.(2008)Protective effects of

ginsenoside Rd on PC12cells against hydrogen peroxide.Biol Pharm Bull31: 1923–1927.

6.Guan YY,Zhou JG,Zhang Z,Wang GL,Cai BX,et al.(2006)Ginsenoside-Rd

from panax notoginseng blocks Ca2+influx through receptor-and store-operated Ca2+channels in vascular smooth muscle cells.Eur J Pharmacol548: 129–136.

7.Li XY,Liang J,Tang YB,Zhou JG,Guan YY(2010)Ginsenoside Rd prevents

glutamate-induced apoptosis in rat cortical neurons.Clin Exp Pharmacol Physiol37:199–204.

8.Kannan K,Jain SK(2000)Oxidative stress and apoptosis.Pathophysiology7:

153–163.

9.Jezek P,Hlavata L(2005)Mitochondria in homeostasis of reactive oxygen

species in cell,tissues,and organism.Int J Biochem Cell Biol37:2478–2503.

10.Gottlieb RA(2003)Mitochondrial signaling in apoptosis:mitochondrial daggers

to the breaking heart.Basic Res Cardiol98:242–249.

11.Yao K,Ye P,Zhang L,Tan J,Tang X,et al.(2008)Epigallocatechin gallate

protects against oxidative stress-induced mitochondria-dependent apoptosis in human lens epithelial cells.Mol Vis14:217–223.

12.Kumar D,Jugdutt BI(2003)Apoptosis and oxidants in the heart.J Lab Clin

Med142:288–297.

13.Ye R,Zhang X,Kong X,Han J,Yang Q,et al.(2011)Ginsenoside Rd

attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia.Neuroscience178:169–180.

14.Fujio Y,Nguyen T,Wencker D,Kitsis RN,Walsh K(2000)Akt promotes

survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart.Circulation101:660–667.

15.Siddall HK,Warrell CE,Yellon DM,Mocanu MM(2008)Ischemia-reperfusion

injury and cardioprotection:investigating PTEN,the phosphatase that negatively regulates PI3K,using a congenital model of PTEN haploinsufficiency.

Basic Res Cardiol103:560–568.

16.Haubner BJ,Neely GG,Voelkl JG,Damilano F,Kuba K,et al.(2010)

PI3Kgamma protects from myocardial ischemia and reperfusion injury through

a kinase-independent pathway.PLoS One5:e9350.

17.Jonassen AK,Sack MN,Mjos OD,Yellon DM(2001)Myocardial protection by

insulin at reperfusion requires early administration and is mediated via Akt and p70s6kinase cell-survival signaling.Circ Res89:1191–1198.

18.Uchiyama T,Engelman RM,Maulik N,Das DK(2004)Role of Akt signaling in

mitochondrial survival pathway triggered by hypoxic preconditioning.Circula-tion109:3042–3049.

19.Miyamoto S,Murphy AN,Brown JH(2009)Akt mediated mitochondrial

protection in the heart:metabolic and survival pathways to the rescue.J Bioenerg Biomembr41:169–180.

20.Zhai P,Sciarretta S,Galeotti J,Volpe M,Sadoshima J(2011)Differential roles

of GSK-3beta during myocardial ischemia and ischemia/reperfusion.Circ Res 109:502–511.

21.Tamura T,Cui X,Sakaguchi N,Akashi M(2008)Ginsenoside Rd prevents and

rescues rat intestinal epithelial cells from irradiation-induced apoptosis.Food Chem Toxicol46:3080–3089.

22.Sun D,Wang B,Shi M,Zhang YX,Zhou LF,et al.(2012)Pharmacokinetic,

tissue distribution and excretion of ginsenoside-Rd in rodents.Phytomedicine 19:369–373.23.Li WJ,Nie SP,Yan Y,Zhu SB,Xie MY(2009)The protective effect of

Ganoderma atrum polysaccharide against anoxia/reoxygenation injury in neonatal rat cardiomyocytes.Life Sci85:634–641.

24.Li SY,Wang XG,Ma MM,Liu Y,Du YH,et al.(2012)Ginsenoside-Rd

potentiates apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells through the mitochondrial pathway.Apoptosis17:113–120. 25.Shi Y,Han B,Yu X,Qu S,Sui D(2011)Ginsenoside Rb3ameliorates

myocardial ischemia-reperfusion injury in rats.Pharm Biol49:900–906. 26.Peng L,Sun S,Xie LH,Wicks SM,Xie JT(2012)Ginsenoside Re:

pharmacological effects on cardiovascular system.Cardiovasc Ther30:e183–188.

27.Xia R,Zhao B,Wu Y,Hou JB,Zhang L,et al.(2011)Ginsenoside Rb1

preconditioning enhances eNOS expression and attenuates myocardial ische-mia/reperfusion injury in diabetic rats.J Biomed Biotechnol2011:767930. 28.Wang Z,Li M,Wu WK,Tan HM,Geng DF(2008)Ginsenoside Rb1

preconditioning protects against myocardial infarction after regional ischemia and reperfusion by activation of phosphatidylinositol-3-kinase signal transduc-tion.Cardiovasc Drugs Ther22:443–452.

29.Chen S,Liu J,Liu X,Fu Y,Zhang M,et al.(2011)Panax notoginseng saponins

inhibit ischemia-induced apoptosis by activating PI3K/Akt pathway in cardiomyocytes.J Ethnopharmacol137:263–270.

30.Scott GI,Colligan PB,Ren BH,Ren J(2001)Ginsenosides Rb1and Re

decrease cardiac contraction in adult rat ventricular myocytes:role of nitric oxide.Br J Pharmacol134:1159–1165.

31.Valko M,Leibfritz D,Moncol J,Cronin MT,Mazur M,et al.(2007)Free

radicals and antioxidants in normal physiological functions and human disease.

Int J Biochem Cell Biol39:44–84.

32.Droge W(2002)Free radicals in the physiological control of cell function.Physiol

Rev82:47–95.

33.Yasmin W,Strynadka KD,Schulz R(1997)Generation of peroxynitrite

contributes to ischemia-reperfusion injury in isolated rat hearts.Cardiovasc Res 33:422–432.

34.Ji L,Fu F,Zhang L,Liu W,Cai X,et al.(2010)Insulin attenuates myocardial

ischemia/reperfusion injury via reducing oxidative/nitrative stress.Am J Physiol Endocrinol Metab298:E871–880.

35.Takahashi A,Masuda A,Sun M,Centonze VE,Herman B(2004)Oxidative

stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH(pHm).Brain Res Bull62:497–504.

36.Crow MT,Mani K,Nam YJ,Kitsis RN(2004)The mitochondrial death

pathway and cardiac myocyte apoptosis.Circ Res95:957–970.

37.Korge P,Ping P,Weiss JN(2008)Reactive oxygen species production in

energized cardiac mitochondria during hypoxia/reoxygenation:modulation by nitric oxide.Circ Res103:873–880.

