Alkaline rechargeable Ni-Co batteries

Alkaline rechargeable Ni-Co batteries
Alkaline rechargeable Ni-Co batteries

Alkaline rechargeable Ni/Co batteries:Cobalt hydroxides as negative electrode materials ?

Xue-Ping Gao,*Su-Mei Yao,Tian-Ying Yan and Zhen Zhou

Received 29th January 2009,Accepted 13th March 2009

First published as an Advance Article on the web 23rd March 2009DOI:10.1039/b901934k

It is demonstrated that b -Co(OH)2has a high discharge capacity and good high-rate discharge ability as a negative electrode mate-rial.A new rechargeable battery system with higher energy density,consisting of a -phase nickel hydroxides as the positive electrode material and b -cobalt hydroxides as the negative electrode material,is proposed on the basis of multi-electron reactions.

Alkaline rechargeable batteries are considered to be one of the most promising power sources for the application in portable electronic devices,electric tools,electric vehicles (EV),and hybrid electric vehicles (HEV).Many electrochemical couples of positive and negative electrode materials have been developed,including nickel/cadmium (Ni/Cd),nickel/iron (Ni/Fe),nickel/zinc (Ni/Zn),and nickel/metal hydride (Ni/MH)alkaline rechargeable Ni-based batteries.1Among these systems,Ni/MH batteries are widely used owing to their outstanding features of high energy density,high power,environmental issue,and safety.Recently,numerous investi-gations have been conducted to propose new battery systems without ?ammable organic electrolytes on the basis of safety concerns,such as aqueous rechargeable lithium batteries,2polymer-based batteries,3and all-solid-state rechargeable batteries.4Moreover,high-rate discharge capability and high discharge capacity are also crucial for electrode materials in such rechargeable batteries.

Rechargeable batteries are mostly based on faradaic reactions,and multi-electron reactions on electrode materials are an effective way to provide a high energy density.a -Phase nickel hydroxide as the positive electrode material with 1.6–2.0exchanged electrons per Ni atom has a higher discharge capacity,in contrast to the capacity limitation of commercial b -phase nickel hydroxide with only one electron reaction.5On the other hand,negative electrode materials with multi-electron reactions have been explored recently.For example,more than one electron is involved in the electrochemical reaction of metallic cobalt or cobalt hydroxide in alkaline electro-lyte.6,7Moreover,cobalt hydroxide has capacitive characteristics with potential applications as an electrochemical supercapacitor with a high energy density.8

Cobalt hydroxide has a hexagonal layered structure and crystal-lizes into two polymorphic forms,a and b .9The a -form is isostructural with hydrotalcite-like compounds that consist of hydroxyl-de?cient Co(OH)2àx layers and charge balancing anions (NO 3à,CO 3à,Cl à,etc.)in the interlayer gallery.On the other hand,the b -form is burcite-like [Mg(OH)2]and consists of a hexagonal packing of hydroxyl ions with Co(II )occupying alternate rows of octahedral sites.9–11The a -cobalt hydroxide is susceptible to losing interlayer water and anions.In contrast,the b -phase Co(OH)2is stable and thus is anticipated to be a more promising electrode material.In the present study,we synthesized single-crystal hexagonal platelets of b -Co(OH)2by homogeneous precipitation,10and inves-tigated the discharge capability of b -Co(OH)2at different discharge rates.It is found that b -Co(OH)2has an excellent high-rate discharge ability and high discharge capacity.In addition,a -Ni(OH)2micro-spheres with 1.8exchanged electrons per Ni atom have a large discharge capacity,excellent high-rate ability and long cycle life as reported in our previous work.12We describe herein a battery system,

Institute of New Energy Material Chemistry,Nankai University,Tianjin,300071,China.E-mail:xpgao@https://www.360docs.net/doc/6e7168199.html,;Fax:+8622-23500876;Tel:+8622-23500876

?Electronic supplementary information (ESI)available:Complete experimental details of syntheses,XRD patterns,SEM images and cyclic voltammograms.See DOI:

10.1039/b901934k

COMMUNICATION https://www.360docs.net/doc/6e7168199.html,/ees |Energy &Environmental Science

D o w n l o a d e d o n 02 O c t o b e r 2011P u b l i s h e d o n 23 M a r c h 2009 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/B 901934K

consisting of a-Ni(OH)2as the positive electrode material and b-Co(OH)2as the negative electrode material on the basis of multi-electron reactions(Scheme l).

