半导体物理与器件基础知识

半导体物理与器件基础知识
半导体物理与器件基础知识

9金属半导体与半导体异质结

一、肖特基势垒二极管

欧姆接触:通过金属-半导体的接触实现的连接。接触电阻很低。

金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。之间形成势垒为肖特基势垒。

在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。

影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。附图:

电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。

肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。2.开关特性肖特基二极管更好。应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。

二、金属-半导体的欧姆接触

附金属分别与N型p型半导体接触的能带示意图

三、异质结:两种不同的半导体形成一个结

小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。

2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。

10双极型晶体管

双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。

一、工作原理

附npn型和pnp型的结构图

发射区掺杂浓度最高,集电区掺杂浓度最低

附常规npn截面图

造成实际结构复杂的原因是:1.各端点引线要做在表面上,为了降低半导体的电阻,必须要有重掺杂的N+型掩埋层。2.一片半导体材料上要做很多的双极型晶体管,各自必须隔离,应为不是所有的集电极都是同一个电位。

通常情况下,BE结是正偏的,BC结是反偏的。称为正向有源。附图:

由于发射结正偏,电子就从发射区越过发射结注入到基区。BC结反偏,所以在BC结边界,理想情况下少子电子浓度为零。

附基区中电子浓度示意图:

电子浓度梯度表明,从发射区注入的电子会越过基区扩散到BC结的空间电荷区,

那里的电场会将电子扫到集电区。我们希望更多的电子能够进入集电区而不是在基区和多子空穴复合。因此和少子扩散长度相比,基区宽度必须很小。

工作模式:附共发射极电路中npn型双极型晶体管示意图

1.如果B——E电压为零或者小于零(反偏),那么发射区中的多子电子就不会注入到基区。由于B——C也是反偏的,这种情况下,发射机电流和集电极电流是零。称为截至状态。

2.随着B——E结电压增大,集电极电流会增大,从而集电极上电阻分压Vr增大,意味着在晶体管CB上分压绝对值减小;在某一点出,集电极电流会增大到组后大使得电阻分压后再BC结零偏。过了这一点后,集电极电流微笑增加会导致Vr 微小增加,从而使B——C结变为正偏(Vcb<0)。称为饱和。饱和时,B——E结和B——C结都是正偏的,集电极电流不受B——E结电压。

附双极型晶体管共发射极的电流电压特性,添加了负载线:

Ic=0时晶体管处于截至区。当基极电流变化时,集电极电流没有变化,处于饱和区。当Ic=βIb成立时,晶体管处于正向有源区。

小结:

1.基区宽度调制效应(厄尔利效应):中性基区宽度随B——C结电压变化而发生变化,于是集电极电流随B——C结或C——E结电压变化而变化。

2.大注入效应使得集电极电流随C——E结电压增加而低速率增加。

11金属-氧化物-半导体场效应晶体管基础

MOSFET的核心是MOS电容。在半导体中,由于施加了一个穿过MOS电容的电压,氧化物-半导体界面的能带将发生弯曲。其费米能级是该电压的函数,因此通过适当的电压可以使得半导体表面的特性从p型转换为N型,或n型转换为p 型。

附基本mos电容结构

平带电压:使半导体内部没有能带弯曲所加的栅压。

阈值电压:达到阈值反型点所需要的栅压。阈值反型点:表面势?s为两倍的?f (费米能级与本征费米能级之差)的状态.当小于阈值电压时,未强反型,沟道未形成,截至;大于等于阈值电压时,强反型,沟道形成,导通。

阈值电压大于零,为增强型,零栅压时未反型。阈值电压小于零,为耗尽型,零栅压时已反型。

对于p型衬底的Mos,能使反型层电荷密度改变的来源有:1.来自空间电荷区P 型衬底的少子电子的扩散;2.热运动产生的电子空穴对。

界面态:半导体在界面处的周期突然停止,使得电子能级存在于禁带中,这些允许的能太称为界面态。

三、MOSFET的基本工作原理

附N沟增强型MOSFET和耗尽型的剖面图:(注意电路符号)

附I(D)-V(GS)曲线的原理图

附n沟增强型MOSFET的特性曲线

当V(DS)大于阈值电压时,沟道中反型电荷为零的点移向愿端。此时电子从源端进入沟道,通过沟道流向漏端。在电荷为零的点处,电子被注入空间电荷区,并被电场扫向漏端。

附n沟耗尽型MOSFET的特性曲线

亚阈值电导是指在MOSFET中当栅源电压小于阈值电压时漏电流不为零。这种情况下,晶体管被偏置在弱反型模式下,漏电流是由扩散机制而非漂移机制控制。该电导会在集成电路中产生一个明显的静态偏置电流。

