2015-AB-Investigations into Ti–(Nb,Ta)–Fe alloys for biomedical applications

2015-AB-Investigations into Ti–(Nb,Ta)–Fe alloys for biomedical applications
2015-AB-Investigations into Ti–(Nb,Ta)–Fe alloys for biomedical applications

Full length article

Investigations into Ti–(Nb,Ta)–Fe alloys for biomedical applications

Arne Biesiekierski a ,Jixing Lin b ,c ,Yuncang Li d ,Dehai Ping e ,Yoko Yamabe-Mitarai e ,Cuie Wen d ,a ,?

a

Faculty of Science,Engineering and Technology,Swinburne University of Technology,Hawthorn,Victoria 3122,Australia b

Department of Material Engineering,Zhejiang Industry &Trade Vocational College,Wenzhou,Zhejiang 325003,China c

College of Materials Science and Engineering,Jilin University,Changchun,Jilin 130025,China d

Department of Aerospace,Mechanical and Manufacturing Engineering,RMIT University,Melbourne,Victoria 3000,Australia e

National Institute for Materials Science,Sengen 1-2-1,Tsukuba 305-0047,Japan

a r t i c l e i n f o Article history:

Received 9September 2015

Received in revised form 7November 2015Accepted 8December 2015Available online xxxx Keywords:Titanium

Orthopedic biomaterials Admissible strain Microstructure High strength

a b s t r a c t

In this study,a Ti–(Ta,Nb)–Fe system was investigated with aims toward the development of high strength,biocompatible titanium alloy suitable for the development of porous orthopedic biomaterials with minimal processing.Notable ?ndings include yield strengths of 740,1250and 1360MPa for the Ti–12Nb–5Fe,Ti–7Ta–5Fe and Ti–10Ta–4Fe alloys,respectively,with elastic moduli comparable to exist-ing Ti-alloys,yielding admissible strains of 0.9?0.3,1.2?0.2and 1.13?0.02%for the Ti–12Nb–5Fe,Ti–7Ta–5Fe and Ti–10Ta–4Fe alloys,respectively;more than twice that of human bone.Observed microstructure varied signi?cantly depending on alloy;near pure b -phase was seen in Ti–12Nb–5Fe,b with some x precipitation in Ti–10Ta–4Fe,and a duplex a +b structure was observed throughout the Ti–7Ta–5Fe.In addition to suitable mechanical parameters,all investigated alloys exhibited promising corrosion potentials on the order of à0.24V SCE,equalling that seen for a C.P.-Ti control at à0.25V SCE,and substantially more noble than that seen for Ti–6Al–4V.Electrochemical corrosion rates of 0.5–3l m/year were likewise seen to agree well with that measured for C.P.-Ti.Further,no statistically signi?cant difference could be seen between any of the alloys relative to a C.P.-Ti control regards to cell proliferation,as investigated via MTS assay and confocal microscopy.As such,the combination of high admissible strain and low corrosion indicate all investigated alloys show signi?cant promise as potential porous biomaterials while in the as-cast state,with the Ti–10Ta–4Fe alloy identi?ed as the most promis-ing composition investigated.Statement of Signi?cance

The ?ndings of this paper are of signi?cance to the ?eld of metallic biomaterials as they detail the devel-opment of alloys of satisfactory biocompatibility and electrochemical behaviour,that furthermore dis-play exceptional mechanical properties.Notably,both extremely high compressive yield strengths and admissible strains,up to 1.36GPa and 1.2%respectively,are reported,exceeding or rivalling that seen in traditional alloys such as Ti–6Al–4V,which typically displays compressive yield strengths and admis-sible strains on the order of 895MPa and 0.81%respectively,as well as modern alloys such as Gum Metal or TNZT.That this is achieved in the absence of thermomechanical processing represents a signi?cant and novel outcome of substantial bene?t for application as a porous biomaterial.

ó2015Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.

1.Introduction

Metallic biomaterials play major roles in many branches of modern medicine,and nowhere are these more apparent than orthopedics.Due to their excellent biocompatibility and mechani-cal properties,Ti-based alloys are the material of choice for both skeletal repair and joint arthroplasties [1–4].Unfortunately,the use of conventional,high Young’s modulus (E )alloys such as Ti–6Al–4V in these load-bearing roles may result in a phenomenon known as stress shielding,caused by a mismatch in the stiffness of the implant with the surrounding bone [1].While the overall stiffness of the implant may be reduced via increasing porosity,this must simultaneously result in a drastic reduction of mechani-cal strength [5–7].

https://www.360docs.net/doc/697557872.html,/10.1016/j.actbio.2015.12.010

1742-7061/ó2015Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.

?Corresponding author at:Department of Aerospace,Mechanical and Manufacturing Engineering,RMIT University,Melbourne,Victoria 3000,Australia.

E-mail address:cuie.wen@https://www.360docs.net/doc/697557872.html,.au (C.Wen).

As such,a value of great importance in designing new orthope-dic biomaterials is the admissible strain (d ),the ratio of yield strength (r YS )to E [8,9].A material with a high d is thus best able to maintain the required mechanical strength even as the stiffness of the implant is decreased to closer match that of the osseous tis-sue.A reasonable target for a minimum d is that of bone itself,which falls between 0.43%and 0.55%[10].However,the formation of a porous metallic structure is closely tied with the initial manu-facturing step,preventing traditional thermomechanical working (e.g.cold-rolling,equal channel angular pressing and hot forging)to improve strength.Further,given the larger surface area and thus attendant risk of oxidation of porous materials,intensive thermal treatments have their own complexities.

Hence,the issue at hand;the absence of high-d materials avail-able in an as-cast or minimally processed state.Of the conventional Ti alloys in clinical use,only Ti–6Al–4V,Ti–6Al–7Nb and austenitic Nitinol displayed d values exceeding that of bone in the absence of mechanical working,at 0.78%,055%,and 0.83%,respectively [11–13].However,as these three alloys all contain elements known to have pronounced deleterious effects on the human body (namely Al,V and Ni)[14,15],there has been a signi?cant push to develop new biomedical titanium alloys with a high d ,using highly biocom-patible alloying additions such as Ta,Nb,Zr and Sn [2,16].

One additive that has seen relatively little attention,however,is iron (Fe).Both cheap,plentiful,and a strong b -stabilizer,Fe is noted for improving the mechanical attributes of binary and ternary Ti-base alloys;namely increasing the mechanical strength and reduc-ing the E with only small additions.%[8,17].While it has found some use in older Ti-based biomedical alloys such as Ti–12Mo–6Zr–2Fe [18],its relative scarcity in modern literature is likely due to concerns over the biocompatibility of Fe;although Ti,Nb,and Ta are all considered to display excellent biological responses,Fe is genotoxic and moderately cytotoxic,while also being prone to corrosion [19,20].While including this element may thus at ?rst seem counter to the stated goal of yielding a highly biocompatible alloy,these issues are distinct from more concerning attributes such as allergenicity or carcinogenicity in that minimum safe con-centrations exist.As such,they may be mitigated via a characteris-tics of the other alloying elements;the passive oxide ?lm formed by Ti on contact with oxygen (O 2),which should reduce corrosion signi?cantly compared to pure Fe [21].Evidence for this can be seen in studies on similar alloys in the Ti–Ta–Fe and Ti–Ta–Fe–Zr systems investigated by Kuroda et al.[21,22]previously.These alloys have shown both good mechanical properties,and corrosion resistance comparable to or exceeding that of the common biomedical materials of commercially pure Ti and Ti–6Al–4V.2.Alloy design and experimental methods 2.1.Design rationale for the novel titanium alloys

The design of novel Ti alloys is greatly simpli?ed by considera-tion of the variation of alloy phase as a function of certain elec-tronic parameters,namely mean bond order (Bo ),mean molecular d -orbital energy level (and the mean electron to atom ratio (e /a )of the alloy [23–25].As these values are both

closely related to observed alloy microstructure,and may be calcu-lated from fundamental atomic data,it is possible to use these parameters along with known phase maps to calculate the desired composition for a given microstructure [22–24,26].As such,com-positions of Ti–12Nb–5Fe,Ti–10Ta–4Fe and Ti–7Ta–5Fe were determined as values which are expected to fall solidly within the b -stabilized region.While this reduces the chance of obtaining the absolute Young’s moduli (E )for the b -phase,with e /a ratios falling above the limit of b -phase stability at 4.15[24],these com-positions were expected to be suf?ciently stabilized to avoid the risk of the large scale precipitation of coarse particles of undesir-able a or x -phases.Ikeda et al.[25]found that e /a ratios in the range of 4.26–4.35yielded minimal hardness attributable to these additional phases in Ti-alloys,suggesting that these ranges would also yield reduced moduli.

Finally,it should be noted that modeling by Song et al.[8]indi-cates that a large increase in d may be achieved in a binary Ti–XFe alloy where X =7at.%,but will not be achieved with a smaller Fe content of X =4at.%.This agrees well with known experimental behavior;from application of –Md design theory,7at.%Fe repre-sents an alloy falling on the b /b +x transition,and thus a mini-mally stabilized b -phase,which is known to yield the lowest E [23,26].Knowing this,it becomes possible to target equivalent regions of the Ti-phase diagram with reduced Fe contents through the addition of other b -stabilizing elements such as Ta or Nb.

2.2.Material preparation and characterization

Samples were produced via cold crucible levitation melting (CCLM)from pure metals,and were analyzed in the as-cast state.The nominal compositions of the alloys are presented in Table 1,along with predicted electronic parameters;alloys will be referred to by these compositions hereafter.Samples were cut via electrical discharge machining into small discs with a thickness of 2.00mm and 10.00mm diameter,for assessment of microstructure and bio-compatibility,and small rods with a height of 10.00mm and 5.00mm diameter,for mechanical testing.Where necessary,sam-ples were further sectioned via diamond and water-cooled SiC saws for characterization.