38.Park SS,Zhao H,Mueller RA,Xu Z(2006)Bradykinin prevents reperfusion

injury by targeting mitochondrial permeability transition pore through glycogen synthase kinase3beta.J Mol Cell Cardiol40:708–716.

39.Nishihara M,Miura T,Miki T,Tanno M,Yano T,et al.(2007)Modulation of

the mitochondrial permeability transition pore complex in GSK-3beta-mediated myocardial protection.J Mol Cell Cardiol43:564–570.

40.Cook SA,Sugden PH,Clerk A(1999)Regulation of bcl-2family proteins during

development and in response to oxidative stress in cardiac myocytes:association with changes in mitochondrial membrane potential.Circ Res85:940–949. 41.Zhang Y,Wei L,Sun D,Cao F,Gao H,et al.(2010)Tanshinone IIA

pretreatment protects myocardium against ischaemia/reperfusion injury through the phosphatidylinositol3-kinase/Akt-dependent pathway in diabetic rats.Diabetes Obes Metab12:316–322.

42.Hausenloy DJ,Yellon DM(2004)New directions for protecting the heart against

ischaemia-reperfusion injury:targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway.Cardiovasc Res61:448–460.

43.Hausenloy DJ,Yellon DM(2006)Survival kinases in ischemic preconditioning

and postconditioning.Cardiovasc Res70:240–253.

PC36C直流电阻测试仪.doc

PC36C 直流电阻测试仪 使 用 说 明 书 邢台龙嘉电子设备科技有限公司

一、用途 PC36C直流低电阻测试仪是一种由高稳定精密恒流源、带自校的高精度数字电压表和CPU 微处理器组成的 5 位半台式数字式直流电阻测试仪,其测量结果用 6 位 VFD荧光显示。该仪 器具有价格低廉、测量精度高、性能稳、使用方便等特点,它适用于测量各种电线、电缆的 电阻值、各类线圈、电动机、变压器绕组的电阻,特别是具有自校功能(用户备用BZ3 标准 电阻,就可以校准),提高仪器的精度,省去了操作人员的送检时间。因此该仪器广泛应用工 厂、科研单位的工作场地和实验室。 二、技术指标 2.1使用条件: 2.1.1 环境温度: 20±15℃(校准温度: 20±1℃) 2.1.2 相对湿度:不大于75%RH 2.1.3 供电电源: 220V±10%, 50Hz± 1Hz 2.1.4 无剧烈震动和机械冲击 2.1.5 环境周围无强电磁场干扰 2.1.6 空气中不含腐蚀气体、灰尘和有害杂质 2.1.7 通风条件良好 2.1.8 总技术指标 型号PC36c直流低电阻测试仪 测量范围μ Ω-200Ω七档量程 最小分辨力μ Ω 量程测量范围分辨力测试电流(可换向)准确度等级电流倍率 200 μΩμ Ωμ Ω± 10A % 1/ 2 mΩΩμ Ω± 10A % 1/ 20 mΩΩ0. 1 μΩ±1A % 1/ 200 mΩΩ1μΩ±% 1/ 2ΩΩ10μΩ±% 1/ 20ΩΩ100μΩ± 1 mA % 1/ 200ΩΩ1mΩ±% 1/ 显示5? 荧光显示 电源220V 供电功耗 25W 尺寸(W)450 mm×(H) 150 mm×(D) 400mm

直流电阻测试仪使用说明及注意事项样本

直流电阻测试仪使用说明及注意事项 1 2020年4月19日

直流电阻测试仪使用方法及注意事项 一、概述 变压器绕组的直流电阻测试是变压器在交接、大修和改变分接开关后,必不可少的试验项目。在一般情况下,用传统的方法(电桥法和压降法)测量变压器绕组以及大功率电感设备的直流电阻是一项费时费工的工作。为了改变这种状况,缩短测量时间以及减轻测试人员的工作负担,本公司开发了直流电阻快速测试仪(以下简称直阻仪)。它采用全新电源技术,具有性能稳定,测量迅速、体积小巧、使用方便、测量精度高,数据重复性好等特点。是测量变压器绕组以及大功率电感设备直流电阻的理想设备。 2 2020年4月19日

二、使用方法 1、测量前准备 首先将电源线以及地线可靠连接到直阻仪上,然后把随机附带的测试线连接到直阻仪面板与其颜色相对应的输入输出接线端子上,将测试线末端的测试钳夹到待测变压器绕组两端,并用力摩擦接触点,以确保接触良好。接线方法如图1 图1 打开电源开关,显示屏显示如图2界面 3 2020年4月19日

图2 直阻仪提供了几种不同的测量电流,您能够根据需要按“▲”和“▼”键进行选择,请注意每种测量电流的最大测量范围,以免出现所测绕组直流电阻大于所选电流的最大测量范围,使测量开始后电流达不到预定值,导致直阻仪长时间处于等待状态(详细的技术参数请参见技术指标一节)。“查看”键用于查看和打印已经存储的测量数据。(详见“数据的查看和处理”)。选择好测量方式和测量电流后,按“测量”键开始整个测量过程。 2、开始测量: 直阻仪在按下“测量”键后开始对被测绕组充电,并显示如图3界面 4 2020年4月19日

三相直流电阻测试仪

FS变压器直流电阻测试仪 一、概述: 三相直流电阻快速测试仪是变压器直流电阻测量的最新一代产品,是为测量大容量变压器三相绕组直流电阻而优化设计的测试仪器。可对变压器的三相绕组直流电阻进行同时测试。对有载调压变压器可以不需要放电,直接调节分接,测量时间是传统单相测量的三分之一,可大大缩短工作时间。直阻仪采用大屏幕液晶显示器,全中文图形界面,清晰直观,操作非常简单。并配备面板式打印机和大容量非易失性存储器,可以方便的存储和打印测量结果。测试数据稳定,快速,重复性好,是现场测量变压器直流电阻的最佳选择。 本公司开发生产的华胜FS-5A、10A、20A、40A系列变压器直流电阻测试仪采用32位ARM内核作为处理的核心,对整机进行控制,自动完成自校、稳流判断、数据处理、阻值显示等功能,专门用于测试变压器、电机、互感器等感性设备的直流电阻,也适合测试接地导通连接电阻,能快速使测试电流达到稳定值,使测量时间大大缩短,是取代单、双臂电桥的理想产品。 二、产品特性 1、本仪器自动选择输出电流(最大可以输出10A)。 2、测量范围宽(0Ω-100Ω),能测量变压器、互感器等感性直流电阻。 3、显示器采用480*272点阵65K色彩色大屏幕,显示数据清晰易读。 4、本仪器带有万年历、100组数据存储、温度自动换算等功能,关机不丢失数据。本机还设有打印机可以输出打印测试数据,“U盘”接口方便导出数据以供查阅编辑。 5、本仪器设有RS485通讯接口,配合上位机操控软件,实现远距离控制测量。 6、本仪器设有三相同测功能,以应对星型接法绕组一次接线完成三相直阻测量,自动计算三相不平衡率,极大节省测量时间提高工作效率。也可以采用逐相测试功能,针对YN、D(Y)连接方式的变压器进行逐相测试,测试完成,自动计算三相不平衡率。 7、本仪器还设有自动助磁功能,针对铁芯五柱低压角接变压器绕组的测试,采用高低压串激磁的方法进行测试,仪器内部自动连结绕组的助磁回路,可快速准确测试低压绕组的

