电感气隙计算方法,自动计算

电感气隙计算方法,自动计算
电感气隙计算方法,自动计算

导体h t t p ://b b

方法二:

电感值L

2.45mH 磁芯有效截面积Ae 30.25mm^2电感匝数N:100AL 245nH/T^2气隙大小0.155 mm

cgs 单位制

多股绞线的外径计算:股数的根号*线经*1.155股数100线径0.2

绞线后直径

2.31

支持下!在此谢过同行朋友!

导体器件应用技术论坛 h t t p ://b b s i c .b i g -b i t .c o m /

电感计算公式

电感计算公式(转载) 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Microl对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l 其中 μ0 为真空磁导率=4π*10(-7)。(10的负七次方) μs 为线圈内部磁芯的相对磁导率,空心线圈时μs=1

电感计算方法

电感计算方法,磁场基本性质 默认分类2010-05-22 08:36:06 阅读442 评论0 字号:大中小订阅 电感 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一。 一、自感与互感 (一)自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源元件理想电源的端电压),这就是自感。 (二)互感 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合 的程度。 电感的计算公式: 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式:

各种电感计算公式

导线线径与电流规格表 绝缘导线(铝芯/铜芯)载流量的估算方法 以下是绝缘导 线(铝芯/铜芯)载流量的估算 方法,这是电工基础,今天把这些知识教给大家,以便计算车上的导线允许通过的电流.(偶原在省供电局从事电能计量工作) 铝芯绝缘导线载流量与截面的倍数关系 导线截面(平方毫米) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 载流量(A 安培) 9 14 23 32 48 60 90 100 123 150 210 238 300 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5 估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。(看不懂没关系,多数情况只要查上表就行了)。条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。 说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l ,即4×8、6×7、10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。 表格为导线在不同温度下的线径与电流规格表。 (请注意:线材规格请依下列表格,方能正常使用)

电感线圈匝数的计算公式

电感线圈匝数的计算公式 计算公式:N=0.4(l/d)开次方。N一匝数,L一绝对单位,luH=10立方。d-线圈平均直径(Cm) 。 例如,绕制L=0.04uH的电感线圈,取平均直径d= 0.8cm,则匝数N=3匝。在计算取值时匝数N取略大一些。这样制作后的电感能在一定范围内调节。 制作方法:采用并排密绕,选用直径0.5-1.5mm的漆包线,线圈直径根据实际要求取值,最后脱胎而成。 第一批加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入:zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定

电感量计算公式

加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷ 圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力 I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Microl对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后)

电感阻抗的计算公式

电感阻抗的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此:电感量(mH) = 阻抗(ohm) ÷(2*3.14159) ÷ F (工作频率) = 360 ÷(2*3.14159) ÷7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入:zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH

详解PFC电感的计算

详解PFC电感的计算 时间:2011-10-11 来源:作者: 关键字:PFC详解电感计算 中心议题: Boost功率电路的PFC连续工作模式的基本关系 临界连续Boost电感设计 通常Boost功率电路的PFC有三种工作模式:连续、临界连续和断续模式。控制方式是输入电流跟踪输入电压。连续模式有峰值电流控制,平均电流控制和滞环控制等。本文介绍Boost功率电路的PFC连续工作模式的基本关系及临界连续Boost电感设计。 连续模式的基本关系 1. 确定输出电压Uo 输入电网电压一般都有一定的变化范围(Uin±Δ%),为了输入电流很好地跟踪输入电压,Boost级的输出电压应当高于输入最高电压的峰值,但因为功率耐压由输出电压决定,输出电压一般是输入最高峰值电压的1.05~1.1倍。例如,输入电压220V,50Hz交流电,变化范围是额定值的20%(Δ=20),最高峰值电压是220×1.2× 1.414=373.45V。输出电压可以选择390~410V。 2. 决定最大输入电流 电感应当在最大电流时避免饱和。最大交流输入电流发生在输入电压最低,同时输出功率最大时

