玉米醇溶蛋白膜制备与应用的研究现状与展望_白红超

玉米醇溶蛋白膜制备与应用的研究现状与展望_白红超
玉米醇溶蛋白膜制备与应用的研究现状与展望_白红超

粮食加工2008年第33卷第6期

作为包装材料,塑料以其优良的综合性能,给我们的生产和生活带来了诸多便利。但由于塑料的不可降解性而导致的白色污染问题,日益引起人们的重视,开发可降解、环境友好型包装材料成为当前亟待解决的问题。

玉米醇溶蛋白溶于乙醇、异丙醇等有机溶剂,待这些有机溶剂蒸发后,玉米醇溶蛋白成膜,因此具有成为包装材料的潜力,倍受人们关注。

1玉米醇溶蛋白膜的国内外研究现状

1.1玉米醇溶蛋白膜制备条件的研究

由于纯玉米醇溶蛋膜的抗拉强度、延展性、吸湿性等指标还不理想,膜比较硬且脆,塑性较差,需通过各种方法来改善玉米醇溶蛋白膜的性能。通过添加增塑剂,可使增塑剂分子插入到玉米醇溶蛋白分子链之间,削弱了蛋白分子链间的应力,增加了蛋白分子链的移动性、降低了蛋白分子链的结晶程度,从而使玉米醇溶蛋白膜的塑性增加[1],常用的增塑剂有多糖、多醇、硬脂酸和软脂酸等。

半乳糖可降低玉米醇溶蛋白膜水蒸气透过率,提高膜的机械性能,果糖能均匀地分布在玉米醇溶蛋白膜的表面并能弥补纯玉米蛋白膜表面的空洞使膜表面变得平滑[2,3]。油酸能大幅度地改善玉米醇溶蛋白膜的柔韧性,使膜的抗拉强度和伸长率提高,并且制得的膜柔软、有光泽和富有弹性,防潮性能方面较好,具备了生物可降解材料应有的特性,有着良好的应用前景[4~7]。甘油/聚乙二醇(400)复合物对玉米醇溶蛋白膜延伸率的影响比较显著,当添加比例为

0.8(g/g)时,蛋白膜的延伸率变大约是甘油作为增塑剂的膜的50倍。聚乙二醇(400)提高了玉米醇溶蛋

玉米醇溶蛋白膜制备与应用的研究现状与展望

白红超,郭兴凤

(河南工业大学粮油食品学院,郑州450052)

要:总结了国内外玉米醇溶蛋白膜制备与应用的研究现状,并对其应用进行了展望。解决由不可降解塑料

导致的环境污染问题,开发可降解、环境友好型材料是当前社会发展的趋势,玉米醇溶蛋白膜做为天然可降解材料,以原料来源广,易成膜的特点引起了人们的关注,

关键词:玉米醇溶蛋白膜;制备与应用中图分类号:TS 210.1

文献标志码:B

文章编号:1007-6395(2008)06-0056-03

白膜的抗张指数、降低了膜的吸水率,并且能提高膜的柔韧性,但使膜的抗拉强度大幅降低[5,6]。将聚乙二醇和月桂酸的混合物加入玉米醇溶蛋白溶液,随着聚乙二醇添加量的增加,玉米醇溶蛋白膜的弹性增强,但膜的水蒸气透过率增大,氧气透过率不稳定[8]。

添加一定量的交联剂,可以加强蛋白质分子间或者分子内的键合作用,有利于膜结构的致密,改善膜的机械性能和阻湿性能[9,10]。向玉米蛋白溶液加入交联剂1-乙基-3-(3-二甲丙氨基)碳化二酰亚胺

(EDC)和羟基琥珀酰亚胺(NHS),可提高玉米醇溶蛋

白的成膜能力,使膜的表面变得平滑,而且能使膜的抗拉强度得到极大的增强[11]。交联剂甲醛、戊二醛、已二醛、肉桂醛都能提高膜的抗拉强度,但肉桂醛的安全性最高[12]。

射线照射处理可改善玉米醇溶蛋白膜的性能。用紫外线照射玉米醇溶蛋白膜后,膜的抗拉强度增大,可溶性物质减少,水蒸气透过率不变,颜色变浅[13];通过对玉米醇溶蛋白溶液进行γ照射,溶液成膜后膜的平均抗拉强度降低,但膜的微观结构平滑和膜的颜色变浅[14]。

控制成膜条件也可改善玉米醇溶蛋白膜的性能。当乙醇溶液的体积分数为90%~95%、pH 值为

8.0~8.8时,膜的透明度较高;当乙醇溶液的体积分

数为25%~30%、pH 值为8.4~9.2时,膜的抗拉性较好;在高pH 值下,降低乙醇溶液的体积分数或在高乙醇的体积分数下,降低溶液的pH 值,膜的透湿性明显下降[15]。当膜干燥时所处环境的相对湿度不同,会导致膜的含水量不同,进而影响膜的机械性能[16]。

1.2玉米醇溶蛋白膜的应用研究

醇溶蛋白膜具有良好的阻湿性及阻氧性,以及

抗紫外线、保香、阻油和防静电等特性,对细菌有一定抑制作用,因而可以用于食品保鲜、包装以及制药

收稿日期:2008-04-14

作者简介:白红超(1981-),男,硕士研究生,研究方向:粮食、油脂及

植物蛋白工程。

56

粮食加工2008年第33卷第6期

行业。

加入抗菌物质与玉米醇溶蛋白复合,可提高玉米醇溶蛋白膜的抗菌功能。尼生素、月桂酸、EDTA 以及三者的复合物都能提高膜的抗菌性能[17]。用含有肠球菌素的玉米醇溶蛋白膜包装火腿,对单核细胞增生李斯特菌有较好的抗菌性能[18]。把溶菌酶加到玉米醇溶蛋白溶液后,与鹰嘴豆清蛋白复合,不但能提高复合膜的溶解能力,而且能使溶菌酶均匀分布在复合膜上,更好地控制了酶的释放速度,提高了复合膜的抗菌和抗氧化性能[19]。从鸡蛋清蛋白提取溶菌酶后,加入玉米醇溶蛋白,当溶菌酶纯度较高时,复合膜对芽胞杆菌和乳酸杆菌有效,如果在复合膜中再加入EDTA,则复合膜对大肠杆菌也有效[20]。