13结型场效应晶体管

PnJEFT的基本工作原理

以N沟为例,多数载流子电子自源极流向漏极,器件的栅极是控制端。

附改变栅源电压的电流电压特性曲线

现在分析栅电压为零,漏电压变化的情况。随着漏源电压的增大,栅与沟道形成的Pn结反偏,空间电荷区向沟道扩展。随着空间电荷区的扩展,有效沟道电阻增大,曲线斜率变小。

附改变漏源电压时的特性曲线。

半导体物理学基础知识_图文(精)

1半导体中的电子状态 1.2半导体中电子状态和能带 1.3半导体中电子的运动有效质量 1半导体中E与K的关系 2半导体中电子的平均速度 3半导体中电子的加速度 1.4半导体的导电机构空穴 1硅和锗的导带结构 对于硅,由公式讨论后可得: I.磁感应沿【1 1 1】方向,当改变B(磁感应强度)时,只能观察到一个吸收峰 II.磁感应沿【1 1 0】方向,有两个吸收峰 III.磁感应沿【1 0 0】方向,有两个吸收峰 IV磁感应沿任意方向时,有三个吸收峰 2硅和锗的价带结构 重空穴比轻空穴有较强的各向异性。 2半导体中杂质和缺陷能级 缺陷分为点缺陷,线缺陷,面缺陷(层错等 1.替位式杂质间隙式杂质

2.施主杂质:能级为E(D,被施主杂质束缚的电子的能量状态比导带底E(C低ΔE(D,施主能级位于离导带底近的禁带中。 3. 受主杂质:能级为E(A,被受主杂质束缚的电子的能量状态比价带E(V高ΔE(A,受主能级位于离价带顶近的禁带中。 4.杂质的补偿作用 5.深能级杂质: ⑴非3,5族杂质在硅,锗的禁带中产生的施主能级距离导带底较远,离价带顶也较远,称为深能级。 ⑵这些深能级杂质能产生多次电离。 6.点缺陷:弗仑克耳缺陷:间隙原子和空位成对出现。 肖特基缺陷:只在晶体内部形成空位而无间隙原子。 空位表现出受主作用,间隙原子表现出施主作用。 3半导体中载流子的分布统计 电子从价带跃迁到导带,称为本征激发。 一、状态密度 状态密度g(E是在能带中能量E附近每单位间隔内的量子态数。 首先要知道量子态,每个量子态智能容纳一个电子。 导带底附近单位能量间隔内的量子态数目,随电子的能量按抛物线关系增大,即电子能量越高,状态密度越大。 二、费米能级和载流子的统计分布

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

西安电子科技大学2018考研大纲:半导体物理与器件物理.doc

西安电子科技大学2018考研大纲:半导体 物理与器件物 出国留学考研网为大家提供西安电子科技大学2018考研大纲:801半导体物理与器件物理基础,更多考研资讯请关注我们网站的更新! 西安电子科技大学2018考研大纲:801半导体物理与器件物理基础 “半导体物理与器件物理”(801) 一、 总体要求 “半导体物理与器件物理”(801)由半导体物理、半导体器件物理二部分组成,半导体物理占60%(90分)、器件物理占40%(60分)。 “半导体物理”要求学生熟练掌握半导体的相关基础理论,了解半导体性质以及受外界因素的影响及其变化规律。重点掌握半导体中的电子状态和带、半导体中的杂质和缺陷能级、半导体中载流子的统计分布、半导体的导电性、半导体中的非平衡载流子等相关知识、基本概念及相关理论,掌握半导体中载流子浓度计算、电阻(导)率计算以及运用连续性方程解决载流子浓度随时间或位置的变化及其分布规律等。 “器件物理”要求学生掌握MOSFET器件物理的基本理

论和基本的分析方法,使学生具备基本的器件分析、求解、应用能力。要求掌握MOS基本结构和电容电压特性;MESFET器件的基本工作原理;MOSFET器件的频率特性;MOSFET器件中的非理想效应;MOSFET器件按比例缩小理论;阈值电压的影响因素;MOSFET的击穿特性;掌握器件特性的基本分析方法。 “半导体物理与器件物理”(801)研究生入学考试是所学知识的总结性考试,考试水平应达到或超过本科专业相应的课程要求水平。 二、 各部分复习要点 ●“半导体物理”部分各章复习要点 (一)半导体中的电子状态 1.复习内容 半导体晶体结构与化学键性质,半导体中电子状态与能带,电子的运动与有效质量,空穴,回旋共振,元素半导体和典型化合物半导体的能带结构。 2.具体要求 半导体中的电子状态和能带 半导体中电子的运动和有效质量 本征半导体的导电机构