其中:Uimin -最低输入电压;η-Boost级效率,通常在95%以上。 3. 决定工作频率 由功率器件,效率和功率等级等因素决定。例如输出功率1.5kW,功率管为MOSFET,开关频率70~100kHz。 4. 决定最低输入电压峰值时最大占空度 因为连续模式Boost变换器输出Uo与输入Uin关系为,所以 从上式可见,如果Uo选取较低,在最高输入电压峰值时对应的占空度非常小,由于功率开关的开关时间限制(否则降低开关频率),可能输入电流不能跟踪输入电压,造成输入电流的THD加大。 5. 求需要的电感量 为保证电流连续,Boost电感应当大于 其中:,k=0.15~0.2。 6. 利用AP法选择磁芯尺寸 根据电磁感应定律,磁芯有效截面积

电感参数计算

磁环外径 D 36.0mm 磁环内径 d 22.5mm 磁环高度 h 11.0mm 磁环导磁截面积 A 74.3mm^274.3mm^2磁环有效磁路长 l 90.2mm 90.2mm 磁环芯材磁导率 u 125125相对磁导率线圈匝数 N 88.0匝88.0匝↓↓环状线圈电感值 L 1000.92uH 1001uH 磁环电感饱 和磁通计算 ↓电感电流 I 10.00A 15319高斯1.532特斯拉 磁场强度H 9.75A/m 线径Φ1mm 股数n 1每匝线圈长度MLT 42.6mm 电阻mohm 108.59mohm 铜线总长度C 4.69m 蓝色字体为输入参数粉色字体为计算值磁环电感及饱和磁通计算 相对磁导率μr:26,40,60,75,90,125 750.6897966 磁通密度B l s N L μ2=)ln()(d D d D l -=πl iN B 0μμ=l iN H =

计算值 MPP铁镍钼合金,主要用于大电流功率电感, 抗偏流特性好,频率特性也比较好. Sendust合金(铁硅铝磁芯),是一种低损耗和相对高饱和度1.05T的材料,所 以非常适用于功率因数校正电路,以及单向驱动器应用,由于接近零磁 致伸缩,铁硅铝是消除在线噪音滤波器和电感器中的可听频率噪声的最 佳选择。 适当的成本,较低的损耗,高饱和度,接近零的磁致伸缩,无热老化 现象,软饱和,铁硅铝应用包括功率因数校正扼流圈,升压/降压稳压器,直流 输出电感器和回扫变压器.

铁镍(hi-flux),高磁通粉末磁芯是分布式气隙环形磁芯,有50%的镍和50%的铁合金粉末制成,其偏置性能在 所有粉末磁芯材料中最高 .高磁通磁芯所具备的优点,非常适用于高功率,高直流偏置以及高电源频率下的高交流偏差等的应用.与7,500高斯的标准钼坡莫合金MPP磁芯或4.500高斯的铁氧体相比,高磁通磁芯具有15,000高斯的饱和磁通密度.高磁通粉末磁芯的磁芯损耗显著低于铁粉磁芯的磁芯损耗.在大多数应用中,高磁通磁芯的尺寸可能都比铁粉芯的还要小. 高磁通磁粉芯主要应用在如开关调节电感器,在线噪音滤波器,回扫变压器,功率因数校正和脉冲变压器等。

各种电感计算公式

导线线径与电流规格表 绝缘导线(铝芯/铜芯)载流量的估算方法 以下是绝缘导 线(铝芯/铜芯)载流量的估算 方法,这是电工基础,今天把这些知识教给大家,以便计算车上的导线允许通过的电流.(偶原在福建省南平供电局从事电能计量工作) 铝芯绝缘导线载流量与截面的倍数关系 导线截面(平方 毫米) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 载流量(A 安培) 9 14 23 32 48 60 90 100 123 150 210 238 300 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5 表格为导线在不同温度下的线径与电流规格表。 (请注意:线材规格请依下列表格,方能正常使用)

估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。(看不懂没关系,多数情况只要查上表就行了)。条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。“条件有变加折算,高温九折铜升级”。上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可; 铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。如16mm’铜线的载流量,可按25mm2铝线计算。