X-ray Diffraction (XRD)was performed on the small disc spec-imens,ground via SiC paper and polished with colloidal SiO 2to a mirror ?nish,then run on a Bruker D8diffractometer with a copper K a source and a 2h scan range of 20–85°.To ensure consistency,diffraction was performed on at least 3separate disc specimens for each alloy.Optical Microscopy (OM)and Scanning Electron Microscopy (SEM)were then performed on the same specimens as the XRD samples,after etching with Kroll’s reagent until fea-tures could be resolved.OM was performed using a Leica MEF4M optical microscope,SEM and elemental characterization by means of Energy Dispersive Spectroscopy (EDS)were performed with a Zeiss Supra 40VP Field Emission microscope.Transmission Elec-tron Microscopy (TEM)was performed on specimens cut from small disc specimens using a diamond saw,then mechanically ground with SiC paper to a thickness of $50–90l m.Next,samples of suf?cient size for analysis were punched from the foils,and elec-tropolished until perforation using a Fischione Model 120Twinjet

Table 1

Composition and electronic parameters of Ti–(Nb,Ta)–Fe alloys produced by CCLM.Sample Ti (at.%)Nb (at.%)Ta (at.%)Fe (at.%)Bo Md (eV)e /a Ti–12Nb–5Fe 83.0012.00– 5.00 2.82 2.37 4.32Ti–7Ta–5Fe 88.00–7.00 5.00 2.81 2.38 4.27Ti–10Ta–4Fe

86.00

10.00

4.00

2.82

2.40

4.26

2 A.Biesiekierski et al./Acta Biomaterialia xxx (2015)

xxx–xxx

Electropolisher containing a solution of 6vol%perchloric acid,35vol%n-butanol and the remainder methanol,maintained at $à30°C through addition of liquid nitrogen.TEM analysis was then performed using a JEOL JEM 2000FX TEM.

Thermal analysis was performed under vacuum using a Mac Science DSC3200S Differential Scanning Calorimeter (DSC),with samples of mass 40–90mg;these were cut using a diamond saw,then ultrasonically cleaned in acetone and dried prior to use.A sin-gle complete analysis per sample was performed over the temper-ature range 100–500°C,with two full heating and cooling cycles utilizing a heating rate of 10°C min à1,and all experiments were duplicated to ensure consistency.Temperatures exceeding 520°C,even despite the nominally evacuated environment,induced sample oxidation suf?cient to in?uence the measured

of the cathodic Tafel slope to the measured E corr .In all cases,corro-sion rate was subsequently determined from I corr via the equivalent weight method outlined in ASTM:G102[29].The breakdown potential E B was determined via extrapolation to intersection of the linear current density slopes seen immediately prior to and succeeding the breakdown events.

Due to their osteoblastic properties [30],proliferation of human SaOS-2sarcoma cells was utilized to assess the biological response to the investigated Ti–(Nb,Ta)–Fe alloys in vitro .Small disc alloy specimens were polished to 600grit ?nish,and cells were cultured at 37 C in modi?ed minimum essential medium (MMEM)for 1and 7days,with commercially pure Ti (grade 2ASTM)plates as control.Cell proliferation was subsequently measured by using a colorimetric assay utilizing the reduction of a tetrazolium salt Fig.1.XRD Spectra of Ti–(Nb,Ta)–Fe alloys.

A.Biesiekierski et al./Acta Biomaterialia xxx (2015)xxx–xxx 3

Student’s T -test was subsequently performed to gauge respective signi?cance for each sample,with a threshold of P =0.05unless otherwise noted.

3.Results and discussion

with the behavior seen in the Ta-containing cases,where both alloys display a signi?cantly reduced b -phase lattice parameter,on the order of 3.26?;distinct from the earlier case,this agrees well with predictions from application of Vegard’s Law [33],and similarly matches behavior reported by Zaluski et al.in binary Ti–Fe alloys [34].The observed x -phase is similarly reduced,and

maintains the expected a x ????

2p a b ;c x ???3p a b relationship common to x derived from a parent b -phase [35].The same cannot be said for the a 0-phase,which shows only minor decrease relative to pure a -Ti,likely due to the poor solubility of Fe in this phase [34].Another interesting note is the absence of peaks consistent with the intermetallic phases FeTi or Fe 2Ti in any alloy;given the extre-mely poor solubility of Fe in the a -phase,some degree of Fe segre-gation and FeTi precipitation would be expected to appear,particularly in the a 0-rich Ti–7Ta–5Fe alloy [34].Their absence,then,would suggest that suf?cient b -phase stabilization was achieved by the Ta/Nb additions to retard further decomposition on the timescales seen in cooling.

Table 3

Detected phases and lattice parameters in Ti–(Nb,Ta)–Fe alloys as determined via XRD.Sample

Phases

Spacegroup

Measured lattice parameters (?)a =b

c Ti–12Nb–5Fe b

Im 3m 3.31 3.31Ti–7Ta–5Fe a

P 63=mmc 2.95 4.73b Im 3.26 3.26Ti–10Ta–4Fe

b

Im 3m 3.26 3.26x

P 6=mmm

4.62

2.83

Fig.2.Optical micrographs of etched Ti–(Nb,Ta)–Fe alloys.(A)Ti–12Nb–5Fe,(B)Ti–7Ta–5Fe and (C)Ti–10Ta–4Fe.

4 A.Biesiekierski et al./Acta Biomaterialia xxx (2015)xxx–xxx

grain boundaries,while larger pores up to1mm in size were rarely observed.Judging by their location and morphology,these are attributed primarily to dissolved gases in the melt.A similar struc-ture is seen in the Ti–10Ta–4Fe alloy,with only b-phase material being visible under OM.Minimal large-scale porosity(visible to the naked eye)is present,contrasting the Ti–12Nb–5Fe alloy, although microscale porosity could still be observed,and no den-dritic patterning was visible.Grain structure resembles the Ti–12Nb–5Fe alloy,though grains were predominantly de?ned by the crack-like secondary grain structure,rather than larger equiaxed-grain boundaries,with mean diameters of$180l m. The Ti–7Ta–5Fe alloy displayed similar porosity and large equiaxed grains,with diameter600?100l m,ingrown with acicular lathes of a0in the classical Widmanst?tten structure,with additional a0 precipitation growing from the grain boundaries in a lamellar structure.

SEM observation broadly matched that observed under optical microscopy.However,the greater magni?cation of SEM allowed for the elucidation of another structure;visible in the less heavily etched regions of both the Ti–12Nb–5Fe and Ti–10Ta–4Fe alloys,?ne bands of a secondary phase precipitation distinct from the dominant b-phase were resolvable.Images of these are provided in Fig.3(a)and(b).These bands could not be observed in the Ti–7Ta–5Fe alloy due to the decreased Ta-content,and hence b-stabilization,allowing pronounced martensitic precipitation throughout the alloy;whether this precipitation competes with, inhibits or merely masks the band structures is unknown,how-ever.These bands were comprised of a dense precipitation of?ne acicular particles threading the Ti–10Ta–4Fe alloy,which can be seen most clearly in Fig.3(b).Precipitation bands observed in the Ti–12Nb–5Fe alloy varied between this acicular structure and shorter,blunter precipitates.Their size,susceptibility to etchant attack and distribution throughout the larger b-grains suggests that these bands precede the crack-like features seen in highly-etched regions under OM.Besides the bands,similar precipitates could be found along a number of the larger b grain boundaries in the Ti–10Ta–4Fe material,as well as scattered throughout the bulk b-grains.Their acicular morphology and location is suggestive of a martensitic phase such as a0or a00,but given their relatively large size and frequency it is surprising that these phases are not observed via XRD.EDS measurements taken from the precipitation bands in each alloy revealed little;the composition varied by less than0.4%in any one species’concentration,in inconsistent direc-tions.As these swings fall below the intrinsic error of the individ-ual EDS measurements[36],variation is considered negligible. While this minimal?uctuation does not identify the phase,the absence of variation,particularly in Fe content,argues against either a=a0or FeTi intermetallic phases[34].

Building on earlier work concerning microstructure,TEM was performed across the three investigated alloys,again broadly matching earlier analyzes.Representative transmission electron micrographs for the three alloys are presented in Fig.4(a)–(d),with relevant Selected Area Electron Diffraction(SAED)patterns inset. The?rst of the three alloys,Ti–12Nb–5Fe is presented in Fig.4 (a),and displayed a b-phase dominated microstructure throughout the analyzed material,interspersed with frequent twinning bands. No resolvable diffraction spots associated with the x-phase could be observed,although faint streaks consistent with extremely small,diffuse x particles matching the known orientation relation-ship[2110]x//?011

b

,were detected[37].The Ti–7Ta–5Fe alloy

(Fig.4(b))displayed the classic Widmanst?tten a0tb structure, matching earlier results;analysis of SAED however,was hampered by the absence of favorable diffraction axes within the tilt range of the TEM sample holder,despite several attempts at sample analy-sis.The Ti–10Ta–4Fe again showed a predominantly b-phase struc-ture;however,x precipitation was pronounced enough to yield distinct x-phase diffraction maxima throughout the SAED pat-terns.This x diffraction pattern displayed classic Burgers orienta-tion relations relative to the matrix b-phase[37];in Fig.4(c),this is

visible as?0111 x

1

//[113]b,along with a twinned x variant,x2, aligned along the[0axis.Further faint maxima,for instance those falling between the(2020)re?ections of the two x patterns, can also be observed;these are the result of double diffraction between the x-twins,and so may be disregarded.The clear x diffraction maxima also allowed for the successful dark-?eld imag-ing of the phase,which reveals that the x-phase is densely precip-itated throughout the material in the form of approximately ovoid particles up to10nm in diameter.That the x-phase is both so large and frequent throughout the material agrees well with the clear x diffraction peak displayed via XRD analysis in Fig.1.

Of note,a sample of the Ti–12Nb–5Fe alloy was successfully imaged along one of the aforementioned precipitation bands;this is presented,along with the attendant SAED pattern,in Fig.4(d). While clear,strong maxima consistent with diffraction of b-Ti along the[012]b axis dominates,additional streaking is evident, e.g.extending between the(200)b and(121b)re?ections.Interpre-tation of these features is less straightforward than in earlier cases; this does not match a/a0-precipitation,nor that seen for the x-phase,which would be expected to yield re?ections falling between e.g.the(200)b and b)re?ections[35].However,mul-tiple variants of a00diffracted along the various permutations of the h111i axes could potential yield these features,given no variant being of suf?cient size/crystallinity to yield resolvable maxima [38].Given the similar nature of the precipitation in Ti–10Ta–4Fe,it is expected that analogous behavior is being observed in this alloy.Notably,while lacking a positive identi?cation,this hypoth-esis?ts the observed behavior;lack of an XRD signal is unsurpris-ing in a situation with nanoscale crystallites and lack of elemental variation under EDS precludes a=a0or FeTi precipitation.While this

Fig.3.Scanning electron micrographs of etched Ti–(Nb,Ta)–Fe alloys.(A)Ti–12Nb–5Fe and(B)Ti–10Ta–4Fe.

precipitation may potentially be x in the Ti–10Ta–4Fe,particularly given the relatively high proportion of the phase under both XRD and TEM,there is minimal sign of this phase in the equivalent Ti–12Nb–5Fe structure,despite similar morphologies.Further,a00 may form microscaled structures even in the as-cast condition [39].As a result,this precipitation is attributed to a00phase,with the precipitation bands possibly forming to accommodate stresses associated with cooling.Beyond this no other phases were observed,surprising given x-phase precipitation is known to pro-vide bountiful sites for a-phase nucleation at the b/x interface [37].