玉米醇溶蛋白膜不溶于水,又是天然物质,可作为药物包衣材料使用。向玉米醇溶蛋白溶液添加增塑胶和防腐剂后,制成的膜在模拟胃液的胃蛋白酶溶液中可使膜释放药物的能力提高,表明玉米醇溶蛋白膜可以作为药物包衣材料[21]。油酸增塑后的玉米醇溶蛋白膜具有良好的抗酸性,在pH>10时才开始溶解,这一特性使得开发蛋白膜包覆的功能性产品有了理论依据。玉米醇溶蛋白膜在各种蛋白酶水溶液中24h内不能使蛋白膜水解,具有抗胃蛋白酶和抗胰酶的能力,说明蛋白膜不能被人体内的酶水解,因此可以作为一种便宜而又能有效替代传统药物包衣材料的膜来使用[22,23]。

玉米醇溶蛋白膜具有较好的阻氧性和阻湿性,因此可应用于食品的保鲜。用玉米醇溶蛋白溶液涂布杏仁后,玉米醇溶蛋白膜可使杏仁的保质期明显提高[15]。采用玉米醇溶蛋白液浸涂硬糖,可以延缓硬糖吸水溶化,防止硬糖发烊、返砂,以便长久地保持硬糖的质量,在玉米醇溶蛋白溶液中添加增塑剂能更有效地增强其保湿性。用玉米醇溶蛋白浸涂杏仁及核桃仁能延缓其氧化酸败速度,而添加增塑剂能使膜更好地粘着于食品表面,从而增强了膜的阻氧性[24]。将虫胶加入玉米醇溶蛋白溶液,复合后的玉米醇溶蛋白膜可使核桃仁的保质期达到250d以上,有效地抑制了核桃仁的氧化酸败[25]。在番茄成熟期将番茄涂抹玉米醇溶蛋白,可以推迟番茄的成熟时间[26]。向玉米醇溶蛋白溶液分别加入BHA、抗菌酶和乳化剂,复合膜的抗氧化效果比二氯乙烯膜好[27]。

Dong等人研究了玉米蛋白膜作为培养人类肝细胞和小鼠纤维原细胞材料的可能性,结果表明玉米蛋白膜与上述两种细胞有较好的生物相容性,可作为研究人体组织工程的材料使用[28]。2玉米醇溶蛋白膜应用研究发展趋势

玉米醇溶蛋白膜以原料来源广、可降解引起了人们的关注。但玉米醇溶蛋白膜的制备和应用技术目前尚处于实验室阶段,为了提高玉米醇溶蛋白膜性能和扩大玉米醇溶蛋白膜的应用范围,需要就以下几个方面进行研究:

2.1开发复合型玉米醇溶蛋白膜

由单材料向多材料,由单层膜向多层膜方向发展是当前可降解膜的发展趋势。将玉米醇溶蛋白与其它天然产物如多糖、蛋白、微生物发酵糖蜜、油脂产生的共聚聚酯等复合,充分利用各组分的长处,弥补彼此的缺点,制备具有较好性能的复合膜材料。

2.2开发功能型玉米醇溶蛋白膜

为了扩大玉米醇溶蛋白膜的使用范围,可根据实际需要开发具有特殊功能型玉米醇溶蛋白膜。例如可向玉米醇溶蛋白溶液添加天然抑菌剂和酶制剂,涂抹在农产品或食品表面,干燥成膜后可起到阻湿、阻气、防虫、抑菌、抗氧化等效果,延长产品的货架期。

2.3玉米醇溶蛋白的成膜机理研究

尽管人们用各种方法来提高玉米醇溶蛋白膜的性能,但关于其成膜机理还不太清楚。只有确定成膜机理才能有效提高成膜的性能,因此尚需对成膜机理进行深入的研究。

参考文献:

[1]Guilbert S,Biquet B.Edible films and coatings.In Food

packaging technology[M].New York:VCH Publishers,Inc, 1996.

[2]Ghanbarzadeh Babak,Oromiehie A R,Musavi Mohamad,et

al.Effect of plasticizing sugars on rheological and thermal

properties of zein resins and mechanical properties of zein films[J].Food Research International,2006,(39):882-890. [3]Ghanbarzadeh Babak,Oromiehie A R,Musavi Mohamad,et

al.Effect of plasticizing sugars on water vapor permeability, surface energy and microstructure properties of zein films[J].

LWT,2007,40:1191-1197.

[4]田少君,阎景坤,阎静.不同增塑剂对玉米醇溶蛋白膜机械

性能的影响[J].粮油加工,2006,(8):88-90.

[5]黄国平,杨晓泉,温其标.增塑剂对玉米醇溶蛋白成膜性

能的影响[J].华南理工大学学报(自然科学版),2004,32

(3):37-40.

[6]黄国平,温其标,杨晓泉,等.玉米醇溶蛋白的增塑改性研

究[J].粮油加工与食品机械,2003,(10):52-54.

[7]Youn Ryu Sou,Whan Rhim Jong,Jong Lee Won,et al.Re-

57

粮食加工

2008年第33卷第6期

Progress and Prospect of Research in Zein Film

BAI Hong-chao ,GUO Xing-feng

(School of Food Science and Engineering ,Henan University of Technology ,450052Zhengzhou,China)Abstract:The research status of zein film was analyzed and the prospect of zein film was predicted.Solve the pollution problem of non-degradation plastic,the development of degradative and amicable materials is needed nowadays.The zein film gets people ’s attention because of its rich stuff and easy accomplishment.Key words:zein film,preparation and application

lationship between moisture barrier properties and sorption characteristics of edible composite films[J].Food Science and Biotechnology,2005,14(1):68-72.

[8]Paramawati R,Yoshino T,Isobe S.Properties of plasticized-zein film as affected by plasticizer treatments[J].Food Scie-nce and Technology Research,2001,7(3):191-194.[9]辛嘉英.可食性食品包装膜的研制[J].适用技术市场,1995,(7):16.

[10]Rayas L M,Hernandez R J,et al.Development and char-acterzation of biodegradable/edible wheat protein films[J].Journal of Food Science,1997,(1):160-162.

[11]Kim S,Sessa D J,Lawton J W.Characterization of zein

modified with a mild cross-linking agent[J].Industrial Crops and Products,2004,(20):291-300.

[12]Lee Myoungsuk,Lee Sehee,Ma Yuhyun,et al.Effect of

plasticizer and cross-linking agent on the physical proper-ties of protein films[J].Journal of Food Science and Nutri-tion,2005,10(1):88-91.

[13]Rhim J W,Gennadios A,Fu Dengjing,et al .Properties of

ultraviolet irradiated protein films[J].Lebensmittel-Wis-senschaft und-Technologie,1999,32(3):129-133.[14]Lee Sehee,Lee Myoungsuk,Song Kyung Bin.Effect of γ-irradiation on the physicochemical properties of zein films [J].Journal of Food Science and Nutrition,2003,8(4):343-348.