(完整版)半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k

最新尼尔曼第三版半导体物理与器件小结+重要术语解释+知识点+复习题

尼尔曼第三版半导体物理与器件小结+重要术语解释+知识点+复 习题

第一章固体晶体结构 (3) 小结 (3) 重要术语解释 (3) 知识点 (3) 复习题 (3) 第二章量子力学初步 (4) 小结 (4) 重要术语解释 (4) 第三章固体量子理论初步 (4) 小结 (4) 重要术语解释 (4) 知识点 (5) 复习题 (5) 第四章平衡半导体 (6) 小结 (6) 重要术语解释 (6) 知识点 (6) 复习题 (7) 第五章载流子运输现象 (7) 小结 (7) 重要术语解释 (8) 知识点 (8) 复习题 (8) 第六章半导体中的非平衡过剩载流子 (8) 小结 (8) 重要术语解释 (9) 知识点 (9) 复习题 (10) 第七章pn结 (10) 小结 (10) 重要术语解释 (10) 知识点 (11) 复习题 (11) 第八章pn结二极管 (11) 小结 (11) 重要术语解释 (12) 知识点 (12) 复习题 (13) 第九章金属半导体和半导体异质结 (13) 小结 (13) 重要术语解释 (13) 知识点 (14) 复习题 (14) 第十章双极晶体管 (14)

小结 (14) 重要术语解释 (15) 知识点 (16) 复习题 (16) 第十一章金属-氧化物-半导体场效应晶体管基础 (16) 小结 (16) 重要术语解释 (17) 知识点 (18) 复习题 (18) 第十二章金属-氧化物-半导体场效应管:概念的深入 (18) 小结 (19) 重要术语解释 (19) 知识点 (19) 复习题 (20)

第一章固体晶体结构 小结 1.硅是最普遍的半导体材料。 2.半导体和其他材料的属性很大程度上由其单晶的晶格结构决定。晶胞是晶体 中的一小块体积,用它可以重构出整个晶体。三种基本的晶胞是简立方、体心立方和面心立方。 3.硅具有金刚石晶体结构。原子都被由4个紧邻原子构成的四面体包在中间。 二元半导体具有闪锌矿结构,它与金刚石晶格基本相同。 4.引用米勒系数来描述晶面。这些晶面可以用于描述半导体材料的表面。密勒 系数也可以用来描述晶向。 5.半导体材料中存在缺陷,如空位、替位杂质和填隙杂质。少量可控的替位杂 质有益于改变半导体的特性。 6.给出了一些半导体生长技术的简单描述。体生长生成了基础半导体材料,即 衬底。外延生长可以用来控制半导体的表面特性。大多数半导体器件是在外延层上制作的。 重要术语解释 1.二元半导体:两元素化合物半导体,如GaAs。 2.共价键:共享价电子的原子间键合。 3.金刚石晶格:硅的院子晶体结构,亦即每个原子有四个紧邻原子,形成一个 四面体组态。 4.掺杂:为了有效地改变电学特性,往半导体中加入特定类型的原子的工艺。 5.元素半导体:单一元素构成的半导体,比如硅、锗。

半导体物理与器件第四版课后习题答案(供参考)

Chapter 4 4.1 ??? ? ? ?-=kT E N N n g c i exp 2υ ??? ? ??-??? ??=kT E T N N g O cO exp 3003 υ where cO N and O N υ are the values at 300 K. (b) Germanium _______________________________________ 4.2 Plot _______________________________________ 4.3 (a) ??? ? ??-=kT E N N n g c i exp 2υ ( )( )( ) 3 19 19 2 113001004.1108.2105?? ? ????=?T ()()?? ????-?3000259.012.1exp T () 3 382330010912.2105.2?? ? ???=?T ()()()()?? ????-?T 0259.030012.1exp By trial and error, 5.367?T K (b) () 252 12 2105.2105?=?=i n ( ) ()()()()?? ????-??? ???=T T 0259.030012.1exp 30010912.23 38 By trial and error, 5.417?T K _______________________________________ 4.4 At 200=T K, ()?? ? ??=3002000259.0kT 017267.0=eV At 400=T K, ()?? ? ??=3004000259.0kT 034533.0=eV ()()()() 172 22102 210025.31040.11070.7200400?=??= i i n n ? ? ????-??????-???? ??? ?? ??=017267.0exp 034533.0exp 3002003004003 3 g g E E ?? ? ???-=034533.0017267.0exp 8g g E E ()[] 9578.289139.57exp 810025.317-=?g E or ()1714.38810025.3ln 9561.2817=??? ? ???=g E or 318.1=g E eV Now ( ) 3 2 1030040010 70.7?? ? ??=?o co N N υ