Mean EDS values for the alloys are given in Table4,and their approximate positions on the Bo–Md phase diagram are given in Fig.5.Observed values match,to within inherent accuracy of EDS [36],the nominal composition targets.Further,within each alloy, concentrations were typically uniform;the greatest variation was noted in the Ti–7Ta–5Fe case,due to the elemental segregation of b-stabilizing elements between the a0and b-phase structures. Interestingly however,this segregation was not total;although the b-phase displayed a higher mean Fe content,on the order of 4.2%,Fe contents of the a0phase averaged2.3%,well above the equilibrium concentrations for that expected in an equilibrium a-phase[34].

However,the observed structure of the alloys deviate from what might be expected from consideration of Fig.5,with exten-sive precipitation of a0in the Ti–7Ta–5Fe alloy,while both the Ti–10Ta–4Fe and Ti–12Nb–5Fe alloys showed x phase precipita-tion.Of these,the faint,diffuse contrast and plentiful twinning in the Ti–12Nb–5Fe alloy is consistent with a moderately b-stabilized material where x-phase precipitation is diffuse and transient,forming BCC twins on reversion to the b-phase[35].In the less-stabilized Ti–10Ta–4Fe,this x precipitation grows more pronounced,with both greater stability and precipitate size,lead-ing to a corresponding decrease in{112}h111i

b

twins.Coupled with the presence of a00in both of these alloys,it can be seen that all three alloys display incomplete b-stabilization.These differ-ences stem from the manufacturing process;the articles from

Transmission electron micrographs of Ti–(Nb,Ta)–Fe alloys.(A)Ti–12Nb–5Fe,(B)Ti–7Ta–5Fe,(C)Ti–10Ta–4Fe and(D)Ti–12Nb–5Fe grain boundary.

available.Please note;(C)taken under dark-?eld illumination,all other?gures are bright-?eld illumination.

Table4

Mean composition of as-cast Ti–(Nb,Ta)–Fe alloys as determined using EDS.

Sample Ti(at.%)Nb(at.%)Ta(at.%)Fe(at.%)

Ti–12Nb–5Fe82.8?0.312.6?0.3– 4.5?0.2

Ti–7Ta–5Fe89?1–7.4?0.6 3.6?0.8

Ti–10Ta–4Fe86.7?0.5–9.6?0.4 3.7?0.4

Error values represent1std.dev.

which Fig.5is recreated assume the material is in an as-quenched state following solution treatment,with literature alloys decom-posing into a duplex a tb -phase structure on ageing [22,23,26].In contrast to this,the alloys presented in this work are investi-gated in the as-cast state which,in CCLM manufacturing,is inter-mediate between solution-treated-and-quenched and aged or furnace-cooled process routes,yielding a similarly intermediate microstructure.Unfortunately,this precipitation prevents the development of truly low-E alloys in the as-cast state.Neverthe-less,this does suggest the material is highly responsive to heat-treatment;a useful property given the proscription against mechanical working entailed by a porous structure.3.2.Thermal analysis

Further investigation in this regard was performed with DSC;during the initial heating trace,distinctive peaks were observed in the Ti–12Nb–5Fe and Ti–10Ta–4Fe alloys,at 339°C and 360°C respectively,and a local maxima at 359°C was seen in the Ti–7Ta–5Fe alloy.These are associated with the b !x transition,which was recently identi?ed as exothermic [40–43].Subse-quently,all three alloys displayed an increasingly endothermic trend,as expected of Ti-alloys approaching the b -transus behavior [40];due to limits of analysis,the actual transus was only resolved in the Ti–7Ta–5Fe alloy,at 483°C.On cooling,only one feature of note was observed;a small exothermic peak falling at $502°C in the Ti–12Nb–5Fe alloy.

During the second heating cycle,pronounced exothermic peaks were no longer observed at $360°C.Instead,broad exothermic peaks were detected centered on $400°C,matching existing liter-ature describing the precipitation of a =a 0at temperatures above $400 C [40,43].Beyond this point,heating traces became more endothermic due to the approaching b -transus,but this appeared slightly shifted to higher temperatures;likely a result of segrega-tion of the b -stabilizing elements (particularly Fe)due to the effec-

tive overaging engendered by the DSC analysis causing the

remaining a 0-phase to become increasing depleted of stabilizing species,raising the b -transus temperature [12].This may also explain the small exothermic peak seen during only the ?rst cool-ing cycle of the Ti–12Nb–5Fe,as the reverse b !a =a 0transition undergoing a similar shift to higher temperatures outside the lim-its of observation,although further work is needed to con?rm.In either case,it is apparent that the alloy shows a pronounced response to heat-treatment,suggesting the potential for increased versatility in its application.

3.3.Mechanical analysis

Values for the Vickers microhardness for the three alloys are presented in Table 5.The highest mean hardness is seen in the Ti–7Ta–5Fe alloy,and the lowest overall hardness in the Ti–12Nb–5Fe alloy;variation within a given alloy was minimal.These values are consistent with the observed microstructure,with the presence of extensive a 0or x -precipitation in the Ta-containing alloys increasing hardness relative to the Ti–12Nb–5Fe.

Results from monotonic compression are presented in Table 6,and representative monotonic compression curves are shown in Fig.6.Of the three alloys,Young’s modulus (E )was highest in the Ta-containing alloys,particularly in the x -rich Ti–10Ta–4Fe.Only the Ti–12Nb–5Fe alloy displayed an E falling below the accepted range for C.P.Ti (P 103GPa)[1],at approximately 86GPa.As this still remains above the expected range for human bone [10],it is clear that no investigated alloy would be suitable solely for use as a non-porous implant material.Observed r YS val-ues,determined by intersection with the 0.2%offset slope,were greatest in the Ti–10Ta–4Fe alloy,though both Ta-containing alloys exceeded 1.2GPa.The r YS was signi?cantly less in the Ti–12Nb–5Fe alloy,at 740MPa.Despite this,the Nb-containing alloy still displays a r YS more than twice that of Grade 2C.P.Ti,compa-rable with Ti–6Al–4V in the solution-treated and aged state [1,12].Combined with the measured moduli,d in all alloys greatly exceeded that of bone [10].Compressive strength (r c )for all alloys,where observed,was in excess of a gigapascal.Due to only a single de?ned failure point being observed in the Ti–12Nb–5Fe alloy,with other test specimens displaying a malleable deformation until termination of the experiment,no exact value may be given for this composition.As might be expected given the observed r YS ,the Ta-containing alloys consistently displayed higher compressive strength than the Nb-containing alloy,although the highest r c was observed in the Ti–7Ta–5Fe,rather than Ti–10Ta–4Fe,alloy.The degree of plastic deformation noticeably varied between samples,with the Nb-containing alloy showing a far greater plastic strain at failure,to the point that no failure was observed up until the termination of the experiment in the majority of runs.This contrasts to the Ta-containing alloys,which displayed plastic strains on the order of $6%for the Ti–7Ta–5Fe alloy,and $13%for the Ti–10Ta–4Fe alloy;together,these yield total failure strains ( fail )of P 42,7?1and 14?4.While caution must be exercised in comparing to tensile results,this extent rivals many existing Ti-based biomaterials [1,17].

As with the hardness,the observed E ,r YS ;r c and fail appear to be directly attributable to microstructure;namely,the absence of signi?cant x and a 0precipitation throughout the Ti–12Nb–5Fe

for Ti–(Nb,Ta)–Fe alloys,reconstructed from information ?gure shows nominal and actual electronic parameters,Dashed ellipses denote approximate range of measured Table 5

Vickers microhardness of as-cast Ti–(Nb,Ta)–Fe alloys.Sample Hardness (HV)Std.dev.(HV)Ti–12Nb–5Fe 293?6Ti–7Ta–5Fe 430?10Ti–10Ta–4Fe

410

?10

A.Biesiekierski et al./Acta Biomaterialia xxx (2015)xxx–xxx 7

alloy,and said x and a 0phases’s presence in Ti–10Ta–4Fe and Ti–7Ta–5Fe alloys,respectively.Given both x and a 0are well known for their adverse effects on these [12],increasing their volume frac-tion would be expected to noticeably impinge on the observed properties.

3.4.Corrosion analysis

Corrosion analysis of these materials was performed via open-circuit potential (E OC )vs time (T )and potentiodynamic polarization measurements.The E OC vs time measurements indicated that the investigated alloys showed an increase in the E OC with time which rapidly ($1h)settled into close accordance with an inverse power law of form:

E OC ?

1

eC 1T tC 2T

tE OC 1

e1T

where T is elapsed time,C 1and C 2are descriptive constants,and E OC 1represents the potential approached by E OC as T !1.The characteristic values for the three analyzed alloys,along with C.P.Ti and Ti–6Al–4V controls,were derived via regression of

the

measured curves to this function;these values are given in Table 7,and are plotted in Fig.7along with the measured data.

The gradual,slowing increase of E OC over time is common in materials that show a gradual passivation behavior [44];in the case of Ti-containing alloys,this is typically attributed to the for-mation of an impermeable TiO x ?lm,and clearly proceeds even despite the Fe addition [45,46].Notable also is that the vast major-ity of variation in surface potential occurs within the initial 24h,suggesting passivation behavior is relatively rapid within the bio-logical environment.The Nb-containing alloy appears to most rapidly reach a neutral open-circuit potential;this,coupled with its higher initial E OC values would suggest an ability to better resist corrosion in the immediate aftermath of a disruption of the passive oxide layer.However,as elapsed time approaches 72h,the E OC value is equaled by both C.P.Ti and the Ta-containing alloys.Extrapolating the observed trend to in?nity,it would appear that these alloys tend toward a higher,and hence more noble,overall E OC 1value.It should be stressed at this point,however,that given that the E OC 1values are derived by regression over a ?nite period,these interpretations are at best hypothetical;still,this would appear to suggest that these Ta-containing alloys are perhaps bet-ter suited to applications minimizing abrasion of the implant surface.