[15]刘雪雁,殷丽君,杨婀娜,等.玉米醇溶蛋白可食性保鲜

膜的研究[J].中国粮油学报,1996,11(3):24-32.

[16]Yoshino T,Isobe S,Maekawa T.Influence of preparation

conditions on the physical properties of zein films[J].Jour-nal of the American Oil Chemists'Society,2002,79(4):345-349.

[17]Hoffman K L,Han I Y,Dawson P L.Antimicrobial effects

of corn zein films impregnated with nisin,lauric acid,and EDTA[J].Journal of Food Protection,2001,64(6):885-889.

[18]Marcos Begonya,Aymerich Teresa,Monfort Josep M,et al.

Use of antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham[J].In-

ternational Journal of Food Microbiology,2007,(120):

152-158.

[19]G ücbilmez Cigfdem Mecitoglu,Yemeniciogflu A,Arslanog-lu A.Antimicrobial and antioxidant activity of edible zein films incorporated with lysozyme,albumin proteins and disodium EDTA[J].Food Research International,2007,(40):80-91.

[20]Mecitofglu Cigdem,Yemenicioglu Ahmet,Arslanoglu

Alper,et al.Incorporation of partially purified hen egg white lysozyme into zein films for antimicrobial food pack-aging[J].Food Research International,2006,(39):12-21.[21]O ’Donnell Patrick B,Wu Chuanbin,Wang Jijun,et al.

Aqueous pseudolatex of zein for film coating of solid dosage forms[J].European Journal of Pharmaceutics and Biopharmaceutics,1997,(43):83-89.

[22]黄国平,杨晓泉.玉米醇溶蛋白膜的降解性能和水蒸气

透过率的研究[J].食品研究与开发,2006,27(3):22-

23,29.

[23]Beck M I,Tomka I,Waysek E.Physico-chemical charac-terization of zein as a film polymer :A direct comparison with ethyl cellulose coating[J].International Journal of Pharmaceutics,1996,(141):137-150.

[24]徐丽萍,王亚南,马会来.玉米醇溶蛋白阻湿性及抗氧化

性应用的研究[J].中国粮油学报,1999,14(5):40-42.

[25]周柏玲,李蕾,孙秋雁,等.玉米醇溶蛋白复合膜包衣对

核桃仁酸败抑制效果的研究[J].农业工程学报,2004,20

(3):180-183.

[26]Park H J,Chinnan M S,Shewfelt R L.Edible corn-zein

film coatings to extend storage life of tomatoes[J].Journal of Food Processing and Preservation,1994,18(4):317-331.

[27]Herald T J,Hachmeister K A,Huang S,et al .Corn zein

packaging materials for cooked turkey[J].Journal of Food Science,1996,61(2):415-417,421.

[28]Dong Jian,Sun Qingshen,Wang Jin-Ye.Basic study of

corn protein,zein,as a biomaterial in tissue engineering,surface morphology and biocompatibility[J].Biomaterials,2004,(25):4691-4697.

58

蛋白质药物口服机制及方法研究

目录 摘要 (1) 1 引文 (2) 2 蛋白质药物口服吸收的机制及途径 (2) 2.1 载体转运 (2) 2.2 胞饮作用和M 细胞途径 (2) 3 蛋白质药物吸收的主要屏障 (3) 3.1酸屏障 (3) 3.2酶屏障 (3) 3.3膜屏障 (3) 4 保护口服蛋白质药物活性的方法 (4) 参考文献 (5)

蛋白质药物口服机制及方法研究摘要:由于蛋白质药物的无损伤性传输系统以及作用位点专一等特点,已成为临床治疗疾病的重要药物,但受到酸屏障、酶屏障和膜屏障的影响,限制了这类药物的口服吸收。但蛋白质药物口服给药方便、可提高患者依从性。所以目前世界上对蛋白质口服药物研究很多。本文对蛋白质药物口服的吸收机制以及影响因素,通过查阅中外文资料,寻找一种保护口服蛋白质药物活性的方法。 关键词:蛋白质类药物,纳米脂质体,口服 1.引言 生物技术药物在人类疾病的治疗中正发挥着越来越重要的作用,而生物技术药物大多数为蛋白质类药物。该类药物在胃肠道中不稳定,易被胃肠道苛刻的pH环境和丰富的酶系统破坏,同时由于其具有分子量大、对胃肠道黏膜的渗透性低的特点,导致该类药物的胃肠道用药生物利用度极低。为了避免蛋白质在胃肠道中的降解及吸收困难的问题,蛋白质类药物主要采用注射的方式给药,给患者带来了极大不便。因而开发该类药物的无损伤性传输系统已成为药剂领域的研究热点。以往人们已投入大量的精力开发蛋白质类药物的非注射给药剂型,其中口服剂型以其良好的患者依从性吸引了大批研究者的关注,但酶和pH 环境对蛋白质的降解、破坏以及蛋白质在胃肠道的低渗透性,使得蛋白质类药物的吸收障碍亦成为蛋白质类药物胃肠道给药研究的瓶颈。为此,本文在查阅近年国内、外研究论文基础上,寻找一种不破坏蛋白质活性的药物剂型。 2.蛋白质药物口服吸收的机制及途径 2.1 载体转运 小分子药物的转运以简单扩散为主,而大分子蛋白质口服给药经过胃肠道主要依靠载体转运介导通过细胞旁路转运至小肠黏膜内,如图1 所示,随后由淋巴回流进入血液循环系统。未被消化酶降解的多肽与肠表面膜基底外侧的H+ 依赖型多肽载体结合,以H+ 梯度和膜电位差为动力,经多肽载体转运进入基底膜内侧,由于H+ 与多肽是共同通过上皮细胞膜的,这一系统又称为H+ -依赖型肠多肽转运系统。 图1 治疗用多肽与蛋白质药物分布机制: 载体转运的作用超过简单扩散. 2.2 胞饮作用和M 细胞途径