The XRD pattern(see ESI,Fig.S1?)of the as-prepared b-Co(OH)2particles matches with those reported earlier.10All diffrac-tion peaks can be indexed as the hexagonal structure of brucite-like b-Co(OH)2(JCPDS74-1057),and the sharp re?ections indicate the highly crystalline nature of the pink b-Co(OH)2product.A thin platelet-like morphology is observed in the b-Co(OH)2sample from the SEM image(see ESI,Fig.S2?),which is bene?cial to the elec-trochemical reaction on the active surface.

Fig.1shows the dependence of electrochemical discharge capacity of the b-Co(OH)2electrode on the cycle number after activation at different discharge rates.Obviously,there is an activation process to reach the maximum discharge capacity of the b-Co(OH)2electrode. The maximum discharge capacities of455,453,406and338mA h gà1 are achieved at1,2,5and10C rate,respectively,indicating that b-Co(OH)2exhibits excellent durability at high discharge rate as compared to a-Co(OH)2(see ESI,Fig.S3?).Moreover,the discharge capacities of373and258mA h gà1are retained at1C and10C rates after50cycles for b-Co(OH)2,higher that that of313,and 240mA h gà1for a-Co(OH)2,respectively.The typical discharge curves for the as-prepared b-Co(OH)2at different discharge rates after activation are shown in Fig.2.The electrode presents a?at potential plateau aroundà0.78V(vs.Hg/HgO)in the discharge curve at a1C rate,which is in good agreement with the discharge potential plateau of a metallic cobalt-based composite electrode,7and the discharge plateau remains unchanged with increasing cycle numbers for both the a-Co(OH)2and b-Co(OH)2electrodes(see ESI, Fig.S4?).Although both a-Co(OH)2and b-Co(OH)2can be used as a negative electrode,b-Co(OH)2is more favorable due to the struc-ture transformation from unstable a-Co(OH)2to stable b-Co(OH)2 during cycling(see ESI?).

To further investigate the structural change after charging and discharging,XRD patterns of the b-Co(OH)2electrode at the charge/ discharge state in the second cycle are shown in Fig.3.The pattern of the as-prepared b-Co(OH)2is also included for comparison.It can be found that the diffraction peaks of metallic Co are detected at the fully charged state in the second cycle.Meanwhile,most of the diffraction peaks can be indexed as b-Co(OH)2and the diffraction peaks of the metallic Co disappear almost after fully discharging in the second cycle.This means that b-Co(OH)2can be reduced

to Fig.1Cycle performance of the b-Co(OH)2electrode at different

discharge rates after charging at a1,2,5and10C rate for1.5,0.75,0.3

and0.15h,

respectively.

Scheme1Schematic representation of the electrochemical reaction of

Ni/Co

batteries.

Fig.3XRD patterns of the b-Co(OH)2electrode at the charge and

discharge state in the second

cycle.

Fig.2Discharge curves of the b-Co(OH)2electrode at different

discharge rates after activation(charging at a1,2,5and10C rate for1.5,

0.75,0.3and0.15h,respectively).

D

o

w

n

l

o

a

d

e

d

o

n

2

O

c

t

o

b

e

r

2

1

1

P

u

b

l

i

s

h

e

d

o

n

2

3

M

a

r

c

h

2

9

o

n

h

t

t

p

:

/

/

p

u

b

s

.

r

s

c

.

o

r

g

|

d

o

i

:

1

.