More de?nitive is the information provided via the potentiody-namic polarization analysis of the samples over the anodic and cathodic range.Representative polarization traces for the three alloys and two standards are presented in Fig.8,while key param-eters determined from this are presented in Table 8.The linear polarization measurements show minimal variation among these alloys;namely there is no statistically signi?cant difference in E corr values between the three Fe-containing alloys,either among the three,or with respect to the C.P.Ti control.This uniformity speaks well toward the potential application of the Ti–(Nb,Ta)–Fe alloys in a clinical role.Further,there is a statistically signi?cant increase (P <0.05for Ti–7Ta–5Fe,P <0.01for all others)in E corr for all alloys relative to the Ti–6Al–4V control,unsurprising given reported Ti–6Al–4V E corr values in comparable literature cases [45–48].I corr values of the investigated alloys display a broader range of values,however;while the Ti–12Nb–5Fe alloy displays I corr values indistinguishable from the C.P.Ti control,a signi?cant (P <0.05)increase is seen in the Ti–10Ta–4Fe alloy relative to both controls.By contrast,the Ti–7Ta–5Fe alloy displays a far lower cor-rosion current,on the order of 0.08l A/cm 2;a value in close agree-ment with that observed in the similarly a +b duplex-structured Ti–6Al–4V control.It should be noted,however,that despite the dif-ference in I corr values between the alloys,the observed corrosion rates showed no statistically signi?cant difference to an existing control,whether either the C.P.Ti (Ti–12Nb–5Fe,Ti–10Ta–4Fe)or Ti–6Al–4V (Ti–7Ta–5Fe)controls.

Increasing the applied voltage above E corr ,the majority of alloys lacked the classical anodic branch in the Tafel region.Rather,a region extending $0.1–0.3V immediately above E corr was seen,that showed negligible increase in current density.This is best demonstrated in the Ti–6Al–4V control,but similar behavior could be observed in all alloys,and is the result of a dense initial passive layer [47].However,among the designed alloys,this behavior was not consistent;while most prevalent in the Ti–10Ta–4Fe alloy,all Fe-containing alloys showed traces where a traditional anodic slope started to form,but at $0.2–0.5V above E corr ,sharply reverted to the behavior displayed by the Ti–6Al–4V alloy,in some case yielding as much as an order of magnitude decrease in current density.This is indicative of repassivation prior to the subsequent breakdown in the transpassive region above the breakdown poten-tial (E B )[49].This repassivation can occur due to reduction of the extant passive ?lm from exposure to a polarization current

0.3–0.5V below E corr ;while in Ti–6Al–4V and C.P.Ti controls this

Table 6

Mechanical properties from compressive testing.Fig.6.Representative monotonic compression curves of Ti–(Nb,Ta)–Fe alloys.

Table 7

Characteristic parameters from open-circuit potential vs time measurements for Ti–(Nb,Ta)–Fe alloys.Sample C 1(V à1T à1)C 2(V à1)E OC 1(V)C.P.Ti

à7.592?0à5à3.4620.055Ti–6Al–4V à1.737?10à4à3.360.022Ti–12Nb–5Fe à3.598?10à4à7.400.025Ti–7Ta–5Fe à1.058?10à4à2.4150.046Ti–10Ta–4Fe

à6.266?10à5

à3.676

0.068

8

A.Biesiekierski et al./Acta Biomaterialia xxx (2015)xxx–xxx

passive layer could resist the reducing environment,the same could not be said for the Fe-containing alloys.These repassivation events were seen in80%of scans for the Ti–7Ta–5Fe alloys,40%of the Ti–10Ta–4Fe scans and25%of the Ti–12Nb–5Fe scans.As a crude metric performed in the absence of direct cathodic polariza-tion,this would appear to suggest an increasing susceptibility to cathodic erosion of the passive?lm with an increasing ratio of Fe to other alloying elements;clearly,however,further work would be necessary to con?rm this.Cathodic resistance is further consid-ered a lesser concern,given the expected environment within the body falls into the anodic regime[14].

In the transpassive region the current begins to increase,with this rate of increase rising sharply above E B(listed in Table8), yielding as much as a two order of magnitude rise in current den-sity.The Fe-containing alloys’E B values of between+0.6and0.7V SCE equal or exceed that observed for Ti-based alloys in similar conditions[47,50],indicating improved resistance to anodic corro-sion potentials.Among the alloys,the Ti–10Ta–4Fe alloy exhibits the highest E B,but given the greater variance in the measured val-ues for this alloy,ultimately no meaningful difference can be dis-cerned between any of the three.Beyond this,these materials all show similar behavior.The brief passive region occurring in the

Fig.7.Actual and LoBF E OC vs T curves for as-cast Ti–(Nb,Ta)–Fe alloys in HBSS.

Fig.8.Potentiodynamic polarization curves for the as-cast Ti–(Nb,Ta)–Fe alloys in HBSS.

Table8

Electrochemical corrosion parameters derived from potentiodynamic polarization of Ti–(Nb,Ta)–Fe alloys.

Sample E corr(V)I corr(l A/cm2)Corr.rate(l m/year)E B(V)

C.P.Tià0.25?0.040.2?0.12?10.27?0.07

Ti–6Al–4Và0.402?0.0070.07?0.030.6?0.20.4?0.1 Ti–12Nb–5Feà0.23?0.060.2?0.12?10.6?0.2 Ti–7Ta–5Feà0.25?0.090.08?0.050.5?0.40.6?0.1 Ti–10Ta–4Feà0.24?0.050.5?0.23?10.7?0.3

Note:all voltages presented relative to SCE.Listed error values represent1std.dev.

neighbourhood of 0.5–1.0V SCE matches that seen elsewhere in literature,as well as in earlier studies by this author [46,47,50];this is associated with the formation of a second,less passive ?lm.Increasing voltage further,transient current spikes occurred,heralding the likely onset of pitting corrosion [46,47].This behav-ior shows little difference between the control and investigated samples,with current densities for all investigated alloys typically

the Ti-control and all three Ti–(Nb,Ta)–Fe alloys for the 1day sam-ples;cell distribution consisted of broad swathes of little or no cell growth,interspersed with clumps with a moderate to high cell density.Cell clusters appeared marginally more diffuse in the Ti–7Ta–5Fe sample,although given the small sample size,this is not considered meaningful.Across all materials,cells predominantly displayed one of two morphologies;a spherical appearance with micrographs of SaOS-2cells cultured on Ti–(Nb,Ta)–Fe alloys:7-day incubation.(A)Ti–12Nb–5Fe,(B)Ti–7Ta–5Fe,(C)Ti–10Ta–4Fe and 10 A.Biesiekierski et al./Acta Biomaterialia xxx (2015)xxx–xxx

suitable surface chemistry and topography to adhere to,these are highly sensitive to adverse conditions.As such,their extensive presence,along with well attached,highly extended and thickly clustered cell masses is indicative of minimal to no adverse biolog-ical impact from the alloy substrates [31,51,52].

Beyond confocal microscopy,MTS assays were also performed to provide a more quantitative analysis of cell proliferation and survival ability;resulting data is presented in Fig.10,with the ver-tical scale normalized to a control well seeded with SaOS-2cells in the absence of a metal disc.Measured absorbance showed minimal variation;relative to both the empty well and C.P.Ti controls,none of the analyzed alloys showed a statistically signi?cant (P >0.05)difference in absorbance.Relaxing the level of con?dence to 90%,a slight reduction can be seen relative to the empty well control in the Ti–10Ta–4Fe alloy;however,even at this reduced level,this alloy was indistinguishable from the C.P.Ti control,suggesting all investigated alloys at least rival existing materials with respect to cellular response.As might also be expected from this data,differ-ences between the alloys were likewise minimal;to 95%con?-dence,no alloys show a statistically signi?cant variation in absorbance.

4.Summary

In conclusion,the investigated alloys all show a signi?cant degree of promise with regard to their eventual application as potential orthopedic biomaterials.Displaying elastic moduli of 90–120GPa,on par with Ti-based alloys currently in biomedical service [1],limits their value in the manufacture of high density,solid implants.Rather,the value of these implants would appear to lie instead in the creation of a porous material;all three alloys displayed 0.2%offset yield strengths at least comparable to that observed in existing high-strength Ti-based alloys such as Ti–6Al–4V or Ti–6Al–7Nb [12].In the case of the Ti–Ta–Fe alloys,yields in excess of 1.25GPa were achieved;phenomenal values,exceeding those seen even in cold-worked Gum metal or TNTZ [53,3].As a result of this,the calculated admissible strain of the alloys,at values ranging from 0.9%in the Ti–12Nb–5Fe alloy,to 1.2%in the Ti–7Ta–5Fe alloy,not only exceeds the 0.55%seen in cortical bone but furthermore rivals that seen in next generation

[2]M.Abdel-Hady Gepreel,M.Niinomi,Biocompatibility of Ti-alloys for long-term implantation,J.Mech.Behav.Biomed.Mater.20(2013)407–415.

[3]M.Niinomi,M.Nakai,J.Hieda,Development of new metallic alloys for

biomedical applications,Acta Biomater.8(11)(2012)3888–3903.

[4]W.Head, D.Bauk,R.Emerson,Titanium as the material of choice for

cementless femoral components in total hip arthroplasty,Clin.Orthop.Relat.Res.311(1995)85–90.

[5]L.Gibson,M.Ashby,Cellular Solids:Structure and Properties,Cambridge

University Press,1997.

[6]C.Wen,M.Mabuchi,Y.Yamada,K.Shimojima,Y.Chino,T.Asahina,Processing

of biocompatible porous Ti and Mg,Scr.Mater.45(10)(2001)1147–1153.[7]C.Wen,Y.Yamada,K.Shimojima,Y.Chino,H.Hosokawa,M.Mabuchi,Novel

titanium foam for bone tissue engineering,J.Mater.Res.17(10)(2002)2633–2639.

[8]Y.Song,D.Xu,R.Yang,D.Li,W.Wu,Z.Guo,Theoretical study of the effects of

alloying elements on the strength and modulus of [beta]-type bio-titanium alloys,Mater.Sci.Eng.A 260(1–2)(1999)269–274.

[9]S.Ozan,J.Lin,Y.Li,R.Ipek,C.Wen,Development of Ti–Nb–Zr alloys with high

elastic admissible strain for temporary orthopedic devices,Acta Biomater.20(2015)176–187.