玉米醇溶蛋白膜制备与应用的研究现状与展望_白红超

粮食加工2008年第33卷第6期 作为包装材料,塑料以其优良的综合性能,给我们的生产和生活带来了诸多便利。但由于塑料的不可降解性而导致的白色污染问题,日益引起人们的重视,开发可降解、环境友好型包装材料成为当前亟待解决的问题。 玉米醇溶蛋白溶于乙醇、异丙醇等有机溶剂,待这些有机溶剂蒸发后,玉米醇溶蛋白成膜,因此具有成为包装材料的潜力,倍受人们关注。 1玉米醇溶蛋白膜的国内外研究现状 1.1玉米醇溶蛋白膜制备条件的研究 由于纯玉米醇溶蛋膜的抗拉强度、延展性、吸湿性等指标还不理想,膜比较硬且脆,塑性较差,需通过各种方法来改善玉米醇溶蛋白膜的性能。通过添加增塑剂,可使增塑剂分子插入到玉米醇溶蛋白分子链之间,削弱了蛋白分子链间的应力,增加了蛋白分子链的移动性、降低了蛋白分子链的结晶程度,从而使玉米醇溶蛋白膜的塑性增加[1],常用的增塑剂有多糖、多醇、硬脂酸和软脂酸等。 半乳糖可降低玉米醇溶蛋白膜水蒸气透过率,提高膜的机械性能,果糖能均匀地分布在玉米醇溶蛋白膜的表面并能弥补纯玉米蛋白膜表面的空洞使膜表面变得平滑[2,3]。油酸能大幅度地改善玉米醇溶蛋白膜的柔韧性,使膜的抗拉强度和伸长率提高,并且制得的膜柔软、有光泽和富有弹性,防潮性能方面较好,具备了生物可降解材料应有的特性,有着良好的应用前景[4~7]。甘油/聚乙二醇(400)复合物对玉米醇溶蛋白膜延伸率的影响比较显著,当添加比例为 0.8(g/g)时,蛋白膜的延伸率变大约是甘油作为增塑剂的膜的50倍。聚乙二醇(400)提高了玉米醇溶蛋 玉米醇溶蛋白膜制备与应用的研究现状与展望 白红超,郭兴凤 (河南工业大学粮油食品学院,郑州450052) 摘 要:总结了国内外玉米醇溶蛋白膜制备与应用的研究现状,并对其应用进行了展望。解决由不可降解塑料 导致的环境污染问题,开发可降解、环境友好型材料是当前社会发展的趋势,玉米醇溶蛋白膜做为天然可降解材料,以原料来源广,易成膜的特点引起了人们的关注, 关键词:玉米醇溶蛋白膜;制备与应用中图分类号:TS 210.1 文献标志码:B 文章编号:1007-6395(2008)06-0056-03 白膜的抗张指数、降低了膜的吸水率,并且能提高膜的柔韧性,但使膜的抗拉强度大幅降低[5,6]。将聚乙二醇和月桂酸的混合物加入玉米醇溶蛋白溶液,随着聚乙二醇添加量的增加,玉米醇溶蛋白膜的弹性增强,但膜的水蒸气透过率增大,氧气透过率不稳定[8]。 添加一定量的交联剂,可以加强蛋白质分子间或者分子内的键合作用,有利于膜结构的致密,改善膜的机械性能和阻湿性能[9,10]。向玉米蛋白溶液加入交联剂1-乙基-3-(3-二甲丙氨基)碳化二酰亚胺 (EDC)和羟基琥珀酰亚胺(NHS),可提高玉米醇溶蛋 白的成膜能力,使膜的表面变得平滑,而且能使膜的抗拉强度得到极大的增强[11]。交联剂甲醛、戊二醛、已二醛、肉桂醛都能提高膜的抗拉强度,但肉桂醛的安全性最高[12]。 射线照射处理可改善玉米醇溶蛋白膜的性能。用紫外线照射玉米醇溶蛋白膜后,膜的抗拉强度增大,可溶性物质减少,水蒸气透过率不变,颜色变浅[13];通过对玉米醇溶蛋白溶液进行γ照射,溶液成膜后膜的平均抗拉强度降低,但膜的微观结构平滑和膜的颜色变浅[14]。 控制成膜条件也可改善玉米醇溶蛋白膜的性能。当乙醇溶液的体积分数为90%~95%、pH 值为 8.0~8.8时,膜的透明度较高;当乙醇溶液的体积分 数为25%~30%、pH 值为8.4~9.2时,膜的抗拉性较好;在高pH 值下,降低乙醇溶液的体积分数或在高乙醇的体积分数下,降低溶液的pH 值,膜的透湿性明显下降[15]。当膜干燥时所处环境的相对湿度不同,会导致膜的含水量不同,进而影响膜的机械性能[16]。 1.2玉米醇溶蛋白膜的应用研究 醇溶蛋白膜具有良好的阻湿性及阻氧性,以及 抗紫外线、保香、阻油和防静电等特性,对细菌有一定抑制作用,因而可以用于食品保鲜、包装以及制药 收稿日期:2008-04-14 作者简介:白红超(1981-),男,硕士研究生,研究方向:粮食、油脂及 植物蛋白工程。 56

小麦面筋蛋白质的特性及其利用(精)

小麦面筋蛋白质的特性及其利用 面筋蛋白质的特性小麦中的蛋白主要由清蛋白, 球蛋白, 醇溶蛋白, 谷蛋白四种蛋白组成. 小麦蛋白成份中, 清蛋白占3~5%,球蛋白占6~10%,醇溶蛋白占40~50%,谷蛋白占30~40%.面筋蛋白主要是由不溶于水的麦醇溶蛋白和麦谷蛋白组成. 干面筋蛋白质总含量为85%左右。 当面粉加水揉成面团后, 由于面筋蛋白质不溶于水, 其空间结构表层和内层都存在一定的极性基团, 这种极性基团很容易把水分子先吸附在面筋蛋白质单体表层. 经过一段时间, 水分子便逐渐扩散渗透到分子内部, 造成面筋蛋白质的体积膨胀. 充分吸水膨胀后的面筋蛋白分子彼此靠极性基团与水分子纵横交错地联接起来形成面筋网络. 这便是面筋形成的基本过程. 面筋蛋白质的特性与小麦品质有关, 一般正常的小麦, 面筋蛋白质的出率高, 品质好. 玻璃质硬麦不仅蛋白质含量高, 而且品质也好. 发芽小麦面筋品质差, 发芽4天小麦洗不出面筋. 刚收割的小麦生产出来的面粉面筋品质稍差, 经过一定时期的贮存, 面筋品质得到改善, 制出的面包或馒头体积大, 弹性好, 不粘牙. 小麦在制粉过程中, 皮磨研出的面粉面筋含量高, 而心磨研出的面粉面筋含量较低, 但面筋品质相比之下要好些. 这是因为接近麦皮的胚乳外层蛋白质含量高, 而胚乳中心面筋蛋白质含量低. 面筋蛋白质中蛋氨酸含量较高, 赖氨酸含量较低. 大豆蛋白中蛋氨酸和赖氨酸含量正好与它相反. 大豆蛋白质中蛋氨酸等于面筋蛋白的63.5%,赖氨酸含量是面筋蛋白的3.78倍. 因此可以在面筋蛋白中添加大豆蛋白配制蛋白食品, 以利用植物蛋白质中氨基酸的互补特性, 充分发挥其营养互补作用, 提高营养价值. 小麦面筋蛋白质的研究进展 摘要:小麦面筋蛋白质是影响小麦品质和面制品加工性能的重要因素, 本文详细论述了麦谷蛋白的和麦醇溶蛋白的研究思路、研究方法以及研究现状并指出了今后的研究方向。