细胞因子

第六章细胞因子 一.选择题 【A型题】 1.下列哪类细胞不能分泌细胞因子? A. T淋巴细胞 B. B淋巴细胞 C. 浆细胞 D. 单核细胞 E. 成纤维细胞 2.细胞因子不包括: A. 淋巴毒素 B. 过敏毒素 C. IL-2 D. 集落刺激因子 E. 干扰素 3.IFN-γ主要由下列那种细胞产生? A. LAK细胞 B. 巨噬细胞 C. NK细胞 D. 成纤维细胞 E. B淋巴细胞 4.下列哪种细胞因子是以单体的形式存在? A. IL-12 B. IL-10 C. M-CSF D. TGF-β E. IL-8 5.关于IL-2的生物学作用,下列哪项是错误的? A. 以自分泌和旁分泌发挥作用 B. 能促进T淋巴细胞增殖与分化 C. 能被活化的B淋巴细胞膜上的IL-2受体识别 D. 能增强NK细胞活性 E. 抑制Th1细胞的分化 6.天然的特异性细胞因子抑制物是: A.IL-1ra B.IL-2R C.IL-4R D.IL-6R E. IL-8R 7.能增强MHC-I类分子表达的细胞因子是: A. IFN B. TGF C. CSF D. IL-1 E. IL-2 8.与多发性骨髓瘤的形成和发展有关的细胞因子是: A. IL-2 B. IL-1 C. IFN D. IL-6 E. IL-4 9.能刺激红细胞前体细胞增殖分化为成熟红细胞的细胞因子是: A. IL-1

B. IL-2 C. IL-4 D. IFN E. EPO 10.能促进初始CD4+T细胞分化成Th2细胞的细胞因子是: A. IL-3 B. IL-5 C. IL-2 D. IL-4 E. IL-3 11.关于细胞因子的叙述,下列哪项是错误的? A. 由细胞合成和分泌的生物活性物质 B. 能调节多种细胞生理功能 C. 在免疫系统中起着非常重要的调控作用 D. 无论在什么情况下对机体都是有利的 E. 细胞因子包括IL、IFN、CSF、TNF和趋化性细胞因子 12.能刺激未成熟T细胞前体细胞的生长与分化的细胞因子是: A. IL-11 B. IL-4 C. IL-7 D. EPO E. GM-CSF 13.能与IL-4协同刺激朗格汉斯细胞分化为树突状细胞的细胞因子是 A. IL-11 B. IL-4 C. IL-7 D. EPO E. GM-CSF 14.关于细胞因子的效应作用,下列哪项是错误的? A. 以非特异方式发挥作用 B. 无MHC限制性 C. 生物学效应极强 D. 在体内持续时间都很长 E. 作用具有多向性 15.TNF- 主要是由哪种细胞产生? A. 单核/巨噬细胞 B. 静止T淋巴细胞 C. B淋巴细胞 D. 树突状细胞 E. 红细胞 16.能以三聚体形式存在的细胞因子是: A. IFN B. M-CSF C. IL-12 D. TNF E. IL-9 17.在胞膜外区有两个不连续的半胱氨酸残基和WSXWS基序的细胞因子受体是: A. 免疫球蛋白基因超家族 B. 红细胞生成素受体家族 C. 干扰素受体家族 D. 肿瘤坏死因子受体家族 E. 趋化性细胞因子受体家族 18.刺激B细胞产生IgA的细胞因子是: A. TNF

直流电阻测试仪说明书

目录 一、概述 (1) 二、安全措施 (1) 三、性能特点 (1) 四、技术指标 (2) 五、系统介绍 (2) 六、测试与操作方法 (3) 七、注意事项 (5) 八、仪器成套性 (6) 九、售后服务 (6)

一、概述 变压器直流电阻是变压器制造中半成品、成品出厂试验、安装、大修、改变分接开关后、交接试验及电力部门预防性试验的必测项目。可以检查绕组接头的焊接质量和绕组有无匝间短路,可以检测电压分接开关的各个位置接触是否良好以及分接开关实际位置与指示位置是否相符,引出线是否有断裂,多股导线并绕是否有断股等情况。为了满足变压器直流电阻快速测量的需要,我公司研制的直流电阻测试仪。该仪器采用全新电源技术,具有体积小、重量轻、输出电流大、重复性好、抗干扰能力强、保护功能完善等特点。整机由高速单片机控制,自动化程度高,具有自动放电和放电报警功能。仪器测试精度高,操作简便,可实现变压器直阻的快速测量。 二、安全措施 1、使用本仪器前必须认真阅读本手册。 2、仪器的使用者应具备一般电气常识。 3、仪器使用避开雨淋、腐蚀气体、尘埃过浓、高温、阳光直射等场所。 4、仪表应避免长期颠簸和剧烈振动。 4、对仪器的维修、调试应由专业人员进行。 5、测试完毕后一定要等放电报警声停止后再关闭电源,拆除测试线。 6、测量无载调压变压器,一定要等放电指示报警音停止后,切换档位。 7、在测试过程中,禁止移动测试夹和供电线路。 三、性能特点 1、整机由高速单片机控制,自动化程度高,操作简便。 2、采用高频开关电源技术,输出电流大,适合大中型变压器直流电阻测量。 3、保护功能完善,能可靠保护反电势对仪器的冲击,性能更可靠。 4、具有声响放电报警,放电指示清晰,减少误操作。 5、响应速度快,可在测量状态直接转换有载分接开关,仪器自动刷新数据。 6、采用立式机箱结构,便于现场使用。 7、智能化功率管理技术,仪器总是工作在最小功率状态,有效减轻仪器内 部发热,节约能源。可不间断数小时工作。

直阻(直流电阻测试仪)