1

3

9

/

B

9

1

9

3

4

K

metallic Co during the charge process,and the discharge capacity of the electrode is mainly attributed to the electrochemical oxidation of metallic Co.When a -Co(OH)2is used as a negative electrode,the structure transformation from a -Co(OH)2to b -Co(OH)2is found at the fully charged state,showing higher structure stability of b -Co(OH)2during electrochemical cycling (see ESI,Fig.S5?).

To elucidate the electrochemical reaction process occurring on the b -Co(OH)2electrode,cyclic voltammograms (CVs)of b -Co(OH)2electrode from à0.4V to à1.2V (vs .Hg/HgO)at different scan rates are presented (see ESI,Fig.S6?).A pair of redox peaks is detected,indicating that the reversible capacity is mainly based on the faradaic redox mechanism.The cathodic peak is due to the reduction of Co(OH)2to metallic Co and the anodic peak is attributed to the oxidation of metallic Co to Co(OH)2.An excellent electrochemical reaction activity and a good high rate capability are veri?ed by the results of CV at higher scan rate.For the b -Co(OH)2electrode material,it is well accepted that the surface faradaic reaction with 2electrons is dominant and can be expressed as 6,13

Co eOH T2t2e à

5reduction

oxidation

Co t2OH

à

(1)

According to the above two-electron reaction process,the theo-retical electrochemical capacity of Co(OH)2is 576mA h g à1based on Faraday’s law.The discharge capacity of Co(OH)2at 1C discharge rate is 455mA h g à1and the utilization of Co(OH)2is 79%.From XRD patterns,it can be observed that b -Co(OH)2is still detected as the coexisting phase with metallic Co at the end of the charging state.It implies that the partial irreversible conversion between b -Co(OH)2and metallic Co is involved in the faradic reaction,resulting in the incomplete utilization of Co(OH)2.Therefore,on average, 1.58electrons are involved in the practical electrochemical process of the b -Co(OH)2electrode.It is reported that Co(OH)2undergoes disso-lution in alkaline electrolytes and the amount of cobalt formed from the dissolved Co(OH)2is 8mg L à1in 5M KOH.14In addition,Co(OH)2can be transformed to HCoO 2àto some extent 13and the equilibrium concentration of HCoO 2àis >10à4M in 6M KOH solution at 25 C.15Thus,the partial dissolution of Co(OH)2also accounts for the decay of the discharge capacity during cycling.7

The promising values with respect to both discharge capacity and high rate capability of the b -Co(OH)2in the half-cell clearly demonstrate a suitability for fabricating alkaline rechargeable batteries.A novel alkaline rechargeable battery system is designed with b -Co(OH)2as the negative electrode.The electrode was prepared by mixing b -Co(OH)2with carbonyl nickel powder (NICO 255)in a weight ratio of 1:3and then pressed into a small pellet.As a -Ni(OH)2microspheres with 1.8exchanged electrons per Ni atom have a large discharge capacity,excellent high-rate ability and long cycle life,12they were used here as the positive electrode material (see ESI,Experimental and Fig.S7?).a -Ni(OH)2,cobalt oxide powders,and Ni powders were mixed with a weight ratio of 65.6:7.7:26.7,and pasted into a nickel foam.Then,the resultant positive electrode was coupled with a b -Co(OH)2negative electrode in 6M KOH.The fabricated Ni/Co prototype cell exhibits a ?at discharge voltage plateau,high power density and long-term endurance at a 1C rate as presented in Fig.4.The output energy density reaches 165W h kg à1(both a -Ni(OH)2and b -Co(OH)2as the active materials)and stabi-lizes at 158.8W h kg à1after 50cycles,revealing an energy retention of

96.2%.In the Ni/Co prototype cell,the overall battery reaction is expressed as

2Ni eOH T2tCo eOH T2

5charge

discharge

2NiOOH tCo t2H 2

O

(2)