半导体物理知识点梳理

半导体物理考点归纳 一· 1.金刚石 1) 结构特点: a. 由同类原子组成的复式晶格。其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成 b. 属面心晶系,具立方对称性,共价键结合四面体。 c. 配位数为4,较低,较稳定。(配位数:最近邻原子数) d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。 2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。 2.闪锌矿 1) 结构特点: a. 共价性占优势,立方对称性; b. 晶胞结构类似于金刚石结构,但为双原子复式晶格; c. 属共价键晶体,但有不同的离子性。 2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。 3.电子共有化运动: 原子结合为晶体时,轨道交叠。外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。 4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数, 5.布里渊区: 禁带出现在k=n/2a 处,即在布里渊区边界上; 允带出现在以下几个区: 第一布里渊区:-1/2a

半导体物理与器件实验报告

课程实习报告 HUNAN UNIVERSITY 题目:半导体物理与器件 学生姓名:周强强 学生学号:20100820225 专业班级:通信二班 完成日期:2012.12.22

运行结果截图: 2.2 函数(),cos(2/)V x t x t πλω=-也是经典波动方程的解。令03x λ≤≤,请在同一坐标中 绘出x 的函数(),V x t 在不同情况下的图形。 (1)0;(2)0.25;(3)0.5;(4)0.75;(5)t t t t t ωωπωπωπωπ =====。 3.27根据式(3.79),绘制出0.2()0.2F E E eV -≤-≤范围内,不同温度条件下的费米-狄拉克概率函数:()200,()300,()400a T K b T K c T K ===。

4.3 画出a ()硅,b ()锗,c ()砷化镓在温度范围200600K T K ≤≤内的本征载流子浓度曲线 (采用对数坐标)。

4.46 已知锗的掺杂浓度为15 3a =310 cm N -?,d =0N 。画出费米能级相对于本征费米能级的位 置随温度变化 200600)K T K ≤≤(的曲线。

5.20硅中有效状态密度为 19 3/2c 2.8 10()300T N =? 193/2 1..0410() 300 T N ν=? 设迁移率为 3/2 n =1350300T μ-?? ? ?? 3/2 =480300T ρμ-?? ? ?? 设禁带宽带为g =1.12V E e ,且不随温度变化。画出200600K T K ≤≤范围内,本征电导率随绝对温度T 变化的关系曲线。

半导体物理知识

半导体物理知识整理

————————————————————————————————作者:————————————————————————————————日期:

基础知识 1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理(两种载流子参与导电)与金属有何不同? 导体:能带中一定有不满带 半导体:T=0K,能带中只有满带和空带;T>0K,能带中有不满带 禁带宽度较小,一般小于2eV 绝缘体:能带中只有满带和空带 禁带宽度较大,一般大于2eV 在外场的作用下,满带电子不导电,不满带电子可以导电 总有不满带的晶体就是导体,总是没有不满带的晶体就是绝缘体 半导体不时最容易导电的物质,而是导电性最容易发生改变的物质,用很方便的方法,就可以显著调节半导体的导电特性 金属中的电子,只能在导带上传输,而半导体中的载流子:电子和空穴,却能在两个通道:价带和导带上分别传输信息 2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。 当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒子的情况一样,这样假想的粒子称为空穴 3.半导体材料的一般特性。 电阻率介于导体与绝缘体之间 对温度、光照、电场、磁场、湿度等敏感(温度升高使半导体导电能力增强,电阻率下降;适当波长的光照可以改变半导体的导电能力) 性质与掺杂密切相关(微量杂质含量可以显著改变半导体的导电能力) 4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数。为什么通常情况下,半导体中载流子分布都可以