直阻(直流电阻测试仪) 武汉世纪华胜科技有限公司 FS-5A智能直流电阻测试仪 一、概述 变压器绕组直流电阻的测量是变压器试验中一个重要的试验项目。它可以检查出绕组内部导线的焊接质量,引线与绕线的焊接质量,绕线所用导线的规格是否符合设计要求,分接开关、引线与套管等载流体的接触是否良好,三相电阻是否平衡等。然而变压器绕组呈感性,特别是大容量的变压器电感很大,由传统的直流电阻测量方法存在测量数据不稳定、测试时间长、操作复杂和安全性不高的缺点。根据不同类型变压器,华胜公司自主开发了充电电流从1~60安培FS系列产品,能满足我国现阶段所有类型变压器的直流电阻测量,符合国家新颁布电力行业标准《直流电阻测试仪通用技术条件DL/T 845.3-2004》要求。 二、产品特点 FS-5A智能直流电阻测量仪是直流双臂电桥和单臂电桥的换代产品,具有测量速度快,稳定性好精度高,数字显示直观,抗干扰性强等优点,是测量各种电阻尤其是大电感设备直流电阻的理想仪器。 由于产品是利用高准确度、高稳定度的直流恒定电流通过被测电阻,并用四位半DVM测量被测电阻两端电压的方法来确定电阻值的。因此,在测量大电感设备的直电

阻时能快速建立测量电流,使测试时间大大缩短。这种测量方法是目前国内外测量电力变压绕组等大电感设备直流电阻速度最快的一种方法,仪器达到了国际水平。 ★特别提示: 试验现场必须具有良好的安全接地装置,使用产品时必须接好安全地线,以免危及测试设备和人身安全。 三、工作原理 本产品的电路工作原理框图如图1所示: 图1 图1中16V稳压源是高精度低纹波电源,可提供5A的电流输出。稳流源输出的电流受其分挡切换控制电路的控制。当测量选择不同挡位时,输出不同的稳定电流。20m Ω和200mΩ挡相应的电流值为5A,2Ω挡相应的电流值为1A;20Ω挡为0.1A;200Ω挡为0.01A;2kΩ读数x 10挡为0.1mA。当恒流电流通过被测电阻时在被测电阻上产生稳定的电压信号,该信号经信号处理电路后由四位半数字表直接显示电阻值。当测量大电感的直流电阻时,测试结束后,电感上储存一定的电荷,按下“放电按键”,电感两端随即并接560Ω大功率电阻,使电感快速放电(约10秒钟),放电后才能拆除测试接线。 四、技术参数

细胞因子检测的意义及方法比较

细胞因子检测的意义及检测方法比较 摘要:干扰素(interferon, IFN)是1957年发现的细胞因子,最初发现某一种病毒感染的细胞能产生一种物质可干扰另一种病毒的感染和复制,因此而得名。根据干扰素产生的来源和结构不同,可分为IFN-α、IFN-β和IFN-γ,他们分别由白细胞、成纤维细胞和活化T细胞所产生。各种不同的IFN生物学活性基本相同,具有抗病毒、抗肿瘤和免疫调节等作用。这里主要利用生物分析法和免疫分析法进行检测。 关键词:干扰素生物分析法免疫分析法 正文: 细胞因子是免疫原、丝裂原或其他刺激剂诱导多种细胞产生的低分子量可溶性蛋白质,具有调节和血细胞生成、细胞生长以及损伤组织修复等多种功能。细胞因子可被分为白细胞介素、干扰素、肿瘤坏死因子超家族、集落刺激因子、趋化因子、生长因子等。众多细胞因子在体内通过旁分泌、自分泌或内分泌等方式发挥作用,具有多效性、重叠性、拮抗性、协同性等多种生理特性,形成了十分复杂的细胞因子调节网络,参与人体多种重要的生理功能。所以细胞因子检测是判断机体免疫功能的一个重要指标,对于疾病的诊断、病程观察、疗效判断及细胞因子治疗监测等都有重要意义。 生物分析法有两种: 1.依赖性细胞株:利用一些肿瘤细胞株必须依赖于细胞因子方能在体外增殖的特性进行检测,但是干扰素的测定利用此法并不简便,所以不当采用。 2.功能检测:利用一些细胞因子的功能特性,可建立相应的活性测定方法。在这里可以利用干扰素的抑制病毒感染效应,对已进行病毒感染的细胞群加入干扰素的特征进行观察,达到检测的目的。 免疫分析法: 1.流式细胞仪检测: 原理:利用Brefeldin(BFA)、Monensin阻断了胞内高尔基体介导的转运方法,使得细胞因子聚集、蓄积,增强细胞因子信号,可被流式细胞仪检测。 方法:用抗细胞因子(干扰素)抗体与细胞表面或胞内特定亚群标志组合,即可检测不同细胞亚群细胞因子的分泌,同时采用特殊的化学与抗体选择,确保静止与无细胞因子分泌细胞的最小荧光背景。 所需材料:蛋白转运抑制剂:阻断高尔基体介导的转运作用,使得刺激细胞表达的细胞因子聚集在胞浆内质网内,以利于准确检测细胞产生细胞因子的能力。 2.酶联免疫吸附实验(ELISA) ①间接ELISA(Indirect ELISA):用于筛检抗体(抗特定抗原成分的特异性抗体)。此法是测定抗体最常用的方法。 ②夹心ELISA(Sandwich ELISA):用于检测目的抗原的量。其优点是避免了对特异性抗体的直接标记,但增加了操作步骤和测定时间。 ③竞争ELISA(Competitive ELISA)用于确定抗原特异性或待检标本中含交叉反应成分时为了提高实验的特异性而使用的一种方法。根据标记抗原与同种未标记待测抗原与抗体间发生竞争性结合的原理,主要用于测定小分子抗原。 检测方法的进展:高通量细胞因子检测 CBA(Cytometric Bead Array)是一种微珠多用途检测分析技术,它由一系列的微珠组合来捕获并结合流式细胞仪技术检测细胞培养液、EDTA血浆、血清样本中被检测物质的量。其采用夹心法分析策略,与传统的ELISA分析技术相比,此方法可以同时检测多项指标。用已知的标准品

直流电阻测试仪使用方法

ZRC-2型直流电阻速测仪使用说明书 一.概述 ZRC-2型变压器直流电阻速测仪(微欧计)是取代直流单、双臂电桥的高精度换代产品。仪器采用了先进的开关电源技术,由四位半LCD液晶显示测量结果,克服了其它同类产品由LED显示值在阳光下不便读数的缺点,同时具备了自动消弧功能。本仪器具有测速快、精度高、显示直观、抗干扰能力强、体积小、耗电省、测试数据稳定可靠、不受人为因素影响等优点。是测量电力变压器及大型电机等各种感性负载电阻及低压开关接触电阻、电线电缆或焊缝接口电阻的理想仪器,其测量速度比电桥快一百多倍。仪器内装可充电电池组(12V),交、直流两用,便于现场及野外测试。 二.工作原理 本仪器内有一个能产生直流电流的恒流源。在测量电阻时,恒流从I+、I-端向被试品馈入恒流,该电流在被测体上产生相应的电压值,这一电压值在V+、V-端取回本机,经放大后,直接用四位半LCD数字显示被试品的电阻值。 三.技术指标 1.使用条件: 环境温度:0℃~40℃ 相对湿度:≤85%RH 2.测量范围:1mΩ~20mΩ;20~200mΩ;0.2~2Ω; 20~200