开关电源中电感气隙设计方案与研究

https://www.360docs.net/doc/637550419.html, 电子发烧友https://www.360docs.net/doc/637550419.html, 电子技术论坛 开关电源中电感气隙的设计与研究旷建军阮新波任小永南京航空航天大学航空电源重点实验室(南京210016) 摘要:在开关电源中使用的电感,除了利用低导磁材料作为均匀分布气隙以外,用高导磁材料作磁芯的电感都必须拥有气隙。由于在气隙附近存在扩散磁通,使绕组产生额外的损耗,所以电感绕组的损耗不同于变压器绕组。本文针对开关电源中利用铁氧体作磁芯的气隙电感,基于前人的研究成果上,通过有限元分析软件,详细地分析了气隙设计对电感绕组损耗的影响。总结了减少绕组损耗的气隙布置方法和采用分布气隙应该遵守的准则。 叙词:电感气隙分布气隙气隙布置绕组损耗 Abstract:Inductors are commonly used in the switching supply. Besides the use of low-permeability magnetic material to form a uniformly distributed gap, inductors with high permeability cores have to need air gap. There is fringing flux near the air gap, which result in the additional losses in the winding. This makes winding losses of inductor different from transformers. Based on previous research output, winding losses of inductors with high permeability ferrite core are analyzed in detail by using the Finite Element Analysis (FEA). General design guidelines for decreasing winding losses of inductors are given for lumped gap and quasi-distributed gap. Key words:Inductor Air gap Distributed gap Air-gap arrangement Winding losses

电感线圈电感量计算公式

电感线圈电感量计算公式 电感量按下式计算:线圈公式 阻抗(ohm)=2*3.14159*F(工作频率)*电感量(mH),设定需用360ohm阻抗,因此:电感量(mH)=阻抗(ohm)÷(2*3.14159)÷F(工作频率)=360÷(2*3.14159)÷7.06=8.116mH 据此可以算出绕线圈数: 圈数=[电感量*{(18*圈直径(吋))+(40*圈长(吋))}]÷圈直径(吋) 圈数=[8.116*{(18*2.047)+(40*3.74)}]÷2.047=19圈 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位:微亨 线圈直径D单位:cm 线圈匝数N单位:匝 线圈长度L单位:cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率:f0单位:MHZ本题f0=125KHZ=0.125 谐振电容:c单位:PF本题建义c=500...1000pf可自行先决定,或由Q 值决定 谐振电感:l单位:微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用:(IRON) L=N2.ALL=电感值(H) H-DC=0.4πNI/lN=线圈匝数(圈) AL=感应系数 H-DC=直流磁化力I=通过电流(A)

l=磁路长度(cm) l及AL值大小,可参照Microl对照表。例如:以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI/l=0.4×3.14×5.5×10/3.74=18.47(查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l 其中 μ0为真空磁导率=4π*10(-7)。(10的负七次方) μs为线圈内部磁芯的相对磁导率,空心线圈时μs=1 N2为线圈圈数的平方 S线圈的截面积,单位为平方米 l线圈的长度,单位为米 k系数,取决于线圈的半径(R)与长度(l)的比值。 计算出的电感量的单位为亨利。

各种电感计算公式

导线线径与电流规格表 表格为导线在不同温度下的线径与电流规格表 注意:线材规格请依下列表格,方能正常使用) 载流量 (A 安培 ) 9 14 23 32 48 60 90 100 123 150 210 238 300 估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。 (看 不懂没关系 ,多数情况只要查上表就行了 )。条件有变加折算,高温九折铜升级。穿管根数二 三四,八七六折满载流。 说明: (1) 本节口诀对各种绝缘线 (橡皮和塑料绝缘线 )的载流量 (安 全电流 )不是直接指出,而是 “截面乘上一定的倍数”来表示,通过心算而得。由表 5 3 可以 看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是 2. 5mm ' 及以下的各种截面铝芯绝缘线 ,其载流量约为截面数的 9倍。如 2.5mm '导线,载流量为 2. 5×9=22.5(A ) 。从 4mm '及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍 数逐次减 l ,即 4×8、6×7、 10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说 的是 35mm ” 的导线载流量为截面数的 3.5 倍,即 35×3.5=122.5(A ) 。从 50mm '及以上 的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减 0. 5。 即 50、70mm '导线的载流量为截面数的 3 倍;95、120mm ” 导线载流量是其截面积数的 2.5 倍, 2.5 4 6 10 16 25 35 50 70 95 120 的估算方法 以 下是绝缘导 线 (铝芯/铜芯) 载流量的估算 方法 ,这是电工 基础 ,今天把这 些知识教给大 家,以便计算车 上的导线允许 通过的电 流.(偶原在省 供电局从事电 能 计量工作 ) 铝 芯绝缘导线 载 流量与截面 的倍数关系 导线截面 (平方 毫米) 1 1.5 请 绝缘导线 ( 铝芯 /铜芯 )载流量 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5