半导体物理与器件公式以及全参数

半导体物理与器件公式以及参数 KT =0.0259ev N c =2.8?1019N v =1.04?1019 SI 材料的禁带宽度为:1.12ev. 硅材料的n i =1.5?1010 Ge 材料的n i =2.4?1013 GaAs 材料的n i =1.8?106 介电弛豫时间函数:瞬间给半导体某一表面增加某种载流子,最终达到电中性的时间,ρ(t )=ρ(0)e ?(t /τd ),其中τd =?σ,最终通过证明这个时间与普通载流子的寿命时间相比十分的短暂,由此就可以证明准电中性的条件。 E F 热平衡状态下半导体的费米能级,E Fi 本征半导体的费米能级,重新定义的E Fn 是存在过剩载流子时的准费米能级。 准费米能级:半导体中存在过剩载流子,则半导体就不会处于热平衡状态,费米能级就会发生变化,定义准费米能级。 n 0+?n =n i exp (E Fn ?E Fi kT )p 0+?p =n i exp [?(E Fp ?E Fi )kT ] 用这两组公式求解问题。 通过计算可知,电子的准费米能级高于E Fi ,空穴的准费米能级低于E Fi ,对于多子来讲,由于载流子浓度变化不大,所以准费米能级基本靠近热平衡态下的费米能级,但是对于少子来讲,少子浓度发生了很大的变化,所以费米能级有相对比较大的变化,由于注入过剩载流子,所以导致各自的准费米能级都靠近各自的价带。

过剩载流子的寿命: 半导体材料:半导体材料多是单晶材料,单晶材料的电学特性不仅和化学组成相关而且还与原子排列有关系。半导体基本分为两类,元素半导体材料和化合物半导体材料。 GaAs主要用于光学器件或者是高速器件。 固体的类型:无定型(个别原子或分子尺度内有序)、单晶(许多原子或分子的尺度上有序)、多晶(整个范围内都有很好的周期性),单晶的区域成为晶粒,晶界将各个晶粒分开,并且晶界会导致半导体材料的电学特性衰退。 空间晶格:晶格是指晶体中这种原子的周期性排列,晶胞就是可以复制出整个晶体的一小部分晶体,晶胞的结构可能会有很多种。原胞就是可以通过重复排列形成晶体的最小晶胞。三维晶体中每一个等效的格点都可以采用矢量表示为r=pa?+qb?+sc?,其中矢量a?,b?,c?称为晶格常数。晶体中三种结构,简立方、体心立方、面心立方。 原子体密度=每晶胞的原子数每晶胞的体积

半导体物理与器件基础知识

9金属半导体与半导体异质结 一、肖特基势垒二极管 欧姆接触:通过金属-半导体的接触实现的连接。接触电阻很低。 金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。之间形成势垒为肖特基势垒。 在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。 影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。附图: 电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。 肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。2.开关特性肖特基二极管更好。应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。 二、金属-半导体的欧姆接触 附金属分别与N型p型半导体接触的能带示意图 三、异质结:两种不同的半导体形成一个结 小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。 2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。 10双极型晶体管 双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。 一、工作原理 附npn型和pnp型的结构图 发射区掺杂浓度最高,集电区掺杂浓度最低 附常规npn截面图 造成实际结构复杂的原因是:1.各端点引线要做在表面上,为了降低半导体的电阻,必须要有重掺杂的N+型掩埋层。2.一片半导体材料上要做很多的双极型晶体管,各自必须隔离,应为不是所有的集电极都是同一个电位。 通常情况下,BE结是正偏的,BC结是反偏的。称为正向有源。附图: 由于发射结正偏,电子就从发射区越过发射结注入到基区。BC结反偏,所以在BC结边界,理想情况下少子电子浓度为零。 附基区中电子浓度示意图: 电子浓度梯度表明,从发射区注入的电子会越过基区扩散到BC结的空间电荷区,

半导体物理与器件第四版课后习题答案

Chapter 3 3、1 If were to increase, the bandgap energy would decrease and the material would begin to behave less like a semiconductor and more like a metal、 If were to decrease, the bandgap energy would increase and the material would begin to behave more like an insulator、 _______________________________________ 3、2 Schrodinger's wave equation is: Assume the solution is of the form: Region I: 、 Substituting the assumed solution into the wave equation, we obtain: which bees This equation may be written as Setting for region I, the equation bees: where Q、E、D、 In Region II, 、 Assume the same form of the solution: Substituting into Schrodinger's wave equation, we find: This equation can be written as: Setting for region II, this equation bees where again Q、E、D、 _______________________________________ 3、3 We have Assume the solution is of the form: The first derivative is and the second derivative bees Substituting these equations into the differential equation, we find bining terms, we obtain We find that Q、E、D、 For the differential equation in and the proposed solution, the procedure is exactly the same as above、 _______________________________________ 3、4 We have the solutions for and for 、 The first boundary condition is which yields The second boundary condition is which yields The third boundary condition is which yields