The operating principle is similar to that of Ni/Cd batteries,16and the Ni/Co cell can be expected as a new member in alkaline rechargeable battery systems.In addition,if the weight percentage of 75–80%is considered in a practical battery,the energy density of 120–130W h kg à1would be obtained for the Ni/Co cell,which is higher than that of commercial Ni/Cd and Ni/MH batteries.(see ESI,Table S1?).1Moreover,cobalt is an element that occurs naturally in many different chemical forms throughout the envi-ronment in air,water,soil,rocks,plants and animals with trace amounts.Small amounts of cobalt are accessible and essential for health because cobalt is a part of vitamin B 12.17Therefore,compared to the toxic features of a Ni/Cd battery,the Ni/Co battery can be denoted as a green battery.

In summary,b -Co(OH)2presents good electrochemical perfor-mances at high discharge rates based on the faradic redox reaction with 1.58exchanged electrons on average.A new alkaline recharge-able battery system,consisting of a -Ni(OH)2as the positive electrode material and b -Co(OH)2as the negative electrode material is proposed on the basis of multi-electron reactions.The fabricated Ni/Co prototype cell shows outstanding features of long durability and high power.The strategy adapted in the present study could be helpful to explore and develop new power sources with high energy density based on multi-electron reactions.

Financial support from the 973Program (2009CB220100)and NSFC (50671049)of China is greatly appreciated.

Notes and references

1U.K €o hler,C.Antonius and P.B €a uerlein,J.Power Sources ,2004,127,45.

2G.J.Wang,L.J.Fu,N.H.Zhao,L.C.Yang,Y.P.Wu and H.Q.Wu,Angew.Chem.,Int.Ed.,2007,46,295.

3H.K.Song and G.T.R.Palmore,Adv.Mater.,2006,18,1764.

4P.H.L.Notten,F.Roozeboom,R.A.H.Niessen and L.Baggetto,Adv.Mater.,2007,19,4564.5W.K.Hu and D.Nor e us,Chem.Mater.,2003,15,

974.

Fig.4Cycling performance of the fabricated Ni/Co prototype cell at a 1C rate after charging at a 1C rate for 1.5h.Inset is the discharge curve of the Ni/Co prototype cell in the second cycle at a 1C rate.

D o w n l o a d e d o n 02 O c t o b e r 2011P u b l i s h e d o n 23 M a r c h 2009 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/B 901934K

6P.Elumalai,H.N.Vasan and N.Munichandraiah,J.Power Sources ,2001,93,201.

7Z.W.Lu,S.M.Yao,G.R.Li,T.Y.Yan and X.P.Gao,Electrochim.Acta ,2008,53,2369.

8L.Cao,F.Xu,Y.Y.Liang and H.L.Li,Adv.Mater.,2004,16,1853.

9Z.P.Xu and H.C.Zeng,Chem.Mater.,1999,11,67.

10Z.P.Liu,R.Z.Ma,M.Osada,K.Takada and T.Sasaki,J.Am.Chem.Soc.,2005,127,13869.

11P.V.Kamath,G.H.A.Therese and J.Gopalakrishnan,J.Solid State Chem.,1997,128,38.12Q.D.Wu,X.P.Gao,G.R.Li,G.L.Pan,T.Y.Yan and H.Y.Zhu,J.Phys.Chem.C ,2007,111,17082.

13B.S.Haran,B.N.Popov and R.E.White,J.Electrochem.Soc.,1998,145,3000.

14V.Pralong, A.Delahaye-Vidal, B.Beaudoin, B.Gerand and J.M.Tarascon,J.Mater.Chem.,1999,9,955.

15H.Senoh,M.Ueda,N.Furukawa,H.Inoue and C.Iwakura,J.Alloys Compd.,1998,280,114.

16A.K.Shukla,S.Venugopalan and B.Hariprakash,J.Power Sources ,2001,100,125.

17T.Brock and W.Stopford,J.Environ.Monit.,2003,5,71N.