Ω;200Ω~2kΩ, 2kΩ~20kΩ, 20kΩ~200kΩ 3.测量精度:0.2级 4.分辨率:1μΩ 5.恒流源:2A(1uΩ~2Ω)、0.2A(2Ω~200Ω)、0.02A(20Ω~2000Ω) 6.工作电压:直流 11V~14V 交流 220V。 7.功耗:≤15W 8.外形尺寸:335×275×175mm 9.重量:2.8kg 四.使用方法 1.电源 本仪器为测试提供的电源的两种:AC220V/DC12V。在强电磁场干扰的情况下,建议最好使用直流电源测试,此状态下测试的数值稳定,抗工频干扰能力强。 A:直流电源测试: 闭合总电源开关(DC12V),相应有指示灯亮,闭合总电源开关,相应的指示灯亮,按下“启停”键,即可进行测试。测试完毕,关闭总电源开关(DC12V),相应的指示灯熄灭,放电后,再转换测试夹,进行再次测试。 B、交流电源测试: 接上交流AC220V电源,相应的指示灯亮,闭合总电源开

直流电阻测试仪安全操作规程

直流电阻测试仪安全操作规程 1、范围 本规程对直流电阻测试仪的基本危险因素进行了识别,编写了操作要领及要求,以及在异常及紧急情况下的一般应急措施。 本规程适用于直流电阻测试仪的安全操作。操作人员在使用时应严格遵守本操作规程。 2、本仪器的危险、危害因素 a)漏电(仪器外壳接地不良); b)火灾(操作不当或设备故障); c)其它可能存在的危险、危害因素。 3、操作要领及要求 3.1 使用前 3.1.1测试仪应使用专用的隔离电源,不应与其他工具、风扇等共用电源。 3.1.2保持仪器使用环境良好,切勿将仪器放置在潮湿、散热不佳的环境。 3.1.3确保仪器电源规格符合仪器使用要求。 3.1.4严禁湿手操作仪器。 3.1.5检查测试线是否完好,破损的测试线将会造成危险。 3.1.6禁止将测试线另作它用,或者几个仪器设备混用。 3.1.7将仪器放置在平稳的台面上,防止震动、跌落。 3.1.8测试之前应对仪器进行一次调零操作。 3.2 使用中 3.2.1按测试的需要合理选择仪器测试量程。 3.2.2务必可靠连接测试电缆。该仪器对接线状况比较敏感,不可靠的接线将影响 测试的结果。 3.2.3测试过程中,除测试人员外,严禁其他人员触碰被测设备。 3.2.4测试接线时,请注意接线位置,确保可靠连接,防止测试过程中测试夹意外 脱落。 3.2.5测试时,回路串接有短路夹时,所用短路夹阻值不得大于被测电路阻值的 50%,测试结果需排除短路夹本身的阻值。 3.2.6严禁在被测设备带电状态下进行测试。 3.2.7测试时,若出现与标准值偏差较大的数值,应重新接线并再次测试确认。 3.3 使用后 3.3.1仔细盘好测试线,避免对测试线造成损伤。 3.3.2应确保仪器电源已关闭,然后再拔出电源线插头。 3.3.3将仪器放置于特定的位置,方便日常使用及管理。 4、应急处理 4.1仪器发生故障后,应由专门人员检查送修,严禁私自拆修。 4.2若发生紧急事故,操作人员应立即切断仪器电源,暂停测试,并向上级部门汇报。 4.3若发生火灾突发事故,应立即切断电源,拨打火警电话“119”,并同时组织灭火。

细胞因子

细胞因子(CK)的概念:是由细胞分泌,影响细胞生物学行为,造血免疫功能和对炎症的反应的一类物质。(抗体,补体除外) 细胞因子的特点: 1. 大多为5-20KDa的小分子蛋白; 2.以旁分泌或自分泌形式影响附近细胞或细胞自身; 3.效能高,10—12mol/L水平即有明显生物学作用。 4.一种细胞因子可由多种细胞产生,一种细胞也可产生多种细胞因子; 5.细胞因子的产生受基因和环境调控; 6.可发生多重,重叠的作用; 7.以网络形式发挥作用; 8.通过与细胞因子受体结合而对靶细胞产生作用; 9.与神经,内分泌共组成细胞间信号分子系统。 细胞因子和激素 1. 激素是内分泌腺产生的化学物质,内分泌腺是许多同样腺体细胞 组成,通常“统一行动”; 2. 激素通常随血液循环与全身,发挥“远程效应”; 3. 激素通常对特定组织或细胞发挥特有效应; 4. 激素调节作用通常是全身性/系统性的变化: 5. 以辐射或树杈形式发挥作用。 但是,有些细胞因子和激素并没有严格的界限。 细胞因子的结构功能分类:有白介素(IL)类,干扰素(INF)类,集落刺激因子,趋化因子,肿瘤坏死因子,生长因子等。 细胞因子检测的临床应用 1 特定疾病的辅助诊断。 2 评估免疫状况,判断疗效和预后。 3 细胞因子临床治疗应用的监检测。 细胞因子检测方法 1. 功能检测:利用细胞因子功能特性,建立相应的生物学活性测定方法。此 法敏感性高但灵敏度不高,容易受干扰因素影响。 2. 免疫检测:制备抗细胞因子单抗或多抗测定。特异性强,操作简便,但灵 敏度不高,且不能代表其活性。 3. 分子生物学检测:利用分子杂交技术检测细胞内细胞因子mRNA表达,或用 PCR扩增。此法当前最敏感,但只代表细胞因子基因表达,不能代表当前水平。 细胞因子检测的临床应用原则 细胞因子最大特点是其功能多样性,重叠性和组织细胞非特异性,所以不能

第六章 细胞因子

第六章细胞因子 (参考答案) 一、单选题 1、恶液质素主要由哪种细胞产生() A、T细胞 B、B细胞; C、中性粒细胞; D、树状突细胞 胞 2、MCP-1可趋化哪类细胞() A、活化T细胞; B、B细胞; D、纤维母细胞; E、树状突细胞 3、IL-2的产生细胞主要是() T细胞 B、B细胞 C、单核-巨噬细胞 D、NK细胞 E、中性粒细胞4、α亚家族趋化性细胞因子的典型代表是() A、IL-1; B、IL-2; C、IL-3; D、IL-4IL-8 5.天然免疫过程中重要的负调节性细胞因子是() IL-1; B、IL-6;IL-10; D、IL-12;E、IL-18 二、填空题 1.由___淋巴细胞____产生的细胞因子称为淋巴因子;由___单核巨噬细胞_____产生的细胞因子称为单核因子;可刺激骨髓干细胞或祖细胞分化成熟的细胞因子称为____集落刺激因子_______。 2.TNF分为两种,即TNF-α和TNF-β。前者主要由___单核巨噬细胞_____产生;后者主要由活化的___淋巴细胞______产生。 3.细胞因子通常以__旁分泌____形式作用于邻近细胞,或以__自分泌___形式作用于产生细胞因子的细胞本身。 三、名词解释 1.细胞因子——机体细胞分泌的小分子蛋白质,通过结合细胞表面相应受体,近距离进行精细调节,在固有免疫和获得性免疫中发挥重要作用。 2.趋化因子——(chemokine) 又称趋化性细胞因子,是一类对不同靶细胞具有趋化效应的细胞因子家族,已发现50多个成员。 3.集落刺激因子——可刺激骨髓干细胞或祖细胞分化成熟的细胞因子。