蛋白质药物的研究现状

蛋白质药物的研究现状 郭世江20123762 制药二班 摘要:蛋白质药物可分为多肽和基因工程药物、单克隆抗体和基因工程抗体、重组疫苗;本文主要着重讲解多肽和基因工程药物。与以往的小分子药物相比,蛋白质药物具有高活性、特异性强、低毒性、生物功能明确、有利于临床应用的特点。由于其成本低、成功率高、安全可靠,已成为医药产品中的重要组成部分。1982年美国Likky公司首先将重组胰岛素投放市场,标志着第一个重组蛋白质药物的诞生。一种新型生物技术候选药物,它具有高效抗肿瘤、抗病毒功能。经中国药品生物制品标准化研究中心检测证实,其抗肿瘤活性较同类产品高246.7倍,抗病毒活性高10倍以上,可用于治疗多种恶性肿瘤和病毒感染性疾病。 关键词:多肽,基因工程药物,单克隆抗体,基因工程抗体,重组疫苗,高活性,低毒性,抗肿瘤,抗病毒。 Abstract:Polypeptide and protein drugs can be divided into genetic engineering drugs, monoclonal antibodies and genetically engineered antibodies, recombinant vaccine; paper mainly focuses on explaining polypeptides and genetic engineering drugs. Compared with conventional small molecule drugs, protein drugs with high activity and specificity, low toxicity, biological features a clear, beneficial characteristics of clinical applications. Because of its low cost, high success rate, safe and reliable pharmaceutical products has become an important part. 1982 United States Likky company first recombinant insulin market, marking the birth of the first recombinant protein drugs. A new biotech drug candidates, it is an efficient anti-tumor, anti-viral function. By the China Research Center of Pharmaceutical and Biological Products Standardization tests confirmed that the anti-tumor activity of 246.7 times higher than similar products, high antiviral activity more than 10 times, can be used to treat a variety of malignancies and viral infections. Keywords:Peptides, genetic engineering drugs, monoclonal antibodies, genetically engineered antibodies, recombinant vaccine, high activity and low toxicity, anti-tumor, anti-viral 一、前言 生物技术的发展促进了大分子生物活性物质的发现,用于治疗或诊断的多肽、蛋白质、酶、激素、疫苗、细胞生长因子及单克隆抗体等药物不断出现,国外已批准上市的生物技术药物产品约90 多种,进入临床实验的生物技术药品有369种,占美国临床实验药品的1/3,正在研究发展的大分子活性物质或药物达千种以上,生物技术药物的销售增长率在1998 年到2004 年每年增长12%~15%,生物技术药物已涉足于200多种疾病,其研究多数是针对癌症治疗,以及传染性疾病、神经性疾病、心血管疾病、呼吸系统疾病、艾滋病、自体免疫性疾病、皮肤病等。早在上世纪90年代,美国FDA即已批准可以进行临床研究的基因疗法达72种,年初国家食品药品监督管理局也批准了重组人p53腺病毒注射液的生产。由于半衰期短,生物技术药物的基本剂型是冻干注射剂或注射液,需要长期频繁注射给药,面对生物大分子在稳定性及吸收等方面的困难,在研究和生产高质量的冻干粉针及溶液型注射剂的同时,发展多种途径给药的新剂型是制剂工业和研究的重要任务[1]。

小麦蛋白质品质研究进展.

青海农林科技?专题综述?2001年第4期 小麦蛋白质品质研究进展 车永和,马晓岗 (青海省农林科学院作物所,青海西宁810016) 摘要:小麦是人类重要的蛋白质来源。小麦蛋白质对小麦营养品质和加工特性都有非常重要的影响,它是 小麦国际贸易和品质评价中的基本指标。本文就小麦蛋白质品质的蛋白质含量、蛋白质质量、麦谷蛋白和麦醇溶蛋白、面筋含量和质量、沉淀值等有关蛋白质品质的几个主要方面研究情况进行了综述和讨论,育种提供参考。 关键词:小麦;蛋白质;品质中图分类号:S152.1+233文献标识码:A()042白质的38.4,35食物,,不仅是小麦商品粮的品质基础,也是专用面粉生产和食品加工企业生产优质食品的重要物质基础,小麦产量和品质的多少与优劣,直接关系到人类食物的满足程度和生产水平的提高,影响着人类的营养平衡。小麦蛋白质品质对小麦营养品质和加工特性都有非常重要的影响,是小麦国际贸易和品质评价中的基本指标,也是目前研究最为广泛和深入的小麦品质指标。本文就小麦有关蛋白质品质的几个主要方面的研究做一综述,以期为小麦品质育种研究工作提供参考。1蛋白质含量 小麦籽粒蛋白质含量与湿面筋含量具有很好的相关性,与加工品质密切相关。不同用途的小麦面粉对小麦蛋白质含量要求不同,对馒头小麦品种的 1〕 面粉粗蛋白含量一般要求以高于12.5±1%为宜〔;中国面条(加碱黄色面条)一般要求小麦中蛋白质与淀粉的含量与质量,以及小麦的各种品质指标都要 2〕 适中,过高、过低都不行(Miskelly,1989)〔。黄东印(1990)指出,面粉蛋白质含量与干面条断裂强度呈 3〕 极显著正相关,林作楫(1994)〔研究也发现,蛋白质含量不仅与煮面强度高度相关,而且与煮熟面条的外观表现和总评价值呈显著负相关。因此,一般认为中国面条适宜的蛋白质含量应为中等,即12%~13%左右;小麦蛋白质含量在8%~20%范围内,蛋白质含量与面包体积呈线性关系,烘烤品质较好(尹应哲,1990;李志西等,1998)。4〕 (1995)对我国小麦种质资源品质现据李鸿恩〔 状分析来看,蛋白质平均含量为15.10%,变异幅度为7.50%~28.90%。我国首批面包小麦品种蛋白 5〕