[10]H.Bayraktar,E.Morgan,G.Niebur,G.Morris,E.Wong,T.Keaveny,Comparison

of the elastic and yield properties of human femoral trabecular and cortical bone tissue,J.Biomech.37(1)(2004)27–35.

[11]M.Semlitsch, F.Staub,H.Weber,Titanium–aluminium–niobium alloy,

development for biocompatible,high strength surgical implants,Biomed.Eng.30(12)(1985)334.

[12]M.Donachie,Titanium:A Technical Guide,2nd Edition.,ASM International,

Materials Park,Ohio,2000.

[13]J.Wang,H.Sehitoglu,Martensite modulus dilemma in monoclinic NiTi-theory

and experiments,Int.J.Plast.61(2014)17–31.

[14]E.Eisenbarth,D.Velten,M.Muller,R.Thull,J.Breme,Biocompatibility of

[beta]-stabilizing elements of titanium alloys,Biomaterials 25(26)(2004)5705–5713.

[15]D.Beyersmann,A.Hartwig,Carcinogenic metal compounds:recent insight

into molecular and cellular mechanisms,Arch.Toxicol.82(8)(2008)493–512.[16]Y.Li,C.Wong,J.Xiong,P.Hodgson,C.Wen,Cytotoxicity of titanium and

titanium alloying elements,J.Dent.Res.89(5)(2010)493–497.

[17]R.Boyer,G.Welsch,E.Collings,Materials Properties Handbook –Titanium

Alloys,ASM International,Materials Park,Ohio,1994.

[18]K.Wang,L.Gustavson,J.Dumbleton,Microstructure and properties of a new

beta titanium alloy,Ti–12Mo–6Zr–2Fe,developed for surgical implants,ASTM (1996)76–87.

[19]P.Lima,M.Vaconcellos,R.Montenegro,M.Bahia,L.Antunes,E.Costa,et al.,

Genotoxic effects of aluminum,iron and manganese in human cells and experimental systems:a review of the literature,Hum.Exp.Toxicol.(2011)1435–1444.

[20]A.Yamamoto,R.Honma,M.Sumita,Cytotoxicity evaluation of 43metal salts

using murine ?broblasts and osteoblastic cells,J.Biomed.Mater.Res.39(2)(1998)331–340.

[21]D.Kuroda,Y.Tanaka,H.Kawasaki,K.Asami,T.Hanawa,Characterization of

surface oxide ?lm formed on Ti–8Fe–8Ta–4Zr,Mater.Trans.46(12)(2005)3015–3019.

[22]D.Kuroda,H.Kawasaki,A.Yamamoto,S.Hiromoto,T.Hanawa,Mechanical

properties and microstructures of new Ti–Fe–Ta and Ti–Fe–Ta–Zr system alloys,Mater.Sci.Eng.C 25(3)(2005)312–320.

Fig.10.MTS Assay absorbance measurements.Measurements are presented normalized to an empty well control.Error bars represent 1std.dev.

[23]M.Abdel-Hady Gepreel,K.Hinoshita,M.Morinaga,General approach to phase

stability and elastic properties of [beta]-type Ti-alloys using electronic parameters,Scr.Mater.55(5)(2006)477–480.

[24]Y.Hao,S.Li,S.Sun,C.Zheng,R.Yang,Elastic deformation behaviour of Ti–

24Nb–4Zr–7.9Sn for biomedical applications,Acta Biomater.3(2)(2007)277–286.

[25]M.Ikeda,M.Ueda,R.Matsunaga,M.Ogawa,M.Niinomi,Isothermal aging

behavior of beta titanium–manganese alloys,Mater.Trans.50(12)(2009)2737–2743.

[26]D.Kuroda,M.Niinomi,M.Morinaga,Y.Kato,T.Yashiro,Design and

mechanical properties of new [beta]type titanium alloys for implant materials,Mater.Sci.Eng.A 243(1–2)(1998)244–249.

[27]ASTM E9-09,Standard test methods of compression testing of metallic

materials at room temperature,2009.

[28]ASTM G3-14,Standard practice for conventions applicable to electrochemical

measurements in corrosion testing,2014.

[29]ASTM G102-89(2010),Standard practice for calculation of corrosion rates and

related information from electrochemical measurements,2010.

[30]S.Rodan,Y.Imai,M.Thiede,G.Wesolowski,D.Thompson,Z.Bar-Shavit,et al.,

Characterization of a human osteosarcoma cell line (saos-2)with osteoblastic properties,Cancer Res.47(18)(1987)4961–4966.

[31]Y.Li,C.Wen,D.Mushahary,R.Sravanthi,N.Harishankar,G.Pande,et al.,Mg–

Zr–Sr alloys as biodegradable implant materials,Acta Biomater.8(8)(2012)3177–3188.

[32]W.Kraus,G.Nolzeb,POWDER CELL –a program for the representation and

manipulation of crystal structures and calculation of the resulting X-ray powder patterns,J.Appl.Crystallogr.29(3)(1996)301–303.

[33]A.Denton,N.Ashcroft,Vegard’s law,Phys.Rev.A 43(6)(1991)3161–3164.[34]L.Zaluski,P.Tessier,D.Ryan,C.Doner,A.Zaluska,J.Stroem-Olsen,et al.,

Amorphous and nanocrystalline Fe–Ti prepared by ball milling,J.Mater.Res.8(12)(1993)3059–3068.

[35]D.Ping,Review on omega phase in body-centered cubic metals and alloys,

Acta.Metall.Sin.(English Lett.)27(1)(2014)1–11.

[36]P.Goodhew,J.Humphreys,R.Beanland,Electron Microscopy and Analysis,

third ed.,Taylor &Francis,London,2014.

[37]Y.Ohmori,T.Ogo,K.Nakai,S.Kobayashi,Effects of omega-phase precipitation

on beta to alpha,alpha transformations in a metastable beta titanium alloy,Mater.Sci.Eng.A 312(1–2)(2001)182–188.

[38]E.Withey,A.Minor,D.Chrzan,J.Morris Jr,S.Kuramoto,The deformation of

gum metal through in situ compression of nanopillars,Acta Mater.58(7)(2010)2652–2665.

[39]P.Zywicki,D.Ping,T.Abe,H.Garbacz,Y.Yamabe-Mitarai,K.Kurzydlowski,

Effect of Pd addition on the microstructure of Ti–30Nb alloy,Met.Mater.Int.21(4)(2015)617–622.

[40]E.Lopes, A.Cremasco, C.Afonso,R.Caram,Effects of double aging heat

treatment on the microstructure,vickers hardness and elastic modulus of Ti–Nb alloys,Mater.Charact.62(7)(2011)673–680.

[41]Y.Mantani,Y.Takemoto,M.Hida, A.Sakakibara,M.Tajima,Phase

transformation of alpha martensite structure by aging in Ti-8mass %Mo alloy,Mater.Trans.45(5)(2004)1629–1634.

[42]A.Cremasco,P.Andrade,R.Contieri,E.Lopes,C.Afonso,R.Caram,Correlations

between aging heat treatment,omega phase precipitation and mechanical properties of a cast Ti–Nb alloy,Mater.Des.32(4)(2011)2387–2390.

[43]D.Kent,S.Pas,S.Zhu,G.Wang,M.Dargusch,Thermal analysis of precipitation

reactions in a Ti–25Nb–3Mo–3Zr–2Sn alloy,Appl.Phys.A 107(4)(2012)835–841.

[44]M.Nunez,Trends in Electrochemistry Research,Nova Science Publishers,

2007.

[45]https://www.360docs.net/doc/697557872.html,vos-Valereto,I.Costa,S.Wolynec,The electrochemical behavior of Ti–6Al–

7Nb alloy with and without plasma-sprayed hydroxyapatite coating in hank’s solution,J.Biomed.Mater.Res.63(5)(2002)664–670.

[46]Y.Bai,Y.Hao,S.Li,Y.Hao,R.Yang,F.Prima,Corrosion behavior of biomedical

Ti–24Nb–4Zr–8Sn alloy in different simulated body solutions,Mater.Sci.Eng.C 33(4)(2013)2159–2167.

[47]S.Assis,S.Wolynec,I.Costa,Corrosion characterization of titanium alloys by

electrochemical techniques,Electrochim.Acta 51(8–9)(2006)1815–1819.[48]A.Choubey,R.Balasubramaniam,B.Basu,Effect of replacement of V by Nb and

Fe on the electrochemical and corrosion behavior of Ti–6Al–4V in simulated physiological environment,J.Alloys Compd.381(1–2)(2004)288–294.

[49]M.Pourbaix,Electrochemical corrosion of metallic biomaterials,Biomaterials

5(3)(1984)122–134.

[50]A.Biesiekierski,D.Ping,Y.Yamabe-Mitarai,C.Wen,Impact of ruthenium on

microstructure and corrosion behavior of [beta]-type Ti–Nb–Ru alloys for biomedical applications,Mater.Des.59(2014)303–309.

[51]I.Degasne,M.Basle,V.Demais,G.Hure,M.Lesourd,B.Grolleau,et al.,Effects

of roughness,?bronectin and vitronectin on attachment,spreading,and proliferation of human osteoblast-like cells (SaOS-2)on titanium surfaces,Calcif.Tissue Int.64(6)(1999)499–507.

[52]M.Jayaraman,U.Meyer,M.Buhner,U.Joos,H.Wiesmann,In?uence of

titanium surfaces on attachment of osteoblast-like cells in vitro,Biomaterials 25(4)(2004)625–631.

[53]T.Saito,T.Furuta,J.Hwang,S.Kuramoto,K.Nishino,N.Suzuki,et al.,

Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism,Science 300(5618)(2003)464–467.