半导体物理与器件复习资料

非平衡载流子寿命公式: 本征载流子浓度公式: 本征半导体:晶体中不含有杂质原子的材料 半导体功函数:指真空电子能级E 0与半导体的费米能级E f 之差 电子>(<)空穴为n(p)型半导体,掺入的是施主(受主)杂质原子。 Pn 结击穿的的两种机制:齐纳效应和雪崩效应 载流子的迁移率 扩散系数 爱因斯坦关系式 两种扩散机制:晶格扩散,电离杂质扩散 迁移率受掺杂浓度和温度的影响 金属导电是由于自由电子;半导体则是因为自由电子和空穴;绝缘体没有自由移动的带电粒子,其不导电。 空间电荷区:冶金结两侧由于n 区内施主电离和p 区内受主电离而形成的带净正电与负电的区域。 存储时间:当pn 结二极管由正偏变为反偏是,空间电荷区边缘的过剩少子浓度由稳定值变为零所用的时间。 费米能级:是指绝对零度时,电子填充最高能级的能量位置。 准费米能级:在非平衡状度下,由于导带和介质在总体上处于非平衡,不能用统一的费米能级来描述电子和空穴按能级分布的问题,但由于导带中的电子和价带中的空穴按能量在各自能带中处于准平衡分布,可以有各自的费米能级成为准费米能级。 肖特基接触:指金属与半导体接触时,在界面处的能带弯曲,形成肖特基势垒,该势垒导放大的界面电阻值。 非本征半导体:将掺入了定量的特定杂质原子,从而将热平衡状态电子和空穴浓度不同于本征载流子浓度的材料定义为非本征半导体。 简并半导体:电子或空穴的浓度大于有效状态密度,费米能级位于导带中(n 型)或价带中(p 型)的半导体。 直接带隙半导体:导带边和价带边处于k 空间相同点的半导体。 电子有效质量:并不代表真正的质量,而是代表能带中电子受外力时,外力与加速度的一个比例常熟。 雪崩击穿:由空间电荷区内电子或空穴与原子电子碰撞而产生电子--空穴对时,创建较大反偏pn 结电流的过程 1、什么是单边突变结?为什么pn 结低掺杂一侧的空间电荷区较宽? ①冶金结一侧的掺杂浓度大于另一侧的掺杂浓度的pn 结;②由于pn 结空间电荷区p 区的受主离子所带负电荷与N 区的施主离子所带正电荷的量是相等的,而这两种带点离子不能自由移动的,所以空间电荷区内的低掺杂一侧,其带点离子的浓度相对较低,为了与高掺杂一侧的带电离子的数量进行匹配,只有增加低掺杂一侧的宽度 。 2、为什么随着掺杂弄得的增大,击穿电压反而下降? 随着掺杂浓度的增大,杂质原子之间彼此靠的很近而发生相互影响,分离能级就会扩展成微带,会使原奶的导带往下移,造成禁带宽度变宽,不如外加电压时,能带的倾斜处隧长度Δx 变得更短,当Δx 短到一定程度,当加微小电压时,就会使p 区价带中电子通过隧道效应通过禁带而到达N 区导带,是的反响电流急剧增大而发生隧道击穿,所以。。。。。。 3、对于重掺杂半导体和一般掺杂半导体,为何前者的迁移率随温度的变化趋势不同?试加以定性分析。 对于重掺杂半导体,在低温时,杂质散射起主导作用,而晶格振动散射与一般掺杂半导体相比较影响并不大,所以这时随着温度的升高,重掺杂半导体的迁移率反而增加;温度继续增加下,晶格振动散射起主导作用,导致迁移率下降。 对于一般掺杂半导体,由于杂质浓度低,电离杂子散射基本可以忽略,其主要作用的是晶格振动散射,所以温度越高,迁移率越小。 4、漂移运动和扩散运动有什么不同?对于非简并半导体而言,迁移率和扩散系数之间满足什么关系? 漂移运动是载流子在外电场的作用下发生的定向运动,而扩散运动是由于浓度分布不均,导致载流子从浓度高的地方向浓度低的地方定向运动。前者的推动力是外电场,后者的推动力是载流子的分布引起的。 关系为:T k D 0 //εμ= 5、什么叫统计分布函数?并说明麦克斯韦-玻尔兹曼、玻色-爱因斯坦、费米狄拉克分布函数的区别? 描述大量粒子的分部规律的函数。 ①麦克--滋曼分布函数:经典离子,粒子可区分,而且每个能态多容纳的粒子数没有限制。 ②波色--斯坦分部函数:光子,粒子不可区分,每个能态所能容纳的粒子数没有限制。 ③费米狄拉克分布函数:晶体中的电子,粒子不可分辨,而且每个量子态,只允许一个粒子。 6、画出肖特基二极管和pn 结二极管的正偏特性曲线;并说明它们之间的差别。 两个重要的区别:反向饱和电流密度的数量级,开关特性; 两种器件的电流输运机构不同:pn 结中的电流是由少数载流子的扩散运动决定的,而肖特基势垒二极管中的电流是由多数载流子通过热电子发射越过内建电势差而形成的。 肖特基二极管的有效开启电压低于pn 结二极管的有效开启电压。 7、(a )5个电子处于3个宽度都为a=12A °的三维无限深势阱中,假设质量为自由电子质量,求T=0k 时费米能级(b )对于13个电子呢? 解:对于三维无限深势阱 对于5个电子状态,对应nxnynz=221=122包含一个电子和空穴的状态 ev E F 349.2)122(261.022=++?= 对于13个电子……=323=233 ev E F 5.742)323(261.0222=++?= 8、T=300k 时,硅的实验测定值为p 0=2×104cm -3,Na=7*1015cm -3, (a)因为P 0