玉米醇溶蛋白

玉米醇溶蛋白对药物的缓控释效果 王永亮 (广东食品药品职业学院 09设备2班) 摘要玉米醇溶蛋白是 Gorhamin 在 1821 年首次从玉米中提取的一种能溶解于乙醇的蛋白质,并将这种蛋白质取名为玉米醇溶蛋白(zein),简称醇溶蛋白。作为一种天然蛋白质,醇溶蛋白有着广泛的应用。在医药领域常作为控释制剂、微球等新剂型的药用辅料;另外玉米醇溶蛋白在细胞培养、多孔支架及药物控释等方面都表现出较好的生物相容性和可降解性。本文就醇溶蛋白缓控释行为方面做了进一步综述。 关键词玉米醇溶蛋白用途配制缓释控缓释阿司匹林肝素 玉米醇溶蛋白相关剂型的制备 玉米醇溶蛋白溶液的配制将一定量的玉米醇溶蛋白粉按 10:1的液固比用80%的乙醇溶液湿润, 摇匀, 放入恒温水浴中加热, 然后用离心机离心,取上清液密封备用。 醇溶蛋白空白片的制备用950 ml/ L 乙醇溶解醇溶蛋白,在50℃恒温水槽中加热30min,配制浓度为65 g / ml醇溶蛋白溶体, 然后将溶体平铺于聚四氟乙烯板上, 真空干燥8 h 后取出,用万能粉碎机将其粉碎,过20目药用筛,不加任何成分直接用压片机压制成型。

玉米醇溶蛋白的性质及市场应用 玉米中的醇溶蛋白是玉米的主要贮存蛋白,根据玉米种类和分离方法的不同, 它在玉米胚乳蛋白中的含量占 44~79 %不等。玉米中的醇溶蛋白是由分子大小和溶解度不同的一组蛋白质组成, 可分为α、β、γ、δ四种。其中α- 玉 米醇溶蛋白占约 70 %, γ占约 20 %。α-玉米醇溶蛋白可由乙醇溶液提取出来, 其余三种需在醇溶液中添加还原剂。在添加还原剂提纯的α玉米醇溶蛋白 SDS- PAGE凝胶电泳出现 2条带, 分子量为19kDa和 22kDa 。 由于商品化的玉米醇溶蛋白是由玉米湿法加工生产淀粉的副产物玉米蛋白 粉提取的, 湿法生产中二氧化硫破坏了二硫键, γ -玉米醇溶蛋白成水溶性的, 随玉米浸泡水去除了。而β-玉米醇溶蛋白不溶于 90 %异丙醇和乙醇。因此原料和提取工艺造成商品化的玉米醇溶蛋白仅含α玉米醇溶蛋白。 玉米醇溶蛋白具有良好的成膜性、黏接性和防水、防湿性能, 还具有耐酸、耐油等特性, 可广泛应用于医药、食品及化工等其它行业。在食品工业中, 醇溶蛋白可以作为被膜剂, 即以喷雾方式在食品表面形成一个涂层, 可防潮、防氧化、从而延长食品货架期, 喷在水果上, 还能增加光泽。它是一种无毒且能强化食品的保鲜剂。在医药方面, 由于玉米醇溶蛋白的憎水性, 所以可以涂在药片的外面, 作防潮层; 另外又由于对胃酸稳定, 可以作肠溶药片的包衣。此外, 如果将玉米醇溶蛋白与纸张复合, 可以制成防水防潮的包装材料, 还可以作为工业 上的黏接剂、发泡剂和乳化剂等。 玉米醇溶蛋白–肝素微球的缓释 利用玉米醇溶蛋白和肝素的溶解性质,将其制备成微球结果发现:随着蛋白 质浓度的增高,蛋白质微球的粒径也发生显著变化,从几百纳米到几微米,如图1 所示

(完整版)蛋白质的性质和分类

蛋白质凭借游离的氨基和羧基而具有两性特征,在等电点易生成沉淀。不同的蛋白质等电点不同,该特性常用作蛋白质的分离提纯。生成的沉淀按其有机结构和化学性质,通过pH的细微变化可复溶。蛋白质的两性特征使其成为很好的缓冲剂,并且由于其分子量大和离解度低,在维持蛋白质溶液形成的渗透压中也起着重要作用。这种缓冲和渗透作用对于维持内环境的稳定和平衡具有非常重要的意义。 在紫外线照射、加热煮沸以及用强酸、强碱、重金属盐或有机溶剂处理蛋白质时,可使其若干理化和生物学性质发生改变,这种现象称为蛋白质的变性。酶的灭活,食物蛋白经烹调加工有助于消化等,就是利用了这一特性。 (二)蛋白质的分类 简单的化学方法难于区分数量庞杂、特性各异的这类大分子化合物。通常按照其结构、形态和物理特性进行分类。不同分类间往往也有交错重迭的情况。一般可分为纤维蛋白、球状蛋白和结合蛋白三大类。 1.纤维蛋白包括胶原蛋白、弹性蛋白和角蛋白。 (1) 胶原蛋白胶原蛋白是软骨和结缔组织的主要蛋白质,一般占哺乳动物体蛋白总量的30%左右。胶原蛋白不溶于水,对动物消化酶有抗性,但在水或稀酸、稀碱中煮沸,易变成可溶的、易消化的白明胶。胶原蛋白含有大量的羟脯氨酸和少量羟赖氨酸,缺乏半胱氨酸、胱氨酸和色氨酸。 (2) 弹性蛋白弹性蛋白是弹性组织,如腱和动脉的蛋白质。弹性蛋白不能转变成白明胶。 (3) 角蛋白角蛋白是羽毛、毛发、爪、喙、蹄、角以及脑灰质、脊髓和视网膜神经的蛋白质。它们不易溶解和消化,含较多的胱氨酸(14-15%)。粉碎的羽毛和猪毛,在15-20磅蒸气压力下加热处理一小时,其消化率可提高到70-80%,胱氨酸含量则减少5-6%。 2.球状蛋白 (1) 清蛋白主要有卵清蛋白、血清清蛋白、豆清蛋白、乳清蛋白等,溶于水,加热凝固。 (2) 球蛋白球蛋白可用5-10%的NaCl溶液从动、植物组织中提取;其不溶或微溶于水,可溶于中性盐的稀溶液中,加热凝固。血清球蛋白、血浆纤维蛋白原、肌浆蛋白、豌豆的豆球蛋白等都属于此类蛋白。 (3) 谷蛋白麦谷蛋白、玉米谷蛋白、大米的米精蛋白属此类蛋白。不溶于水或中性溶液,而溶于稀酸或稀碱。 (4) 醇溶蛋白玉米醇溶蛋白、小麦和黑麦的麦醇溶蛋白、大麦的大麦醇溶蛋白属此类蛋白。不溶于水、无水乙醇或中性溶液,而溶于70-80%的乙醇。 (5) 组蛋白属碱性蛋白,溶于水。组蛋白含碱性氨基酸特别多。大多数组蛋白在活细胞中与核酸结合,如血红蛋白的珠蛋白和鲭鱼精子中的鲭组蛋白。 (6) 鱼精蛋白鱼精蛋白是低分子蛋白,含碱性氨基酸多,溶于水。例如鲑鱼精子中的鲑精蛋白、鲟鱼的鲟精蛋白、鲱鱼的鲱精蛋白等。鱼精蛋白在鱼的精子细胞中与核酸结合。 球蛋白比纤维蛋白易于消化,从营养学的角度看,氨基酸含量和比例也较纤维蛋白更理想。 3. 结合蛋白 结合蛋白是蛋白部分再结合一个非氨基酸的基团(辅基)。如核蛋白(脱氧核糖核蛋白、核糖体),磷蛋白(酪蛋白、胃蛋白酶),金属蛋白(细胞色素氧化酶、铜蓝蛋白、黄嘌呤氧化酶),脂蛋白(卵黄球蛋白、血中β1-脂蛋白),色蛋白(血红蛋白、细胞色素C、黄素蛋白、视网膜中与视紫质结合的水溶性蛋白)及糖蛋白(γ球蛋白、半乳糖蛋白、甘露糖蛋白、氨基糖蛋白)。