升压电感的计算方法

基于L6562的高功率因数boost电路的设计 0 引言 Boost是一种升压电路,这种电路的优点是可以使输入电流连续,并且在整个输入电压的正弦周期都可以调制,因此可获得很高的功率因数;该电路的电感电流即为输入电流,因而容易调节;同时开关管门极驱动信号地与输出共地,故驱动简单;此外,由于输入电流连续,开关管的电流峰值较小,因此,对输入电压变化适应性强。 储能电感在Boost电路起着关键的作用。一般而言,其感量较大,匝数较多,阻抗较大,容易引起电感饱和,发热量增加,严重威胁产品的性能和寿命。因此,对于储能电感的设计,是Boost电路的重点和难点之一。本文基于ST公司的L6562设计了一种Boost电路,并详细分析了磁性元器件的设计方法。 1 Boost电路的基本原理 Boost电路拓扑如图1所示。图中,当开关管T导通时,电流,IL流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容Cout 放电为负载提供能量;而当开关管T关断时,由于线圈中的磁能将改变线圈L两端的电压VL卡及性,以保持其电流IL不突变。这样,线圈L转化的电压VL与电源Vin串联,并以高于输出的电压向电容和负载供电,如图2所示是其电压和电流的关系图。图中,Vcont 为功率开关MOSFET的控制信号,VI为MOFET两端的电压,ID为流过二极管D的电流。以电流,IL作为区分,Boost电路的工作模式可分为连续模式、断续模式和临界模式三种。 分析图2,可得: 式(2)即为Boost电路工作于连续模式和临界模式下的基本公式。

式(2)即为Boost电路工作于连续模式和临界模式下的基本公式。 2 临界状态下的Boost-APFC电路设计 基于L6562的临界工作模式下的Boost-APFC电路的典型拓扑结构如图3所示,图4所示是其APFC工作原理波形图。 利用Boost电路实现高功率因数的原理是使输入电流跟随输入电压,并获得期望的输出电压。因此,控制电路所需的参量包括即时输入电压、输入电流及输出电压。乘法器连接输入电流控制部分和输出电压控制部分,输出正弦信号。当输出电压偏离期望值,如输出电压跌落时,电压控制环节的输出电压增加,使乘法器的输出也相应增加,从而使输入电流有效值也相应增加,以提供足够的能量。在此类控制模型中,输入电流的有效值由输出电压控制环节实现调制,而输入电流控制环节使输入电流保持正弦规律变化,从而跟踪输入电压。本文在基于此类控制模型下,采用ST公司的L6562作为控制芯片,给出了Boost-APFC电路的设计方法。 L6562的引脚功能如下: INV:该引脚为电压误差放大器的反相输入端和输出电压过压保护输入端; COMP:该引脚同时为电压误差放大器的输出端和芯片内部乘法器的一个输人端。反馈补偿网络接在该引脚与引脚INV之间; MULT:该引脚为芯片内部乘法器的另一输入端; CS:该脚为芯片内部PWM比较器的反相输入端,可通过电阻R6来检测MOS管电流; ZCD:该脚为电感电流过零检测端,可通过一限流电阻接于Boost电感的副边绕组。R7的选取应保证流入ZCD引脚的电流不超过3 mA;

线圈电感量的计算(二)

5、矩型线圈的电感 矩形线圈如图2-36所示,其电感为: 6、螺旋线圈的电感

其中: L:螺旋线圈的电感[H] l :螺旋线圈的长度[m] N:线圈的匝数 S:螺旋线圈的截面积[m2] μ:螺旋线圈内部磁芯的导磁率[H/m] k:长冈系数(由2R/l 决定,表2-1) 【说明】上式用来计算空心线圈的电感,μ=μ0 ,计算结果比较准确。当线圈内部有磁芯时,磁芯的导磁率最好选用相对导磁率μr ,μr=μ/μ0 ,μ为磁芯的导磁率,即:有磁芯线圈的电感是空心线圈电感的μr 倍,μr可通过实际测量来决定,只需把有磁芯的线圈和空心线圈分别进行对比测试,即可求得μr 。但由于磁芯的导磁率会随电流变化而变化,所以很难决定其准确值。这个公式是从单层线圈推导出来的,但对多层线圈也可以近似地适 用。 7、多层绕组线圈的电感