4.白细胞介素——由淋巴细胞和单核巨噬细胞分泌的一类具有重要免疫调节作用的细胞因子,包括单核细胞因子(monokine)和淋巴因子。 5.干扰素——由活化淋巴细胞和体细胞分泌的一类具有抗病毒功能和免疫调节功能的细胞因子。 6.肿瘤坏死因子——包括TNF-α和TNF-β两类,分别由单核巨噬细胞和活化淋巴细胞产生,具有抑制肿瘤细胞增殖、抑制病毒感染细胞增殖、促进TL、BL增殖、炎症介质等生物学作用。 四、问答题 1.简述细胞因子的共同特点 ①、分子量低,属糖蛋白; ②、以自分泌或旁分泌形式在局部发挥作用; ③、具有激素样活性,作用迅速而短暂; ④、通过和受体结合,对免疫细胞功能进行正负调节 2.简述细胞因子的生物学功能 ①、白细胞介素(interlukin,IL) ——免疫调节作用; ②、干扰素(interferon,IFN)——抗病毒作用; ③、肿瘤坏死因子(tumor necrosis factor,TNF)——抗肿瘤活性和炎症介质; ④、集落刺激因子(colony stimulating factor,CSF)——刺激骨髓造血前体细胞生长分化; ⑤、趋化因子(chemokine)——趋化免疫细胞; ⑥、生长因子(growth factor,GF);

某公司直流电阻测试仪使用说明书

变压器直流电阻测试仪 使 用 说 明 书

概述 型变压器直流电阻速测仪是最近研制的第三代产品。采用了先进的大规模模数转换集成电路,使测量灵敏度高;数字显示直观清晰;仪器的自动化程度高;具有自动数字调零;对各种误操作有自动保护功能。测速比电桥快几十倍。非常适合与电力工业部门对变压器绕组、互感器、电机绕组等感性试品的直流电阻的测量。也可适合于开关接触电阻、电缆电阻及一般电阻的测量。 二、主要技术指标: 1、分辨率:1诅 2、测量范围:1说~20K Q 准确度:士0.2% 3、电源: ~220V±10% 50Hz;DC12V 4、使用环境温度:-10 C ~40C,相对湿度:<85% 5、重量:4Kg 三、使用方法: 1 、测试线的连接方法: 将仪器的C1、P1、P2、C2端子与被测电阻按图1的方法连接好,这种连法,可消除A、B、C D处的接触电阻,以及连线电阻对测量的影响。测量的值即为B、C之间的电阻值。在使用中,如果本仪器随带的测试线长度不够,可用直径相当的导线将测试线加长。四根测试线的长度应相等 A B C D

C1 P1 (图1)P2 C2 2、接地: 在环境电磁干扰严重或被测试品为感性时,应将仪器地端子与试品地(或大地)用导线连接好,以消除外界的干扰,测量的数据较稳定。 3、选量程: 先估计被测物的电阻大小,选择合适的量程。如果试品电阻值大致范围无法确定,可将量程选大一些。(在放电后调整量程)使显示值在(不管 小数点)1999—19999之间为最佳量程,得到的数据精度最高,显示屏上显示“ T表示超量程。 4、调零: 当使用“ 20m Q”、“200 m Q”档时需调零。连好被测电阻后在“准备” 状态下,调节“调零”旋纽,使其显示为零。其他的量程无需校准均能自动归 零。 5、测量: 以上的准备工作做完之后,就可将“准备/测量”键置于“测量”位置,显示数据稳定后即可读数,并带上所选量程上的单位。注意试品的电感量越大 数据达到稳定的时间越长。 6、放电: 关电源前,先将“准备/测量”键置于“准备”位置,再关机。如果是感 性试品,仪器对试品自动放电。这时观察“放电指示”灯,待灯熄后, 方能进行拆线操作,以免电感的反动势危害人身安全。每次测量完一组数据必须关机放

直流电阻测试仪常见故障处理

直流电阻测试仪常见故障处理 一、背景概述: 变压器直流电阻测试仪是测量大容量变压器直流电阻设计的新型仪器,是设计成一体的高精度稳流电源及测试部分组成,测试过程微机控制,自动完成稳流判断、数据采集、数据处理、阻值显示及打印。变压器直流电阻测试仪对于在载调压器纵向测试可一次供电完成,充分节约试验时间,并为变压器生产厂家设置有温升试验功能,对各种类型变压器可实现快速准确测量,具有操作简便、精度高、抗干扰等特点。 二、产品简介 本公司开发生产的华胜FS-5A、10A、20A、40A系列变压器直流电阻测试仪采用32位ARM内核作为处理的核心,对整机进行控制,自动完成自校、稳流判断、数据处理、阻值显示等功能,专门用于测试变压器、电机、互感器等感性设备的直流电阻,也适合测试接地导通连接电阻,能快速使测试电流达到稳定值,使测量时间大大缩短,是取代单、双臂电桥的理想产品。 三、常见故障处理 1、常见故障:接地电阻测试仪的表头指针不动,或者电池电压及接地电阻测试仪测量时表头指针都不动。 故障原因:可能由于表头烧毁或连接表头与线路板连线断开引起。这也都是由于接地电阻测试仪在使用或者运输过程中过于震动引起。 排除方法:首先打开表头面板,用手拨动指针,如指针不能自动回零,表明表头已震坏;否则就要焊下表头,用万用表电阻档测量表头,如果是开路的,那就表明表头已烧坏。然后再用万用表电流电压档测量原连接表头接头,按下地阻仪检查电压按钮,假如万用表有电压指示,表明只是接地电阻测试仪的故障由表头损坏引起,更换新表头后就可以修复;如果表头完好,再打开接地电阻测试仪外壳,检查表头连线,如果断开接上就可以了。 四、结语 变压器直流电阻测试仪交接试验是电力设备是否能并入电网运行的一个关键性工作,是保证电力系统安全运行的有效手段之一。在我国电力行业标准中,对10kV空心式电抗器的交接试验规定了相应的试验项目和试验标准,其中直流电阻的测量工作是交接试验中必不可少的一个步骤。因而,对其直流电阻测量结果的正确诊断显得尤其重要。 10kV并联电容器装置通常由电容器、串联电抗器、放电线圈、熔断器等部分组成。其中的串联电抗器可根据绕组内有无铁心而将其分为空心式和铁心式两大类,其用途主要是限制谐波及有效地抑制电容器装置投入电网时所产生的涌流。此外,对防止和减轻开断电容器时所产生的重燃也起到十分重要的作用。空心式电抗器一般采用混凝土浇注结构,通常都是制成单相的,我局现时10kV并联电容器装置中采用空心式电抗器时均是采用三相垂直重叠的组合排列方式。此方式的要求是B相绕组匝数少,并且绕制方向相反;110kV变电站内