小麦品质研究

专业文献综述 题目: 小麦优质蛋白亚基与小麦品质的研究进展 姓名: 赵娇娇 学院: 农学院 专业: 种子科学与工程 班级: 种子72班 学号: 1127219 指导教师: 王秀娥职称: 教授 2010年5 月31 日 南京农业大学教务处制

小麦优质蛋白亚基与小麦品质的研究进展 赵娇娇指导老师:王秀娥 (南京农业大学农学院种子科学与工程72班, 江苏南京 210095) 摘要:小麦籽粒蛋白质含量约为 8%-20%,主要包括谷蛋白和醇溶蛋白,是面团弹性和延伸性的物质基础。蛋白质组分与格组分的分布是影响小麦品质的重要因素,特别是高分子量麦谷蛋白(HMW-GS),因此提高蛋白质含量和改进 HMW-GS 组成一直是我国小麦加工品质改良的重要途径。目前推广的优质强筋小麦基本都携带优质亚基,然而真正适合烘焙优质面包的强筋小麦并不多,贮藏蛋白组分的含量及比例不合理是主要原因,改进贮藏蛋白亚基的质量组成是进一步提高我国小麦加工品质的有效途径。 关键词:谷蛋白、醇溶蛋白、品质、加工品质 Wheat proteins and their subunits and quality of wheat flour ZHAO Jiaojiao (Seed Science and Engineering 72, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095) Abstract: Key words: 前言(引言):×××××(标题用小四号黑体,其它文字用小四宋体)××××××××××××××××××……… 正文:×××××(标题用小四号黑体,其它文字用小四宋体)××××××××××××××××××××××……… 结论:××××××(小四宋体)××××××××××××××××××××××××××××××××××××……… 参考文献: [1] 作者姓名,作者姓名.参考文献题目. 期刊或杂志等名称,年份,(期数). [2] 刘凡丰. 美国研究型大学本科教育改革透视[J] . 高等教育研究,2003,(1) [3] 作者姓名,作者姓名. 参考文献题目. 期刊或杂志等名称,年份,(期数).

小麦醇溶蛋白和麦谷蛋白的PAGE实验

小麦醇溶蛋白的A-PAGE电泳实验 (一)试剂配制 (1)醇溶蛋白提取液:0.05g甲基绿、25ml2-氯乙醇,1mlβ-巯基乙醇用蒸馏水定容到100ml,4℃保存备用。 (2)电泳缓冲液原液:0.4g甘氨酸、4ml冰醋酸用蒸馏水定容到100ml,4℃保存备用。(用时稀释10倍) (3)凝胶缓冲液:0.5g甘氨酸、10ml冰醋酸、30g尿素、0.5g抗坏血酸、 0.0125g硫酸亚铁,用蒸馏水定容到500ml,4℃保存备用。 (4)凝胶溶液:12g丙烯酰胺、0.375g N, N-亚甲基双丙烯酰胺,用凝胶缓冲液溶解并定容到100ml,4℃保存备用。 (5)0.6%H202溶液:0.2ml 30%H202,加纯水至100ml。 (6)固定液:10%三氯乙酸溶液。 (7)染色液:1%考马司斯亮蓝R-250无水乙醇溶液。 (二)醇溶蛋白的提取 样品籽粒磨碎成粉后取20mg,放入1.5 ml的离心管中,加入醇溶蛋白提取液0.3mL,充分振荡30min后,静置过夜,次日8000r/min离心8min,吸取上清液于另一新离心管,4℃保存备用。 (三)凝胶的制备 每块胶板取60ml(北京六一仪器厂,DYCZ-24F电泳槽,1.5ml 21格板)的凝胶溶液,加30μl 0.6%H202溶液,迅速摇匀后,倒入玻板之间,插好样品梳,让其聚合约30min。胶凝后,先轻轻摇动样品梳,然后小心拔出。如果加样槽不正或断裂,可用长针头扶正。 (四)点样及电泳 利用微量进样器向加样槽内加入样品提取液和对照样品15μl,换样品时,要用蒸馏水冲洗注射器2~3次,以防污染。连接好电泳仪和电泳槽导线,注意正负极。选择电泳仪在稳压状态,先调恒压200V,15℃电泳15-30min,然后调恒压400V,15℃下电泳5~6h。电泳过程中,上电极槽中加入的溴酚蓝指示剂会在胶板形成一条明显的紫色指示线,当指示线移至胶板下端边沿时,蛋白质大概移至距边沿1cm左右处,电泳完成。 (五)染色及脱色 将胶板放入盛有300ml染色液的瓷盘中,加盖后置于摇床上慢速震荡染色。染色约6h,至电泳条带清晰为止。染色液可以重复使用。染色后的胶板用放入盛