其中: L:多层绕组线圈的电感[H] R:线圈的平均半径[m] l :线圈的总长度[m] N:线圈的总匝数 t:线圈的厚度[m] k:长冈系数(由2R/l 决定,见表2-1) c:由l/t 决定的系数(见表2-2) 【说明】上式是用来计算多层线圈绕组、截面为圆形的空心线圈的电感计算公式。长冈系数k可查阅表2-1,系数c可查阅表2-2。当线圈内部有磁芯时,有磁芯线圈的电感是空心线圈电感的μr 倍,μr是磁芯的相对导磁率。相对导磁率的测试方法很简单,只需把有磁芯的线圈和空心线圈分别进行测试,通过对比即可求出相对导磁率的大小。

8、变压器线圈的电感 变压器线圈如图2-39所示,其电感为: L=μN*NS/l (2-108) 其中: L:变压器线圈的电感[H] l :变压器铁芯磁回路的平均长度[m] N:线圈的匝数 S:变压器铁芯磁回路的截面积[m2] μ:变压器铁芯的导磁率[H/m] 【说明】上式是用来计算变压器线圈电感的计算公式。由于变压器铁芯的磁回路基本是封闭的,变压器铁芯的平均导磁率相对来说比较大。铁芯的导磁率一般在产品技术手册中都会给出,但由于大多数开关电源变压器的铁芯都留有气隙,留有气隙的磁回路会出现磁场强度以及磁感应强度分布不均匀,因此,(2-108)式中的导磁率只能使用平均导磁率,技术手册中的数据不能直接使用。 在这种情况下,最好的方法是先制作一个简单样品,例如,在某个选好的变压器铁芯的骨架上绕一个简单线圈(比如匝数为10),然后对线圈的电感量进行测试,或者找一个已知线圈匝数与电感量的样品作为参考。知道了线圈样品的电感量后,只需把已知参数代入(2-108)或(2-94)式,即可求出其它未知参数,然后把所有已知参数定义为一个常数k;最后电感的计算公司就可以简化为:L = kN2 ,这样,电感量的计算就变得非常简单。 9、两个线圈的互感 两线圈的连接方法如图2-40所示。其中图2-40-a和图2-40-b分别为正、反向串联;图2-40-c

各种电感的计算公式

各种电感的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此: 电感量(mH) =阻抗 (ohm)÷ (2*3.14159)÷F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l

变压器气隙

变压器气隙

作者:日期:

变压器气隙 电感是开关电源中重要的元件之一,其合理设计有利于提高电源效率和可靠性。为防止电感饱和,需要在磁芯中加入气隙。铁粉芯的气隙均匀分布在磁芯中。 如果采用高导磁材料来绕制电感,传统的做法是采用集中气隙。为了减少由气隙附近的扩散磁通引起的绕组损耗,绕组布置需避开气隙3个左右的气隙长度。然而对于较大的气隙,那样做将使磁芯窗口的利用率大大降低,此时可应用多个小气隙来构成分布气隙。文献[1]提出利用交错气隙以减少旁路磁通,从而减少绕组损耗。前人的研究成果对电感设计具有指导意义,但对某些方面没有进行详细研究,特别是多气隙中各小气隙之间磁柱的长度对扩散磁通的影响,气隙布置在磁芯拐角附近对扩散磁通的影响,以及分布气隙的个数如何选择等。近年来,电磁场有限元分析软件得到广泛的应用,分析结果的正确性得到了大量的证实[2 : 0本文在前人研究的基础上,利用电磁场有限元软件对上述问题进行详细的研究。 ?2气隙在磁芯柱上不同位置对绕组损耗的影响? 根据文献[1]的分析,在电感中的磁通可分成以下三个部分(如图1所示):(1)在磁芯中构成回路的主磁通;(2 )气隙附近进入磁芯窗口的扩散磁通;(3)穿越磁柱之间窗口内的旁路磁通。 图L电?中的5^通仔布(对称半刚磁芯) (町潦包践塩组*〔3擠拮绕组 由于主磁通未深入磁芯窗口内,故它不会在绕组上感应出涡流。扩散磁通则会在气隙附近的绕组上感应出涡流。旁路磁通穿越磁柱间的磁芯窗口,将在绕组上感应出涡流。气隙在磁芯柱上的不同位置对磁芯窗口内的扩散磁通和旁路磁通都可能产生影响。对绕组由漆包线构成的电感,气隙在磁芯柱上不同位置对磁芯窗口内旁路磁通的影响在文献[1]中已有详细分析。本节主要分析对扩散磁通的影响,并分析气隙在磁芯柱上的位置对铜箔与漆包线绕制的电感所产生的不同影 \丨 & i逼 ttflfw. S12G. com 山