D o w n l o a d e d o n 02 O c t o b e r 2011P u b l i s h e d o n 23 M a r c h 2009 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/B 901934K

超细晶硬质合金的制备

第35卷第4期稀有金属与硬质合金V01.35№.42OO7年12月RareMetalsandCementedCarbidesDec.20O7 ?试验与研究? 超细晶硬质合金的制备 谢海根1’2,易丹青1,黄道远1,李荐1,刘刚2,刘瑞1 (1.中南大学材料科学与工程学院,湖南长沙410083; 2.崇义章源钨制品有限公司,江西崇义341300) 摘要:以纳米wC粉末与超细钴粉为原料,采用行星球磨混料一压制成形一氢气脱胶一真空烧结工艺制备了Wc一10Co超细晶硬质合金。研究表明,采用行星球磨混料获得的混合料分散均匀,颗粒细小且成形性好。采用该混合料在1360℃下真空烧结制备的超细硬质合金其平均晶粒尺寸约o.34"m,抗弯强度3100MPa,硬度HV60为1900,断裂韧性lo.3MPa?m“2 关键词:纳米;超细晶;硬质合金;wC粉;钴粉 中图分类号:TF125.3文献标识码:A文章编号:1004一0536(2007)04一oOl4一04 PreparationofUltra—fineGrainedHardMetals XIEHai—genl”,YIDan—qin91,HUANGDao—yuanl,LIJianl,LIUGan2,LIURuil(1.SchoolofMaterialScienceandTechnology,CentralSouthUniversity,Changsha410083,China; 2.ChongyiZhangyuanTungstenCo.,Ltd,Chongyi341300,China) Abstract:SuperfinecrystallineWC一1OCohardmetalispreparedfromnano—meterWCandsuperfineCopowderbytheprocessofplanetballmilling—pressing—hydrogendegummingandvacuumsintering.Thetestresultsshowthattheuseofplanetm订lingresultedinevenlydistributedfine—grainedmixturewithgoodcompactability.ThesuperfinehardmetalpreparedbyvacuumsinteringhasparticlesizeaboutO.34“m,bendingstrength3100MPa,hardness1900kg/mm2,fracturetoughness10.3MPa?m1/2. Keywords:nanometer;superfinegrain;hardmetal;tungstencarbide;Copowder 前言 硬质合金具有高强度、高硬度、耐高温、耐腐蚀等一系列优异性能,在切削加工、凿岩采矿、成型模具、耐磨零件等方面得到了越来越广泛的应用。 硬质合金合金自问世以来,其强度和硬度之间就一直是一对“不可调和的矛盾”。制造业的飞速发展,对硬质合金刀具材料提出了越来越高的要求,在要求高强度的同时还要求高硬度,即所谓的“双高合金”。研究表明,当WC的晶粒尺寸减小到亚微米以下时,硬质合金材料的硬度和耐磨性、强度和韧性均获得了提高。因此,超细WC—Co硬质合金开发及应用,成为超硬工具领域竞相研究的热点阻5|。 2试验内容与方法 2.1试验过程 本研究采用崇义章源钨制品有限公司生产的纳米钨粉,在常规碳化设备中进行低温通氢碳化制备纳米WC粉末,再与超细钴粉混合,经压制、脱胶、真空烧结等工艺制备超细晶WC一10Co硬质合金。2.2粉末样品的分析检测 采用日本理学D/max2550VB+X射线衍射仪对粉末样品进行物相和晶粒度分析,通过式口一忌A/(Dcos口) 收稿日期:2007一05—21 作者简介:谢海根(1968一),男,高级工程师,在读硕士研究生,从事超细硬质合金的研究工作。