细胞因子详解

捋捋让人迷惑的细胞因子 细胞因子是一类调节蛋白或者糖蛋白,他们的分类现在还不是完全清楚。他们通过结合细胞表面的特定受体,激发细胞内信号通路起作用。 白细胞组成了免疫和炎症系统,大多数细胞因子作用于白细胞或者由白细胞表达,他们在免疫和炎症反应中起到重要的调节作用。实际上,一些免疫抑制和抗炎作用的药物就是通过调节这些细胞因子的表达起作用的。 细胞因子由特定的细胞表达并分泌到胞外,结合细胞表面的细胞因子受体后激活细胞内信号 传导通路 细胞因子分类 细胞因子最早在20世纪70年代中期被提出,它当时被认为是一种多肽因子,可以调控细胞分化和免疫系统。干扰素(IFNs)和白介素(ILs)是主要的多肽家族,在当时细胞因子主要指这两类家族。 起初细胞因子的分类主要是根据分泌该因子的细胞类型或者细胞因子初次被发现时的生物活性。然而这些分类方法现在看来都不够准确,无法满足后期的分类需求。最近,根据细胞

因子一级,二级和三级结构的分析,可以将大多数的细胞因子分为6大家族。因此,根据分类方式的不同,某些细胞因子会有多个名称。 表1:细胞因子根据结构分类结果 细胞因子家族成员 ‘β-Trefoil’ cytokines Fibroblast growth factors Interleukin-1 Chemokines Interleukin-8 Macrophage inflammatory proteins ‘Cysteine knot’ cytokines Nerve growth factor Transforming growth factors Platelet-derived growth factor EGF family Epidermal growth factor Transforming growth factor-αHaematopoietins Interleukins 2–7, -9, -13 Granulocyte colony stimulating factor Granulocyte-macrophage colony stimulating factor Leukaemia inhibitory factor Erythropoietin Ciliaryneurotrophic factor TNF family Tumour necrosis factor-α and –β

第五章细胞因子

第五章细胞因子 主要内容 (一)细胞因子的概念与种类 1.细胞因子(CK)机体多种细胞分泌的小分子蛋白质或多肽,通过与细胞表面相应受体结合发挥抗感染、抗肿瘤、免疫调节、参与炎症反应、促进细胞生长和组织修复等多种生物学作用。 2.细胞因子的分类按来源分为两类:淋巴因子(LK)和单核因子(MK);按结构和功能可分为以下六类: (1)白细胞介素(IL):是一组能介导白细胞和其他细胞间相互作用的细胞因子。主要作用是调节细胞生长,参与免疫应答和介导炎症反应。 (2)干扰素(IFN):因其能干扰病毒感染和复制而命名。IFN有α、β和γ三种类型。IFN-α和IFN-β合称为Ⅰ型干扰素,主要由被病毒感染的细胞、单核-巨噬细胞、成纤维细胞产生,其作用以抗病毒、抗肿瘤为主,也有一定的免疫调节作用。IFN-γ又称Ⅱ型干扰素,由活化的T细胞和NK细胞产生,其作用以免疫调节为主,抗病毒、抗肿瘤作用不及Ⅰ型干扰素。 (3)肿瘤坏死因子(TNF):因最初发现其能引起肿瘤组织出血坏死而得名。主要的有TNF-α、TNF-β。TNF-α由单核-吞噬细胞产生,大剂量可引起恶液质。TNF-β由活化的T细胞产生又称淋巴毒素。TNF能发挥抗肿瘤、抗病毒、免疫调节作用,也能引起发热反应、炎症反应和恶液质。 (4)集落刺激因子(CSF):能够刺激造血干细胞和不同发育分化阶段的造血祖细胞增殖分化的一组细胞因子。 (5)趋化性细胞因子:是一类促进炎症的细胞因子,其主要作用是招募血液中的单核细胞、中性粒细胞、淋巴细胞等进入感染发生的部位。 (6)生长因子(TGF):具有刺激细胞生长作用的细胞因子。有些生长因子也可抑制免疫应答,如转化生成因子-β(TGF-β)可抑制多种免疫细胞的增殖、分化及免疫效应。 (二)细胞因子的共同特性 1.理化特点和分泌特点 (1)理化特点:多数是小分子糖蛋白。多以单体形式存在(如IL-1、IL-2),少数以二聚体(如IL-10、IL-12)、多聚体形式存在(TNF为三聚体)。

回路电阻测试仪使用方法

回路电阻测试仪使用方法 回路电阻测试仪是一种常用的测试仪器产品,适用于测试高低压开关的主触头接触电阻值、高低压电缆电路的直流电阻等。 回路电阻测试仪是一种常用的测试仪器产品,适用于测试高低压开关的主触头接触电阻值、高低压电缆电路的直流电阻等。那么回路电阻测试仪应该如何使用呢?今天小编来具体介绍一下回路电阻测试仪的使用方法,希望可以帮助到大家。 回路电阻测试仪使用方法 1. 按四线测量法,用专用测试线将被试品连接至仪表面板上,注意电压测量线应接在电流输出线内侧。 2. 接通AC220V电源(注意:电源进线的第三根线即保护地必须接到大地),按下电源开关,此时电流表、电阻表显示“000”(可在未数允许一位数跳动)。 3. 按测量开关,调节电流输出旋钮(按顺时针)至电流表头显示“100.0”时,再读取阻值表头上的数字即为被测试品的阻值,并作记录。(若显示“1”表示所测回路超量程)。 4. 测试完毕,将电流输出调节旋钮(按逆时针)调至最小,复位测量开关,再切断电源开关。 5. 如要重复测试,只需复位测量开关,将测试钳重新夹好,再按测量开关即可。 回路电阻测试仪使用注意事项: 1、打开电源开关之前,应先将测试按钮弹起(非测试状态下)、电流调节钮按逆时针调至“零位”。 2、仪器应放置于干燥、通风,无腐蚀性气体的室内。 3、测试完后一定要等电源全部放完后再拆除测试线等装置 回路电阻测试仪使用方法已经介绍完了,通过上述文章介绍用户对于回路电阻测试仪已经有了一定的了解,在后期的使用中可以更加便利。 尊敬的客户: 感谢您关注我们的产品,本公司除了有此产品介绍以外,还有高压核相仪,耐电压测试仪,高压绝缘垫,真空度测试仪,大电流发生器,三相大电流发生器,变频串联谐振试验装置,无线高压核相仪等等的介绍,您如果对我们的产品有兴趣,欢迎来电咨询。谢谢!