磁路及电感计算

磁路及电感计算

————————————————————————————————作者:————————————————————————————————日期:

第三章 磁路和电感计算 不管是一个空心螺管线圈,还是带气隙的磁芯线圈,通电流后磁力线分布在它周围的整个空间。对于静止或低频电磁场问题,可以根据电磁理论应用有限元分析软件进行求解,获得精确的结果,但是不能提供简单的、指导性的和直观的物理概念。在开关电源中,为了用较小的磁化电流产生足够大的磁通(或磁通密度),或在较小的体积中存储较多的能量,经常采用一定形状规格的软磁材料磁芯作为磁通的通路。因磁芯的磁导率比周围空气或其他非磁性物质磁导率大得多,把磁场限制在结构磁系统之内,即磁结构内磁场很强,外面很弱,磁通的绝大部分经过磁芯而形成一个固定的通路。在这种情况下,工程上常常忽略次要因素,只考虑导磁体内磁场或同时考虑较强的外部磁场,使得分析计算简化。通常引入磁路的概念,就可以将复杂的场的分析简化为我们熟知的路的计算。 3.1 磁路的概念 从磁场基本原理知道,磁力线或磁通总是闭合的。磁通和电路中电流一样,总是在低磁阻的通路流通,高磁阻通路磁通较少。 所谓磁路指凡是磁通(或磁力线)经过的闭合路径称为磁路。 3.2 磁路的欧姆定律 以图3.1(a)为例,在一环形磁芯磁导率为μ的磁芯上,环的截面积A ,平均磁路长度为l ,绕有N 匝线圈。在线圈中通入电流I ,在磁芯建立磁通,同时假定环的内径与外径相差很小,环的截面上磁通是均匀的。根据式(1.7),考虑到式(1.1)和(1.3)有 F NI Hl Bl A l R m =====μφμφ (3.1) 或 φ=F /R m (3.2) 式中F =NI 是磁动势;而 R m =l A μ (3.3) R m —称为磁路的磁阻,与电阻的表达式相似,正比于路 的长度l ,反比于截面积A 和材料的磁导率μ;其倒数称为磁导 G m m R A l == 1 μ (3.3a) 式(3.1)即为磁路的欧姆定律。在形式上与电路欧姆定律相似,两者对应关系如表3.1所示。 磁阻的单位在SI 制中为安/韦,或1/亨;在CGS 制中为安/麦。磁导的单位是磁阻单位的倒数。同理,在磁阻两端的磁位差称为磁压降U m ,即 U m =φR m =BA ×l S μ=Hl (安匝) (3.4) 引入磁路以后,磁路的计算服从于电路的克希荷夫两个基本定律。根据磁路克希菏夫 表3.1 磁电模拟对应关系 磁 路 电 路 磁动势F 电动势 E 磁通φ 电流I 磁通密度B 电流密度J 磁阻R m =l /μA 电阻R =l/γA 磁导G m =μA/l 电导G =γA/l 磁压降U m =Hl 电压U=IR

十种电感线圈的电感量的计算

在开关电源电路设计或电路试验过程中,经常要对线圈或导线的电感以及线圈的匝数进行计算,以便对电路参数进行调整和改进。下面仅列出多种线圈电感量的计算方法以供参考,其推导过程这里不准备详细介绍。 在进行电路计算的时候,一般都采用SI 国际单位制,即导磁率采用相对导磁率与真空导磁率的乘积,即:μ=μrμ0,其中相对导磁率μr 是一个没有单位的系数,μ0真空导磁率的单位为H/m 。 几种典型电感 1、圆截面直导线的电感 其中: L :圆截面直导线的电感[H] l :导线长度[m] r :导线半径[m] μ0:真空导磁率,μ0=4π10-7[H/m] 【说明】这是在l>>r 的条件下的计算公式。当圆截面直导线的外部有磁珠时,简称磁珠,磁珠的电感是圆截面直导线的电感的μr 倍,μr 是磁芯的相对导磁率,μr=μ/μ0,μ为磁芯的导磁率,也称绝对导磁率,μr 是一个无单位的常数,它很容易通过实际测量来求得。 大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