12 A.Biesiekierski et al./Acta Biomaterialia xxx (2015)

xxx–xxx

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质就是旧键的断裂与新建的形成,参与成键原子的电子壳层重新组合就是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似与关于分子波函数的方程形成计算量子化学的数学基础。 2、1 SCF-MO 方法的基本原理 分子轨道的自洽场计算方法 (SCF-MO)就是各种计算方法的理论基础与核心部分,因此在介绍本文计算工作所用方法之前,有必要对其关键的部分作一简要阐述。 2、1、1 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献与教材中对这些方程已有系统的推导与阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构与性质,在非相对论近似下,须求解 R AB =R 图2-1分子体系的坐标

定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ (2、1) 其中分子波函数依赖于电子与原子核的坐标,Hamilton 算符包含了电子p 的动能与电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2、2) 以及原子核的动能 ∑?-=A A A N M H 2121? (2、3) 与电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2、4) 式中Z A 与M A 就是原子核A 的电荷与质量,r pq =|r p -r q |,r pA =|r p -R A |与R AB =|R A -R B |分别就是电子p 与q 、核A 与电子p 及核A 与B 间的距离(均以原子单位表示之)。上述分子坐标系如图2、1所示。可以用V(R,r)代表(2、2)-(2、4)式中所有位能项之与 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2、5) 原子单位 上述的Schrodinger 方程与Hamilton 算符就是以原子单位表示的,这样表示的优点在于简化书写型式与避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位就是Bohr 半径

步进电机可编程驱动控制器设计资料及例程

步进电机可编程驱动控制器 【简要说明】 一、尺寸:长88mmX宽68mmX高35mm 二、主要芯片:AT89S52单片机、L298NL、298N(支持AT89S52编程) 三、工作电压:输入电压(5V~30V)输入电压的大小由被控制电机的额定电压决定。 四、可驱动直流(5~30V之间电压的直流电机或者步进电机) 五、最大输出电流2A (瞬间峰值电流3A) 六、最大输出功率25W 七、特点: 1、具有信号指示 2、转速可调 3、抗干扰能力强 4、具有续流保护 5、转速、转向、工作方式可根据程序灵活控制 6、可单独控制一台步进电机 7、根据需要自己编程可以灵活控制步进电机,实现多种功能; 8、可实现正反转 9、采用光电隔离 10、单片机P3口已用排针引出,可以方便使用者连接控制更多外围设备。 11、四位LED灯指示 12、四位按键输入(可以对AT89S52单片机编程实现任何控制) 13、核心控制芯片采用市场上最常用的AT89S52单片机,支持STC89C52单片机,控制方式简单,只需控制IO口电平即可!

14、采用独立编码芯片L297,不用在单片机程序里编程复杂的逻辑代码和占用单片机资源。 15、设计有程序下载口,可以实时编程实时调试。 16、芯片都安装在对应的管座上,可以随时更换芯片。 17、外部连线采用旋转压接端子,使接线更牢固。 18、四周有固定安装孔。 产品最大特点:可以对AT89S52单片机编程实现任意控制被控的直流电机或者步进电机。 适用场合:单片机学习、电子竞赛、产品开发、毕业设计。。。 注意啦:本产品提供例程(附带原理图以及说明!) 【标注图片】 【步进电机控制接线图】 步进电机的控制实例 步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。 一、步进电机最大特点是:

步进电机驱动电路设计

步进电机驱动电路设计 摘要 随着数字化技术发展,数字控制技术得到了广泛而深入的应用。步进电机是一种将数字信号直接转换成角位移或线位移的控制驱动元件, 具有快速起动和停止的特点。因为步进电动机组成的控制系统结构简单,价格低廉,性能上能满足工业控制的基本要求,所以广泛地应用于手工业自动控制、数控机床、组合机床、机器人、计算机外围设备、照相机,投影仪、数码摄像机、大型望远镜、卫星天线定位系统、医疗器件以及各种可控机械工具等等。直流电机广泛应用于计算机外围设备( 如硬盘、软盘和光盘存储器) 、家电产品、医疗器械和电动车上, 无刷直流电机的转子都普遍使用永磁材料组成的磁钢, 并且在航空、航天、汽车、精密电子等行业也被广泛应用。在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。他们都是利用电和磁的相互作用来实现向机械能能的转换。 介绍了步进电机和直流电机原理及其驱动程序控制控制模块,通过AT89S52单片机及脉冲分配器(又称逻辑转换器) L298完成步进电机和直流电机各种运行方式的控制。实现步进电机的正反转速度控制并且显示数据。整个系统采用模块化设计,结构简单、可靠,通过按键控制,操作方便,节省成本。 关键词:步进电机,单片机控制,AT89S52,L297,L298目录

第一性原理简介

第一性原理是什么 第一性原理怎么用 1什么是第一性原理 根据原子核和电子互相作用的原理及其基本运动规律,运用,从具体要求出发,经过一些近似处理后直接求解的算法,称为第一性原理。广义 的第一原理包括两大类,以Hartree-Fock自洽场计算为基础的从头算和 (DFT计算。 从定义可以看出第一性原理涉及到量子力学、、Hartree-Fock自洽场、等许多对我来说很陌生的物理化学定义。因此我通过向师兄请教和上网查资料一点点的了解并学习这些知识。 2第一性原理的作用 以密度泛函理论(DFT)为基础以及在此基础上发展起来的简单而具有一定精度的局域密度近似(LDA)和广义梯度近似(GGA)的第一性原理电子结构计算方法,与传统的解析方法一样,不但能够给出描述体系微观电子特性的物理量如波函数、态密度、费米面、电子间互作用势等,以及在此基础上所得到的体现体系宏观物理特性的参量如结合能、电离能、比热、电导、光电子谱、穆斯堡尔谱等等,而且它还可以帮助人们预言许多新的

物理现象和物理规律。密度泛函计算的一些结果能够与实验直接进行比较一些应用程序的发展乃至商业软件的发布,导致了基于密度泛函理论的第 一原理计算方法的广泛应用。 密度泛函理论(DFT)为第一性原理中的一类,在物理系、化学、材料科学以及其他工程领域中,密度泛函理论(DFT及其计算已经快速发展成 为材料建模模拟的一种“标准工具”。 密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS、光学性能、磁性能以及原子集合的总能等等。 3第一性原理怎么用 目前我所学到的利用第一性原理的软件为Material Studio 、VASP软件。其中Materials Studio (简称MS是专门为材料科学领域研究者幵发的一款可运行在PC上的模拟软件。使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 模块简介 Materials Studio 采用了大家非常熟悉的Microsoft标准用户界面, 允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。 目前,Materials Studio 软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio 的其他产品。是Materials Studio 产品系列的核心模块。 Discover: Materials Studio 的分子力学计算引擎。使用多种分子力学和动力学 方法,以仔细推导的力场作为基础,可准确地计算出最低能量构型、分子体系的结构和动力学轨迹等。

(整理)二相步进电机驱动.

电机驱动器使用说明书 L298N是ST公司生产的一种高电压、大电流电机驱动芯片。该芯片采用15脚封装。主要特点是:工作电压高,最高工作电压可达46V;输出电流大,瞬间峰值电流可达3A,持续工作电流为2A;额定功率25W。内含两个H桥的高电压大电流全桥式驱动器,可以用来驱动直流电动机和步进电动机、继电器线圈等感性负载;采用标准逻辑电平信号控制;具有两个使能控制端,在不受输入信号影响的情况下允许或禁止器件工作有一个逻辑电源输入端,使内部逻辑电路部分在低电压下工作;可以外接检测电阻,将变化量反馈给控制电路。使用L298N芯片驱动电机,该芯片可以驱动一台两相步进电机或四相步进电机,也可以驱动两台直流电机。 简要说明: 一、尺寸:80mmX45mm 二、主要芯片:L298N、光电耦合器 三、工作电压:控制信号直流5V;电机电压直流3V~46V(建议使用36伏以下) 四、最大工作电流:2.5A 五、额定功率:25W 特点:1、具有信号指示。 2、转速可调 3、抗干扰能力强 4、具有过电压和过电流保护 5、可单独控制两台直流电机 6、可单独控制一台步进电机 7、PWM脉宽平滑调速 8、可实现正反转

9、采用光电隔离 六、有详细使用说明书 七、提供相关软件 八、提供例程及其学习资料 实例一:步进电机的控制实例 步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。 一、步进电机最大特点是: 1、它是通过输入脉冲信号来进行控制的。 2、电机的总转动角度由输入脉冲数决定。 3、电机的转速由脉冲信号频率决定。 二、步进电机的驱动电路 根据控制信号工作,控制信号由单片机产生。(或者其他信号源) 如图:按CTRL并点击(L298N驱动器与直流电机接线图) 三、基本原理作用如下: 两相四拍工作模式时序图:

实用的步进电机驱动电路图

实用的步进电机驱动电路(图) 概述 步进电机是一种将电脉冲转化为角位移的执行机构,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 目前,对步进电机的控制主要有由分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。本设计选用第三种方案,用PMM8713三相或四相步进电机的脉冲分配器、SI-7300A 两相或四相功率驱动器,组成四相步进电机功率驱动电路,以提高集成度和可靠性,步进电机控制框图见图1。 图1 步进电机控制系统框图 硬件简介 ● PMM8713原理框图及功能 PMM8713是日本三洋电机公司生产的步进电机脉冲分配器,适用于控制三相或四相步进电机。控制三相或四相步进电机时都可以选择3种励磁方式,每相最小吸入与拉出电流为20mA,它不仅满足后级功率放大器的输入要求,而且在其所有输入端上均内嵌施密特触发电路,抗干扰能力强,其原理框图如图2所示。

图2 PMM8713的原理框图 在PMM8713的内部电路中,时钟选通部分用于设定步进电机的正反转脉冲输入发。PMM8713有两种脉冲输入法:双脉冲输入法和单脉冲输入法。采用双脉冲输入法时,CP、CU两端分别输入步进电机正反转的控制脉冲。当采用单脉冲输入时,步进电机的正反转方向由U/D的高、低电位决定。 激励方式控制电路用来选择采用何种励磁方式。激励方式判断电路用于输出检测;而可逆环形计数器则用于产生步进电机在选定的励磁方式下的各相通断时序信号。 ● SI-7300A的结构及功率驱动原理 SI-7300A是日本三青公司生产的高性能步进电机集成功率放大器,该器件为单极性四相驱动,采用SIP18封装。 步进电机功率驱动级电路可分为电压和电流两种驱动方式。电流驱动方式最常用的是PWM恒流斩波驱动电路,也是最常用的高性能驱动方式,其中一相的等效电路图如图3所示。