半导体物理与器件

半导体物理与器件课程总结 吕游微电子与固体电子学201212171909 2012-2013学年第二学期,在尊敬的李常青老师的指导下学习了《半导体物理与器件》这门课程,我们按照章节划分,有侧重点的进行了个人重点学习并且在课堂上进行讲解演示,可谓受益匪浅。在以下的部分我将对这学期的课程学习做出总结。 首先,在第一部分,我针对《半导体物理与器件》课程做一个总体的概述,谈谈学习完本书后我的个人所得与感想。《半导体物理与器件》一书是一本有关半导体物理器件理论的入门书籍,它不但包含了诸多半导体器件的特性、工作原理以及局限性的理论基础知识,还附带了很多图示和生动的例子,对于一个半导体初学者来说大有帮助。 本书从基础物理讲起,而后转至半导体材料物理,最后讨论半导体器件物理。第1章先从固体的晶体结构开始,然后过渡到理想单晶体材料。第2章和第3章介绍了量子力学和固体物理,这些都是必须掌握的基础物理知识。第4章到第6章覆盖了半导体材料物理知识。其中,第4章讨论了热平衡半导体物理;第5章讨论了半导体内部的载流子输运现象;第6章主要介绍非平衡过剩载流子。理解半导体的过剩载流子行为对于理解器件物理是至关重要的。第7章到第13章对基本半导体器件物理进行了详细的描述。第7章主要讨论pn结电子学;第8章讨论pn结电流-电压特性;第9章讨论整流及非整流金属半导体结和半导体异质结;第10章探讨双极型晶体管。第11章、第12章阐述了MOS场效应管理论;第13章则阐述了结型场效应管。以上便是这本书的简要内容,这些章节之间既有联系又是相互独立的。 从这一部分开始,我将对本人重点学习的章节-第11章MOS场效应晶体管基础-做一个详细的讲解。这一章中,我所重点研究的内容是前两节,金属-氧化物-半导体场效应管的物理基础,这部分内容与前面的知识关联不太大,只依赖与半导体材料的性质和pn结的特性。所以,即使你是以前并没有接触过半导体知识的初学者,只要用心学习,也是不难理解的。 MOSFET是金属-氧化物-半导体场效应晶体管的简称。我们知道,MOSFET是当今集成电路设计的核心,可见学习MOSFET的重要性。其中,MOSFET的核心部分是一个称为MOS电容的金属-氧化物-半导体的结构。在本章中,我们首先阐述各种类型的MOSFET,并定性的讨论其电流-电压特性;然后将详细分析这种特性的理论来源以及数学推导过程;此外还将讨论MOSFET的频率特性。 11.1MOS电容 MOS结构的物理性质可以借助比较容易理解的平行板电容器加以说明。下图是MOS电容的结构。其中d是氧化层的厚度,金属栅极的材料是Al,氧化层的材料是 二氧化硅,衬底是晶体硅。 通常情况下,Si基板接地,对于p 型衬底的MOS管,当金属栅极加上正电 压时,称为正偏;而金属栅极加上负电 压时称为反偏。当上面的金属栅被施加 一个负电压,负电荷出现在上面的金属 板上,半导体内产生一个电场,多为多 子的空穴被推向半导体-氧化物表面,形