纳米晶硬质合金棒材.doc

关于全面应用社保卡就医有关问题的通知 各区县、高新区、文昌湖区人力资源和社会保障局,各有关单位:我局2015年5月12日下发了《关于全面使用社保卡就医购药有关事项的通知》(淄人社字[2015]141号),自2015年7月1日起,参保人就医购药全面使用中华人民共和国社会保障卡(以下简称“社保卡”),原门诊、住院提供的就医无卡结算功能将停止运行,未使用社保卡就医购药的,医疗保险基金不予结算。为做好这项工作的推广落实,现就相关问题通知如下: 一、社保卡领取 (一)领卡环节 领卡地点:办卡网点即领卡网点。 领卡材料:个人领卡的须持领卡通知单、身份证;单位领卡须持领卡通知单及申领人员名单。 领卡日期:以领卡通知单领卡日期为准。 特殊情况:学校批量办卡的,应联系所选银行落实领卡。 (二)常见问题处理 1、领卡通知单丢失 个人丢失的,社保卡服务网点留存领卡人有效身份证件复印件;单位丢失的,由单位出具介绍信说明情况(包含办理人

姓名、身份证号码、领取人姓名、身份证号码,需领取卡数量等)。 2、代领手续 代领人应同时携带经办人、代领人有效身份证件。 3、单位办卡领取 通过单位、学校、社区批量办理的,必须由单位、学校、社区统一领取后发放给参保人。 4、领卡网点查询 可以登陆淄博市人力资源和社会保障网或者拨打12333查询领卡网点。 二、村居卫生室联网及社保卡读卡器 我市于2013年12月13日下发了《关于加快推进村卫生室联网工作的通知》,文件对运营商线路带宽和资费,运营商联系方式、地址,社会保障卡读卡器参考选型及购买方式等进行了详细的说明,请各相关单位再次进行核实,及时购买,确保7月1日全面使用社保卡就医购药工作的顺利开展。简列社保卡读卡器参考选型及购买方式如下:

【机械要点】国内高性能硬质合金取得突破性进展

张小只智能机械工业网 张小只机械知识库国内高性能硬质合金取得突破性进展 我国的硬质合金工业已有了60多年的发展历史,已经算得上是硬质合金的大国。根据我国钨业协会硬质合金分会的统计数据,近三年(2012—2014)国内硬质合金的年产量为2.2—2.5万吨,占全球总产量的40%以上。而虽然硬质合金的生产量和消费量我国位居世界前列,但是就制造水平和技术水平而言,我国还相对落后,无法成为硬质合金强国。针对我国硬质合金工业发展所出现的瓶颈,国家开展了多个科研项目,建立了专门的硬质合金研发团队,历经了十余年的基础研究和技术开发工作,研发出超细纳米硬质合金规模化制造设备与工程应用系列新技术,并与过内硬质合金企业紧密合作开发出高附加值的硬质合金材料和制品,向着高端应用领域发展。 随着现代制造业的迅速发展和各种新型难加工材料的问世,对硬质合金工模具产品的质量和性能提出了越来越苛刻的要求。对WC基硬质合金而言,与传统的粗晶(通常指平均晶粒尺寸13微米)硬质合金相比,超细晶(平均晶粒尺寸200—500纳米)和纳米晶(平均晶粒尺寸200纳米以下)硬质合金具有高硬度、高强度以及优良的耐磨耐蚀性和断裂强度,是高效率、高精度的钻孔、切削、铣磨等高端加工技术领域不可或缺的重要材料。从上个世纪90年代后期到本世纪初,纳米硬质合金材料涌现出各种制备新方法。随后几年发展纳米结构、力学性能的精细表征与对比分析,再到近年来超细纳米硬质合金规模化制备与工业应用成为国际上高度重视、体现前沿竞争力的研发焦点,这期间经历了纳米硬质合金众多制备方法的更迭演变。常见的如溶胶-凝胶/共沉淀法、等离子体法等,它们主要还是限于实验室微量合成纳米WC粉末;放电等离子烧结、超高压固结等仅限于实验室制备形状简单且三维尺寸小的纳米多晶材料;喷雾转化法可以批量合成纳米WC类粉末;低压烧结可以实现高性能硬质合金的规模化生产。然而,喷雾转化法复杂的操作步骤、高的工艺成本、苛刻的控制精度,极大地限制了该技术在我国制备纳米WC类粉末的推广应用;在低压烧结硬质合金方