基于单片机的步进电动机控制器的设计

第一部分培训软件简介 Proteus软件是英国Lab Center Electronics公司出版的EDA工具软件(该软件中国总代理为广州风标电子技术有限公司)。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前比较好的仿真单片机及外围器件的工具。虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。 Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,2010年又增加了Cortex和DSP系列处理器,并持续增加其他系列处理器模型。在编译方面,它也支持IAR、Keil和MATLAB等多种编译器。 Keil C51是美国Keil Software公司出品的51系列兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上、结构性、可读性、可维护性上有明显的优势,因而易学易用。Keil提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(μVision)将这些部分组合在一起。运行Keil软件需要WIN98、NT、WIN2000、WINXP等操作系统。如果你使用C语言编程,那么Keil几乎就是你的不二之选,即使不使用C语言而仅用汇编语言编程,其方便易用的集成环境、强大的软件仿真调试工具也会令你事半功倍。 第二部分培训项目实例 培训项目一:基于单片机的步进电动机控制器的设计 项目要求: 采用单片机对步进电机进行控制,包括正转、反转、加速、减速和停止,同时采用液晶显示屏显示步进电动机的运行情况。 培训目的: 1.掌握步进电机的工作原理;

步进电机程序编写及说明

步进电机 学习交流群——126500542(验证信息:千寻琥珀心) 在这里介绍一下如何用51单片机驱动步进电机。 本例所使用的步进电机为四项驱动,驱动电压为12V,锯齿角(为什么叫锯齿叫而不叫步进角,我也不知道这样解释是否正确,但是根据步进角计算公式所得的结果将7.5理解为锯齿叫会更好些,也在网上搜了不少资料,说是步进角的较多,但都是直接给出的,而未作出计算,不过也有是将其作为锯齿角的,并且结合书上的内容,在此就将此作为锯齿角理解,那何谓步进角,下面公式将给出)为7.5度。(也就是说锯齿之间的单位角度),不进一圈总共需要360度,故有48个锯齿。 在此对电路图部分不再给出,具体引脚连接接下来给出。本例所使用的电机驱动芯片为达林顿驱动器(ULN2003),通过P1.0~P1.3分别接通步进电机的驱动线圈来控制步进电机的运转。注意如果直接使用单片机通过驱动芯片驱动电机,力矩可能不够大,效果不是很好,因为ULN2003的驱动电压为12V,而单片机系统电压为5V,故请读者注意此点,在设计电路时,另施电压。 步进电机要想正常工作,必须有驱动信号,转动的速度与驱动信号的频率是成正比的。(实例中将会给出并予以说明)接下来我们看看对于电机驱动中的信号的产生。 本例中采用的步进电机为四项,三项驱动和四项驱动原理上

是一样的。假设步进电机的四个项为:A、B、C、D。它的拍数可由读者任意设定(即步进节奏)。再继续下面的内容时,我们现在此给出一个计算步进电机的公式:Qs=360/NZr,其中N=McC 为运行的拍数,McC为控制绕组项数,C为状态系数,当采用单双本项拍数时,C=1,当采用单双本项一倍拍数时,C=2。(此处说的本项拍数,如三项为单三拍,双三拍。本项一倍拍数为单六拍,简言之,三拍为1.六拍为2对于四项则四拍为1,8拍为2(说的有些玄乎,手中板砖还望留情)),Zr为转子齿数,先来看看单四拍,即A→B→C→D→A.因为上述已经给出了锯齿数,此例C=1,所以Qs=360/(4*1*48)=1.875°。故此电机的步进角为1.875°(既步与步之间的角度),因为行进是和脉冲有关的,一个脉冲行进一步,那么行进一圈,所需脉冲数为:360/1.875=192个脉冲。同时我们如果控制这些脉冲的频率就可以直接控制步进电机的运转速度了。继续我们的单四拍,运行方向A→B→C→D →A。(假设为正转)则在程序中对应的操作执行码为:(硬件连接时P1口的高四位不用全置1,此处只需用到低四位) P1.3 P1.2 P1.1 P1.0 D C B A (对应4个线圈) 1 1 1 0 0xfe (根据外部链接电路定,也可以是0001,此处采用低电平导通,导通A项线圈) 1 1 0 1 0xfd (导通B项线圈) 1 0 1 1 0xfb (导通C项线圈)

如何分析能带图及第一性原理的计算

分析能带图 能带结构是目前采用第一性原理(从头abinitio)计算所得到的常用信息,可用来结合解释金属、半导体和绝缘体的区别。能带可分为价带、禁带和导带三部分,倒带和价带之间的空隙称为能隙,基本概念如图所示: 如何能隙很小或为0 ,则固体为金属材料,在室温下电子很容易获得能量而跳跃至传倒带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料距能导电。 能带用来定性地阐明了晶体中电子运动的普遍特点。价带(valence band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。在导带(conduction band)中,电子的能量范围高于价带,而所有在传导带中的电子均可经由外在的电

场加速而形成电流。对与半导体以及绝缘体而言,价带的上方有一个能隙(band gap),能隙上方的能带则是传导带,电子进入传导带后才能在固体材料内自由移动,形成电流。对金属而言,则没有能隙介于价带与传导带之间,因此价带是特指半导体与绝缘体的状况。 费米能级(fermi level)是绝对零度下的最高能级。根据泡利不相容原理,一个量 子态不能容纳两个或两个以上的费米子(电子),所以在绝度零度下,电子将从低到高依次填充各能级,除最高能级外均被填满,形成电子态的“费米海”。“费米海” 中每个电子的平均能量为(绝对零度下)为费米能级的3/5。海平面即是费米能级。一般来说,费米能级对应态密度为0的地方,但对于绝缘体而言,费米能级就位于价带顶。成为优良电子导体的先决条件是费米能级与一个或更多的能带相交。 能量色散(dispersion of energy)。同一个能带内之所以会有不同能量的量子态, 原因是能带的电子具有不同波向量(wave vector),或是k-向量。在量子力学中, k-向量即为粒子的动量,不同的材料会有不同的能量-动量关系(E-K relationship)。能量色散决定了半导体材料的能隙是直接能隙还是间接能隙。如导带最低点与价带最高点的K值相同,则为直接能隙,否则为间接能隙。 能带的宽度。能带的宽度或三度,即能带最高和最低能级之间的能量差,是一个非常重要的特征,它是由相互作用的轨道之间的重叠来决定的,因而反应出轨道之间的重叠情况,相邻的轨道之间重叠越大,带宽就越大。

PLC控制步进电机的实例(图与程序)

PLC控制步进电机的实例(图与程序) ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。

·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作! ·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,

步进电机控制驱动电路设计.

实习名称:电子设计制作与工艺实习 学生姓名:周文生 学号:201216020134 专业班级:T-1201 指导教师:李文圣 完成时间: 2014年6月13日 报告成绩:

步进电机控制驱动电路设计 摘要: 本设计在根据已有模电、物电知识的基础上,用具有置位,清零功能的JK 触发器74LS76作为主要器件来设计环行分配器,来对555定时器产生的脉冲进行分配,通过功率放大电路来对步进电机进行驱动,并且产生的脉冲的频率可以控制,从而来控制步进电机的速度,环形分配器中具有复位的功能,在对于异常情况可以按复位键来重新工作。 关键字:555定时器脉冲源环行分配器功率放大电路 一、方案论证与比较: (一)脉冲源的方案论证及选择: 方案一:采用555定时器产生脉冲,它工作频率易于改变从而可以控制步进电机的速度并且工作可靠,简单易行。 C2 10uF 图一 555定时器产生的方法 方案二:采用晶振电路来实现,晶振的频率较大,不利于电机的工作,易失步,我们可以利用分频的方法使晶振的频率变小,可以使电机工作稳定,但分频电路较复杂,并且晶振起振需要一定的条件,不好实现。

X1 1kohm 1kohm 图二晶振产生脉冲源电路 综上所述,我们采用方案一来设计脉冲源。 (二)环形分配器的设计: 方案一:采用74ls194通过送入不同的初值来进行移位依此产生正确的值使步进电机进行转动。但此方案的操作较复杂,需要每次工作时都要进行置位,正反转的操作较复杂,这里很早的将此方案放弃。 方案二:使用单独的JK 触发器来分别实现单独的功能。 图三双三拍正转 图四单三拍正转

图五三相六拍正转 利用单独的做,电路图较简单,单具体操作时不方便,并且不利于工程设计。块分的较零散,无法统一。 方案三:利用JK触发器的自己运动时序特性设计,利用卡诺图来进行画简。 图六单,双三拍的电路图 单,双三拍的正,反转主要由键s1,s2的四种状态来决定四种情况的选择。

第一性原理计算原理和方法精编

第一性原理计算原理和 方法精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似和关于分子波函数的方程形成计算量子化学的数学基础。 SCF-MO 方法的基本原理 分子轨道的自洽场计算方 法(SCF-MO)是各种计算方法的理论基础和核心部分,因此在介绍本文计算工作所用方法之 前,有必要对其关键的部分作 一简要阐述。 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本 R AB =R 图2-1分子体系的坐标

近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献和教材中对这些方程已有系统的推导和阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ () 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 以及原子核的动能 ∑?-=A A A N M H 2121? 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图所示。可以用V(R,r)代表-式中所有位能项之和 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,12121),( 原子单位

四相步进电机驱动电路及驱动程序设计

四相步进电机驱动电路及驱动程序设计 我们用一个单片机控制多个步进电机指挥跳舞机器人的双肩、双肘和双脚伴着音乐做出各种协调舒缓充满感情的动作,荣获一等奖。电路采用74373锁存,74LS244和ULN2003作电压和电流驱动,单片机(Atc52)作脉冲序列信号发生器。程序设计基于中断服务和总线分时利用方式,实时更新各个电机的速度、方向。整个舞蹈由运动数据所决定的一截截动作无缝连接而成。本文主要介绍一下这个机器人的四相五线制步进电机驱动电路及程序设计. 1、步进电机简介 步进电机根据内部线圈个数不同分为二相制、三相制、四相制等。本文以四相制为例介绍其内部结构。图1为四相五线制步进电机内部结构示意图。

2、四相五线制步进电机的驱动电路 电路主要由单片机工作外围电路、信号锁存和放大电路组成。我们利用了单片机的I/O端口,通过74373锁存,由74LS244驱动,ULN2003对信号进行放大。8个电机共用4bit I/O端口作为数据总线,向电机传送步进脉冲。每个电机分配1bit的I/O端口用作74373锁存信号,锁存步进电机四相脉冲,经ULN2003放大到12V驱动电机运转。 电路原理图(部分)如图2所示。 (1)Intel 8051系列单片机是一种8位的嵌入式控制器,可寻址64K字节,共有32个可编程双向I/O口,分别称为P0~P3。该系列单片机上集成8K的ROM,128字节RAM可供使用。 (2)74LS244为三态控制芯片,目的是使单片机足以驱动ULN2003。