半导体物理与器件公式以及参数

半导体物理与器件公式以及参数 SI材料的禁带宽度为:1.12ev. 硅材料的 Ge材料的 GaAs材料的 介电弛豫时间函数:瞬间给半导体某一表面增加某种载流子,最终达到电中性的时间, ,其中 ,最终通过证明这个时间与普通载流子的寿命时间相比十分的短暂,由此就可以证明准电中性的条件。 热平衡状态下半导体的费米能级,本征半导体的费米能级,重新定义的是存在过剩载流子时的准费米能级。 准费米能级:半导体中存在过剩载流子,则半导体就不会处于热平衡状态,费米能级就会发生变化,定义准费米能级。 用这两组公式求解问题。 通过计算可知,电子的准费米能级高于,空穴的准费米能级低于,对于多子来讲,由于载流子浓度变化不大,所以准费米能级基本靠近热平衡态下的费米能级,但是对于少子来讲,少子浓度发生了很大的变化,所以费米能级有相对比较大的变化,由于注入过剩载流子,所以导致各自的准费米能级都靠近各自的价带。

过剩载流子的寿命: 半导体材料:半导体材料多是单晶材料,单晶材料的电学特性不仅和化学组成相关而且还与原子排列有关系。半导体基本分为两类,元素半导体材料和化合物半导体材料。 GaAs主要用于光学器件或者是高速器件。 固体的类型:无定型(个别原子或分子尺度内有序)、单晶(许多原子或分子的尺度上有序)、多晶(整个范围内都有很好的周期性),单晶的区域成为晶粒,晶界将各个晶粒分开,并且晶界会导致半导体材料的电学特性衰退。 空间晶格:晶格是指晶体中这种原子的周期性排列,晶胞就是可以复制出整个晶体的一小部分晶体,晶胞的结构可能会有很多种。原胞就是可以通过重复排列形成晶体的最小晶胞。三维晶体中每一个等效的格点都可以采用矢量表示为,其中矢量,,称为晶格常数。晶体中三种结构,简立方、体心立方、面心立方。 原子体密度每晶胞的原子数每晶胞的体积 米勒指数,对所在平面的截距取倒数在进行通分,所有平行平面的米

《半导体物理与器件》教学大纲

《半导体物理与器件》教学大纲 课程类别:专业方向 课程性质:必修 英文名称:Semiconductor Physics and Devices 总学时:48 讲授学时:48 学分: 3 先修课程:量子力学、统计物理学、固体物理学等 适用专业:应用物理学(光电子技术方向) 开课单位:物理科学与技术学院 一、课程简介 本课程是应用物理学专业(光电子技术方向)的一门重要专业方向课程。通过本课程的学习,使学生能够结合各种半导体的物理效应掌握常用和特殊半导体器 件的工作原理,从物理角度深入了解各种半导体器件的基本规律。获得在本课程领域内分析和处理一些最基本问题的初步能力,为开展课题设计和独立解决实际工作中的有关问题奠定一定的基础。 二、教学内容及基本要求 第一章:固体晶格结构(4学时)教学内容: 1.1半导体材料 1.2固体类型 1.3空间晶格 1.4原子价键 1.5固体中的缺陷与杂质 1.6半导体材料的生长 教学要求: 1、了解半导体材料的特性, 掌握固体的基本结构类型; 2、掌握描述空间晶格的物理参量, 了解原子价键类型; 3、了解固体中缺陷与杂质的类型; 4、了解半导体材料的生长过程。 授课方式:讲授 第二章:量子力学初步(4学时)教学内容: 2.1量子力学的基本原理 2.2薛定谔波动方程 2.3薛定谔波动方程的应用 2.4原子波动理论的延伸 教学要求: 1、掌握量子力学的基本原理,掌握波动方程及波函数的意义; 2、掌握薛定谔波动方程在自由电子、无限深势阱、阶跃势函数、矩形势垒 中应用; 3、了解波动理论处理单电子原子模型。 授课方式:讲授 第三章:固体量子理论初步(4学时)

相关文档
最新文档