WC-Co纳米晶的制备

粉体工程课程设计 WC-Co纳米晶的制备 吉林大学 材料学院 420902班 组长:张少林 组员:曹甫、朱欢、陈恺、李梦欣

硬质合金中WC-Co纳米晶的制备 摘要本文综述了WC-Co纳米晶硬质合金的特点和发展历程、现状 及应用领域,重点介绍了WC-Co纳米晶的制备方法及工艺,提出了 一种新的WC-Co纳米晶粉末的制备方法,介绍了一些最新的科技成果,并对其发展前景作出了展望。 前言在所有的硬质合金中,碳化钨(WC) 占据着相当突出的地位,约 98 %以上的硬质合金中都含有WC ,其中50 %以上是纯的WC-Co合金[1]。纳米硬质合金是以纳米级的WC 粉末为基础原料,在添加适当粘 结剂和晶粒长大抑制剂的条件下,生产出的具有高硬度、高强度、高 韧性的硬质合金材料,其性能比常规硬质合金明显提高,广泛应用于精 加工难切削材料切削刀具、精密模具、电子行业微型钻头、矿山工 具、耐磨零件等领域[2]。在烧结硬质合金领域,相对于传统的粗晶 硬质合金,超细和纳米晶粒组织的硬质合金块体材料具有更高的硬 度、耐磨性、抗弯强度和韧性 [3]。近年来国内伴随着汽车工业、制 造业和建筑行业的大幅度发展,必将大量需求高性能的超细晶乃至 纳米晶硬质合金材料,因此WC-Co纳米晶的制备就成了关键。 WC-Co纳米晶的研究意义及应用 主要应用领域有如下几方面: 微切削加工:典型的产品是用于印刷电路板加工的微型钻头, 预计2005年微型钻头的需求数量达500x106,需要2O00吨超细合金。 2000年微型钻的平均晶粒度约为0.4μm,而2005年达到0.2μm,硬

度达2000HV30以上,而C样的抗弯强度性能达到5000MPa以上。可靠 的刃口抗崩刃性能和抗磨损性能是印刷电路板微型钻的技术关键, 只有WC晶粒度在0.4μm以下的合金才能有效的满足这种要求。 金属切削:在过去的10年~15年硬质合金切削工具市场得到了 较快的增长,主要是亚微米晶粒尺寸以下硬质合金切削工具的增长。金属切削工具主要包括钻铰孔刀具、端铣刀具、车削刀片。钻铰孔 刀具亚微米晶粒硬质合金用量占亚微米晶粒硬质合金总产量的50%,一般使用WC晶粒为0.8μm,Co含量为10%的硬质合金,这种牌号的 合金具有硬度,断裂韧性和磨损性能的良好结合,PVD涂层则对提高 合金的扩散磨损和氧化磨损能力以及刀尖的粘着磨损能力起了关键 作用。0.5μm合金在摩擦磨损失效形式为主时,可提高工具寿命50%,在其他失效形式下,工具寿命提高很少,或不会提高。当钻 头直径小到3mm以下时,特别是对于有内冷却孔的钻头,断裂强度成 为关键,采用0.5μm合金具有优势。端铣刀具的基体常使用WC晶粒 度大于0.8μm的硬质合金基体。最近的研究表明,对于精铣或半精 铣淬硬的模具钢,采用WC晶粒度小于0.5μm的硬质合金基体可显著 提高铣刀的寿命。更细晶粒硬质合金可使铣刀刃口磨得更加锋利, 且能够较长时间保持刃口的锐度。对于软钢或不锈钢的粗铣,通常 采用特殊结构的排屑槽以减小铁屑的宽度,使排屑更容易。这种特

相关主题
相关文档
最新文档