ULN2003是常用的达林顿管阵列,工作电压是12V,可以提供足够的电流以驱动步进电机。关于这些芯片的详细介绍可参见它们各自的数据手册。 (3)74373是电平控制锁存器,它可使多个步进电机共用一组数据总线。我们用P1.0~P1.7作为8个电机的锁存信号输出端,见表1。 这是一种基于总线分时复用的方式,以动态扫描的方式来发送控制信号,这和高级操作系统里的多任务进程调度的思想一致。这种方法明显的好处是节省I/O口,使系统可以控制更多的步进电机。本电路设计为控制8个。 3 、程序设计 传统的步进电机驱动程序利用简单的条件循环来发送脉冲序列,但当电机数目发生变化时,编程繁杂,冗余代码较多,难以做到信号占空比一致,进而产生“抖动” 现象。下面提出一种基于中断服务方式,面向舞蹈动作,可实时改变各个电机速度和方向(每200ms可改变一次)的程序设计方法。 3.1 速度归一化和线性关系 我们将速度量化成一个-128~127内可变的数,正号代表正转,负号代表返转,称之归一化速度(-128~127为一个字节)。给每个电机分

舞蹈机器人步进电机驱动电路和程序设计

舞蹈机器人步进电机驱动电路和程序设计 摘要:介绍了舞蹈机器人步进电机驱动电路和程序设计。电路采用74373锁存,74LS244和ULN2003作电压和电流驱动,单片机AT89C52作工作脉冲序列信号发生器。程序设计基于中断服务和总线分时复用方式,实时更新各个电机的速度和方向。 关键词:单片机,中断服务,速度累加计数器,归一化速度 在机器人舞蹈时,我们用一个单片机控制多个步进电机指挥跳舞机器人的双肩、双肘和双脚伴着音乐做出各种协调舒缓充满感情的动作。电路采用74373锁存,74LS244和ULN2003作电压和电流驱动,单片机(Atc52)作脉冲序列信号发生器。程序设计基于中断服务和总线分时利用方式,实时更新各个电机的速度、方向。整个舞蹈由运动数据所决定的一截截动作无缝连接而成。 1 步进电机简介 步进电机根据内部线圈个数不同分为二相制、三相制、四相制等。本文以四相制为例介绍其内部结构。图1为四相五线制步进电机内部结构示意图。 2 四相五线制步进电机的驱动电路 电路主要由单片机工作外围电路、信号锁存和放大电路组成。我们利用了单片机的I/O端口,通过74373锁存,由74LS244驱动,ULN2003对信号进行放大。8个电机共用4bit I/O端口作为数据总线,向电机传送步进脉冲。每个电机分配1bit的I/O端口用作74373锁存信号,锁存步进电机四相脉冲,经ULN2003放大到12V驱动电机运转。

电路原理图(部分)如图2所示。 (1)Intel 8051系列单片机是一种8位的嵌入式控制器,可寻址64K字节,共有32个可编程双向I/O口,分别称为P0~P3。该系列单片机上集成8K的ROM,128字节RAM可供使用。 (2)74LS244为三态控制芯片,目的是使单片机足以驱动ULN2003。ULN2003是常用的达林顿管阵列,工作电压是12V,可以提供足够的电流以驱动步进电机。关于这些芯片的详细介绍可参见它们各自的数据手册。 (3)74373是电平控制锁存器,它可使多个步进电机共用一组数据总线。我们用P1.0~P1.7作为8个电机的锁存信号输出端,见表1。

FX1S控制步进电机的实例(图与程序

FX1S控制步进电机的实例(图与程序) FX1S控制步进电机的实例(图与程序) : ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。·FX系列PLC 单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。)

说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作! ·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图:

西门子S7-200PLC在驱动步进电机中的应用事例

S7-200CPU本身带有高速脉冲输出功能,特另是224XP(CN)的高速输出频率达到100k Hz,十分适合作为步进电机的驱动脉冲,配以细分型的驱动器,在某些应用场合,效果逼近伺服电机,取得性能和经济性的最佳平衡。 1 项目简介 薄膜卷绕机需要进行自动化控制改造。 原设备采用机械式计数,卷绕动力采用离合器传动,元件卷绕的起动、停止、圈数控制等均由人工操作控制,因此存在产品参数离散性大、产品质量与生产效率因人而异等不足之处。工艺要求简述:由于卷制材料是10几微米的薄膜,要求卷轴平稳起动,均匀加速,以使用张力平稳;中间在某些位置需要停顿,作一些必要的处理,再继续卷绕;和起动一样,停顿或停止时,必须均匀减速,保持张力平稳;要求最后圈数准确。 2 控制系统构成 S7-200PLC应该能够实现项目要求的控制功能。 S7-200CPU本体已含有高速脉冲输出功能,普通型号的CPU脉冲输出频率达20KHz,而224XP(CN)更是高达100kHz,可以用来驱动步进电机或伺服电机,再由电机直接驱动卷绕主轴旋转,完成工艺所要求的动作。 步进电机在成本上具有优势,但是步进电机的运转平稳性不如伺服电机,而两者的定位精度(圈数)的控制,在本工艺里都可以达到要求。我们考虑先试用步进电机的方案。 步进电机的驱动,实际上是由相应的步进电机驱动器负责的,所以步进电机的相数齿数等等问题由相应的驱动器解决,选择步进电机要考虑的主要是体积、转矩、转速等,不是本文的重点; PLC向驱动器送的仅为代表速度与位置的脉冲,这里要考虑的是步进电机在规定的转速下是否足够平稳,是否适合作为薄膜卷绕的动力。

我们作了一个模型机进行试验,采用细分型的驱动器,在50齿的电机上达到10000步/转,经17:25齿的同步带减速传动(同时电机的振动也可衰减),结果运转很平稳,粗步确定可以达到工艺要求。于是正式试制一台,也获得成功,性能达到工艺要求,目前已经按此方案批量进行改造。 CPU选择224XPCN DC/DC/DC,系统构成如下: 224XP*1、步进电机*2、细分型驱动器*2、TD200*1、LED显示屏*1、编码器*1。 2.1 PTO0(Q0.0)输出一路高速脉冲,负责驱动卷绕主轴的旋转; 2.2 PTO1(Q0.1)输出一路高速脉冲,负责驱动主轴的水平直线移动; 2.3 一个正交增量型编码器装在主轴上,作为卷绕圈数的反馈; 2.4 TD200作为人机界面,用于设定参数 2.5 一个LED显示屏用于显示实时的卷绕圈数。在实际生产中,工人需要时时参考卷绕的进度,LED显示比LCD醒目,所以这里放置了一个自制的LED显示屏。LED屏和PLC的连接方式,可参考本人在2003年的专家论文集中的文章。 3 控制系统完成的功能 3.1 控制系统首先要实现的功能,是卷绕的平稳起动、加速、减速、平稳停止。在新版的S 7-200中,支持高速输出口PTO0/PTO1的线性加/减速,通过MicroWin的向导程序,非常容易实现。实际上,以目前的情况,线性加减速只能使用向导生成的程序,Siemens没有公开独立可使用的指令。 3.2 使用位置控制向导生成以下四个子程序(仅限CPU内的PTO,不包括专用模块的情况),以PTO0为例: 3.2.1 PTO0_CTRL:每周期调用一次,可以控制PTO0的行为;

步进电机及其驱动电路

第三节步进电动机及其驱动 一、步进电机的特点与种类 1.步进电机的特点 步进电机又称脉冲电机。它是将电脉冲信号转换成机械角位移的执行元件。每当输入一个电脉冲时,转子就转过一个相应的步距角。转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步。只要控制输入电脉冲的数量、频率以及电机绕组通电相序即可获得所需的转角、转速及转向。 步进电动机具有以下特点: ?工作状态不易受各种干扰因素(如电压波动、电流大小与波形变化、温度等)的影响; ?步进电动机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零” ; ?由于可以直接用数字信号控制,与微机接口比较容易; ?控制性能好,在起动、停止、反转时不易“丢步”; ?不需要传感器进行反馈,可以进行开环控制; ?缺点是能量效率较低。 就常用的旋转式步进电动机的转子结构来说,可将其分为以下三种: (1)可变磁阻(VR-Variable Reluctance),也叫反应式步进电动机 (2)永磁(PM-Permanent Magnet)型 (3)混合(HB-Hybrid)型 (1)可变磁阻(VR-Variable Reluctance) 结构原理:该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称作反应式步进电动机。其结构原理如图3.5定子1 上嵌有线圈,转子2朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁阻型。

图3.6 可变式阻步进电机 可变磁阻步进电机的特点: 反应式电动机的定子与转子均不含永久磁铁,故无励磁时没有保持力; 需要将气隙作得尽可能小,例如几个微米; 结构简单,运行频率高,可产生中等转矩,步距角小(0.09~9°) 制造材料费用低; 有些数控机床及工业机器人上使用。 (3)混合(HB-Hybrid)型 结构原理 这类电机是PM式和VR式的复合形式。其定子与VR类似,表面制有小齿,转子由永磁铁和铁心构成,同样切有小齿,为了减小步距角可以在结构上增加转子和定子的齿数。其结构如图3.7所示。 混合式步进电机特点: HB兼有PM和VR式步进电机的特点: 步距角可以做得较小(0.9~3.6°); 无励磁时具有保持力; 可以产生较大转矩,应用较广。

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似, 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122 ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??? ?????-++?-?-∑∑∑∑∑∑≠≠ (2.1) 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p

与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2.2) 以及原子核的动能 ∑?-=A A A M H 2? (2.3) 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2.4) 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图2.1所示。可以用V(R,r)代表(2.2)-(2.4)式中所有位能项之和 ∑∑∑-+= ≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2.5) 原子单位 上述的Schrodinger 方程和Hamilton 算符是以原子单位表示的,这样表示的优点在于简化书写型式和避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位是Bohr 半径 能量是以Hartree 为单位,它定义为相距1Bohr 的两个电子间的库仑排斥作用能 质量则以电子制单位表示之,即定义m e =1 。

FX1S控制步进电机的实例(图与程序)

此主题相关图片如下,点击图片看大图: ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。

·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作! ·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。·V+,GND:为驱动器直流电源端子,也有交流供电类型。 ·A+,A-,B+,B-分别接步进电机的两相线圈。 此主题相关图片如下,点击图片看大图: PLC技术网(https://www.360docs.net/doc/697557872.html,)-可编程控制器技术门户 此主题相关图片如下,点击图片看大图:

相关文档
最新文档