ZXR-2A直流电阻测试仪使用说明

ZXR-2A 直流电阻测试仪 使 用 说 明 书 武汉国电中星电力设备有限公司

目录 一、产品概述 ................................. - 2 - 二、工作原理 ................................. - 2 - 三、技术指标 ................................. - 2 - 1. 使用条件................................. - 2 - 2. 工作电压................................. - 3 - 四、使用方法 ................................. - 3 - 1. 电源..................................... - 3 - 2. 测试线的连接方法......................... - 4 - 3. 测量..................................... - 4 - 4. 放电..................................... - 5 - 五、注意事项 ................................. - 5 - 六、产品附件 ................................. - 5 -

一、产品概述 ZXR-2A直流电阻测试仪是取代直流单、双臂电桥的高精度换代产品。仪器采用了先进的开关电源技术,由四位半LCD液晶显示测量结果,三位半LCD液晶显示环境温度或测试电流值,克服了其它同类产品由LED显示值在阳光下不便读数的缺点,同时具备了自动消弧功能。本仪器具有测速快、精度高、显示直观、抗干扰能力强、体积小、耗电省、测试数据稳定可靠、不受人为因素影响等优点。是测量电力变压器等各种感性负载电阻及低压开关接触电阻、电线电缆或焊缝接口电阻的理想仪器,其测量速度比电桥快一百多倍。仪器内装可充电电池组(12V),交、直流两用,便于现场及野外测试。 二、工作原理 ZXR-2A直流电阻测试仪内有一个能产生直流电流的恒流源。 在测量电阻时,恒流从I+、I-端向被试品馈入恒流,该电流在被测体上产生相应的电压值,这一电压值在V+、V-端取回本机,经放大后,直接用四位半LCD数字显示被试品的电阻值。 三、技术指标 1.使用条件:参考:https://www.360docs.net/doc/6e6881298.html,/csy_69_10.html a.环境温度:0℃~40℃ b.相对温度:≤85%RH c.测量范围:1mΩ~20mΩ;20~200mΩ;0.2~2Ω;2~20Ω;20~ 200Ω;200Ω~2kΩ

电机直流电阻测试仪.

电机直流电阻测试仪 一、安全措施 1、使用本仪器前一定要认真阅读本手册。 2、仪器的操作者应具备一般电气设备或仪器的使用常识。 3、本仪器户内外均可使用,但应避开雨淋、腐蚀气体等场所使用。 4、仪表应避免剧烈振动。 5、对仪器的维修、护理和调整应由专业人员进行。 6、测试完毕后一定要使仪器复位后关闭电源再拆除测试线。 7、测试过程中,禁止移动测试夹和供电线路。 注意:本仪器采用交直流两种供电方式, 在采用直流供电时, 第一次开机时可能会出现无法开机的情况, 此时只需关闭电源开关重新开机就可以了, 造成无法开机的原因是由于本仪器采用的是电池供电, 其内部带电池保护电路, 当仪器长时间不用时仪器内部的大电容电量放完, 开机时电池首先对电容充电, 可能会造成电池瞬间峰值放电电流太大, 使电池进入保护状态而。再次开机此现象基本消除。为保证电池使用寿命,请您每月至少为电池充电一次。否则将会造成电池亏电,导致电池损坏仪器无法使用! 二、功能特点 1、整机由高速单片机控制,自动化程度高,操作简便。 2、仪器采用全新电源技术,测量范围宽。 3、保护功能完善,能可靠保护反电势对仪器的冲击, 性能更可靠

4、响应速度快,仪器测量数据稳定,仪器测试过程中自动刷新数据。6、智能化功率管理技术,仪器总是工作在最小功率状态,有效减轻仪器内部发热,节约能源 7、仪器内部带有不掉电时钟。 8、仪器内部具有不掉电存储器,可永久保存数据。 三、技术指标 1、输出电流:自动、10A 、5A 、1A 、200mA 、40mA 、<5mA 2、分辨率:0. 1 3、量程:100 Q20K Q (<5mA 档 1 Q-250 Q (40mA档 100m Q -50 Q (200mA档 5m Q-10Q (1A档 1m Q -2Q (5A档 0.5m Q-1 Q (10A档 0.5m Q20K Q (自动档 4、准确度:0.2% 5、工作温度:0~40C 6、工作湿度:<90%RH,不结露 7、外形尺寸:长325mmX 宽240mmX 高275mm 四、电池充电说明

10A直流电阻测试仪说明书

目录 一、概述 (2) 二、使用范围 (2) 三、仪器特点 (2) 四、主要技术参数 (3) 五、使用方法 (3) 六、注意事项 (8) 七、配套清单 (9) 八.售后服务 ··························································错误!未定义书签。

一、概述 10A智能型变压器直流电阻测试仪采用先进的开关电源恒流源和精密的测量技术,专门用于测试变压器、电机、互感器等感性负载电阻,也可测量电线电缆、焊缝接口电阻。由于测试电流大(10A恒流),测试时能快速使测试电流达到稳定值,测量时间大大缩短。 二、使用范围 10A智能型变压器直流电阻测试仪是专门用于测量各种容量的变压器、互感器、电机绕组等感性设备直流电阻的仪器。它对于120MVA以上三相五柱电力变压器和电炉变压器绕组的测量尤为适用。亦适用于测量电缆电阻和低压开关的接触电阻。 三、仪器特点 ●测量速度快:本仪器输出最大10A恒定电流,测量时能有效地补偿大电感设备电流惯性,加速了铁芯饱和,从而缩短了充电时间,提高了测量速度,比传统仪器单、双臂电桥快几百倍。 ●准确度高:本仪器应用单片机先进的大功率高精度的程控恒压、恒流技术,使得对感性负载充电电流保持在一个相对的稳定值,抗感能力稳定,抗干扰能力强,进而保证了测量准确度。 ●本仪器智能化程度高,结构紧凑、布局新颖合理。除了采用先进的四端子测量法外,而且采用双路程控比较分析、自动调零校准,设有防拉弧以及数据分析等电路,自动输出打印测量数据,,菜单操作,人机对话,操作读数极其方便。

四、主要技术参数 1.使用条件: 环境温度:-15℃~50℃ 相对湿度:≤85%RH 2.工作电源: AC 220V±10%; 50Hz±5% 3.测量范围: 0.01A: 1μΩ~2kΩ 1A: 1μΩ~20Ω 5A: 1μΩ~4Ω 10A: 1μΩ~2Ω 4.测量误差:±0.2% 5.最大分辨率:1μΩ 6.显示方式大屏幕液晶菜单显示液晶屏面积:80mm×40mm 可打印显示结果 7.功耗:300 VA 8.外形尺寸:330×280×180(mm3)9.重量:5kg 五、使用方法 1.测试仪面板示意图如:

相关文档
最新文档