同轴电缆线如图2-33所示,其电感为: 其中:L :同轴电缆的电感[H]l :同轴电缆线的长度[m]r1:同轴电缆内导体外径[m]r2:同轴电缆外导体内径[m]μ0:真空导磁率,μ0=4π10-7[H/m] 【说明】该公式忽略同轴电缆外导体的厚度。 大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

其中:L :输电线的电感[H]l :输电线的长度[m]D :输电线间的距离[m]r :输电线的半径[m]μ0:真空导磁率,μ0=4π10-7[H/m] 【说明】该公式的应用条件是:l>>D ,D >>r 。 大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

变压器气隙

变压器气隙 电感是开关电源中重要的元件之一,其合理设计有利于提高电源效率和可靠性。为防止电感饱和,需要在磁芯中加入气隙。铁粉芯的气隙均匀分布在磁芯中。如果采用高导磁材料来绕制电感,传统的做法是采用集中气隙。为了减少由气隙附近的扩散磁通引起的绕组损耗,绕组布置需避开气隙3个左右的气隙长度。然而对于较大的气隙,那样做将使磁芯窗口的利用率大大降低,此时可应用多个小气隙来构成分布气隙。文献[1]提出利用交错气隙以减少旁路磁通,从而减少绕组损耗。 前人的研究成果对电感设计具有指导意义,但对某些方面没有进行详细研究,特别是多气隙中各小气隙之间磁柱的长度对扩散磁通的影响,气隙布置在磁芯拐角附近对扩散磁通的影响,以及分布气隙的个数如何选择等。近年来,电磁场有限元分析软件得到广泛的应用,分析结果的正确性得到了大量的证实[2]。本文在前人研究的基础上,利用电磁场有限元软件对上述问题进行详细的研究。 2 气隙在磁芯柱上不同位置对绕组损耗的影响 根据文献[1]的分析,在电感中的磁通可分成以下三个部分(如图1所示):(1)在磁芯中构成回路的主磁通;(2)气隙附近进入磁芯窗口的扩散磁通;(3)穿越磁柱之间窗口的旁路磁通。 由于主磁通未深入磁芯窗口,故它不会在绕组上感应出涡流。扩散磁通则会在气隙附近的绕组上感应出涡流。旁路磁通穿越磁柱间的磁芯窗口,将在绕组上感应出涡流。气隙在磁芯柱上的不同位置对磁芯窗口的扩散磁通和旁路磁通都可能产生影响。对绕组由漆包线构成的电感,气隙在磁芯柱上不同位置对磁芯窗口旁路磁通的影响在文献[1]中已有详细分析。本节主要分析对扩散磁通的影响,并

分析气隙在磁芯柱上的位置对铜箔与漆包线绕制的电感所产生的不同影响。 对于高频电感,相对气隙设在磁芯中部,如气隙设在磁芯拐角处,会使此处的扩散磁通更容易深入到磁芯窗口(如图2(a)、(b)所示),这是因为磁通的分布,与所通过路径的磁阻分布有关。相对气隙设在磁芯中部,气隙设在拐角处,扩散磁通经过路径的磁阻要比气隙设在磁芯窗口中部要小。这样就会容易导致绕组损耗的增加。另外如气隙靠近磁芯的上端面,在窗口,有一部分磁通会绕过磁柱上的短端,直接在磁芯上端面和磁柱的长端之间形成一个磁通路(如图2(c)所示),从而使窗口的扩散磁通增加。 在图3所示的电感结构中,如此时绕组靠近气隙,将导致绕组损耗刚开始时,随气隙在磁芯柱上的位置b的增加而增加。当b增加到对应使扩散磁通最多时,绕组损耗增加到最大值。此后随b的增加,由扩散磁通引起的绕组损耗将随b的增加而减少。最后当b增加到较大时,由于气隙距磁芯上端面较远,磁芯上端面对气隙附近的扩散磁通已不能产生影响。这时随b的增加,由扩散磁通引起的绕组损耗基本不变。为了使绕组损耗刚开始时不随b的增加而增大,可加大绕组与气隙间的距离,以减少气隙附近扩散磁通对绕组损耗的影响。

相关文档
最新文档