小麦醇溶蛋白电泳分析及其在品种分类上的应用

河北农业技术师范学院学报 第13卷第2期,1999年6月 Journal of H ebeiA gro technical T eachers Co llege V o l.13 N o.2 June1999 小麦醇溶蛋白电泳分析及其在品种 分类上的应用 董 洪 平 (河北职业技术师范学院动农学系,昌黎,066600) 摘 要 采用聚丙烯酰胺凝胶电泳技术对200多个小麦品种的醇溶蛋白进行了分析。结果表 明:醇溶蛋白带谱是品种的重要遗传特征,它既能区分所有具有遗传差异的品种(品系),又能(品系)间的亲缘关系的远近。该方法分辨力高,重复性好,操作简便,成本低,可应用于品种鉴定、纯度分析和作为一种遗传选择标记应用于作物育种。本次研究以品种间醇溶 蛋白带谱的相似系数为指标,采用类平均法,对其中部分品种进行了聚类分析。聚类分析的结 果与品种间的亲缘关系相符,由此说明,醇溶蛋白凝胶电泳技术在小麦品种分类上有着重要 的意义。 关键词 小麦 醇溶蛋白 电泳 聚类分析 中图分类号 S512110213 Q9461125 小麦醇溶蛋白是种子胚乳中的主要贮藏蛋白质,在成熟的种子中约占蛋白质总量的40%,它不溶于水和中性盐溶液,仅溶于体积分数为0170~0180的乙醇。70年代的研究表明:这种蛋白质不受种植环境和种子处理等因素的影响(除非土壤严重缺硫),而与品种的遗传特性有关。小麦品种间醇溶蛋白组成差异很大,每个小麦品种都显示出各自独特的醇溶蛋白带谱组合,即品种的遗传“指纹”。国外许多学者已将醇溶蛋白凝胶电泳分析技术应用于遗传育种和种子生产上,如品种鉴定,种子纯度检验,代换系、易位系和体细胞无性变异的鉴定,品质预测等方面。近年来,国内学者在品种鉴定方面采用了这项技术,但多数侧重于方法上的研究。本试验利用醇溶蛋白凝胶电泳分析技术,根据小麦品种间醇溶蛋白带谱的相似程度,采用聚类分析的方法,对小麦品种进行分类。 1 材料和方法 1.1 种子 小麦品种由河北职业技术师范学院农学系小麦育种研究室提供,用于聚类分析的36个品种及编号见表1。 1.2 试剂 本试验所用的所有试剂均为国产分析纯或化学纯。用双重蒸馏水配制有关试剂。1.3 仪器 电泳仪和电泳槽为北京六一厂生产。 收稿日期:1999-04-01 修改稿收到日期:1999-05-10

多肽和蛋白质类药物的应用及发展前景

生物制药学课程论文题目多肽和蛋白质类药物的应用及发展前景 学院 专业班级 姓名学号 指导教师 2013 年04 月25 日 新疆农业大学教务处制

多肽和蛋白质类药物的应用及发展前景 摘要:生物技术被认为是21世纪最具主导地位的高新技术,生物技术药物基本都是多肽蛋白类药物,对肿瘤遗传性和非遗传性疾病有着特殊的疗效。随着科学与技术的不断发展以及人民对生活质量的要求在不断提高蛋白药物的制备必将发展成为21世纪我国最具吸引力的新技术产业之一。多肽类和蛋白质作为药物,具有生理活性强、免疫原性低、疗效高等诸多优点,随着生物技术的不断发展,其在人类疾病治疗中的地位也日趋重要,目前已成为国际药学界研究的热点之一。本文从多肽和蛋白类药物的认识,多肽和蛋白类药物开发的技术研究,多肽和蛋白类药物给药方法,以及对多肽和蛋白类药物的研究前景等方面,对多肽和蛋白类药物的开发有了综合性的认识。 关键词:蛋白类药物蛋白质多肽开发生物技术发展 随着生物技术和基因工程的发展,越来越多的多肽和蛋白类药物用于临床治疗。近年来,蛋白类药物使用虽呈现上升趋势,但因制备工艺复杂、投递效率低、生物利用度差等诸多原因而受到限制,其中给药途径最为关键。随着生物物理学、生物化学以及材料学在药学中的应用,诸如脂质体、微球、微囊以及纳米囊等技术的出现为解决上述问题提供了新的思路,其中微球以制备工艺简便、生物利用度高、靶向性强等优点而备受关注。迄今为止,蛋白类药物由于诸多原因未能得到广泛应用,主要原因之一是较低的生物利用度问题难以解决。而可生物降解微球在药物投递过程中可有效改善上述问题,它特有的载药方式能够明显减少蛋白类药物被机体复杂生理环境以及酶类物质的破坏,另外缓释及靶向特性对发挥其生物学效应也会起到十分重要的作用。目前,其优势主要在疫苗和少数几个蛋白药物上得到验证和肯定。想要在蛋白类药物的开发上有更新的进展,必须对它的开发有一个全面的了解。 一、多肽和蛋白类药物的基本认识 1多肽和蛋白类药物的概念 多肽和蛋白质类药物指用于预防、治疗和诊断的多肽和蛋白质类物质生物

小麦品质研究

小麦优质蛋白亚基与小麦品质的研究进展 赵娇娇 1127219 : 王秀娥职称: 教授

小麦优质蛋白亚基与小麦品质的研究进展 摘要:小麦籽粒蛋白质含量约为 8%-20%,主要包括谷蛋白和醇溶蛋白,是面团弹性和延伸性的物质基础。蛋白质组分与格组分的分布是影响小麦品质的重要因素,特别是高分子量麦谷蛋白(HMW-GS),因此提高蛋白质含量和改进 HMW-GS 组成一直是我国小麦加工品质改良的重要途径。目前推广的优质强筋小麦基本都携带优质亚基,然而真正适合烘焙优质面包的强筋小麦并不多,贮藏蛋白组分的含量及比例不合理是主要原因,改进贮藏蛋白亚基的质量组成是进一步提高我国小麦加工品质的有效途径。 关键词:谷蛋白、醇溶蛋白、品质、加工品质 1.优质小麦品质指标 小麦是一种世界性的重要的粮食作物。小麦品质主要包括营养品质、加工品质以及形态品质[1]。小麦加工品质通常用出粉率、灰分含量、动力消耗和面粉百度等磨粉品质衡量;还包括烘焙品质、蒸煮品质及制作品质在内的食品加工品质。小麦籽粒蛋白含量及其氨基酸组成的平衡程度决定小麦的营养价值,因此小麦各种品质都与它所含蛋白质的种类与含量有关。对于小麦的一次加工品质,存在于小麦胚乳中的麦醇溶蛋白和麦谷蛋白是小麦面筋的主要成分,约占面筋总量的90%,评价小麦品质不能忽略蛋白质的质与量。目前对品质性状的评价主要是对一下三点进行分析研究。 1.1高分子量谷蛋白亚基 (HMW-GS) HMW-GS是由小麦第1组染色体长臂上基因编码形成。近年来研究表明[2],面包的烘烤品质与蛋白质的不同组分,特别是与一些HMW-GS有关,在Glu-D1位点编码的5 +10、Glu2B1位点的7OE +8﹡及17 +18、Glu-A1位点1及2﹡,对面团强度、沉降值和面包体积贡献较大。国外种质资源特别是含 5 +10的HMW-GS,在品质育种中起了重要作用。近年来新发现的亚基Glu-B1a (7OE+8﹡) 可显著提高HWM-GS总量和面团强度,7OE+8﹡可作为优质亚基用于强筋小麦育种。 但是,HMW-GS只能解释30%~79%的品质差异。HMW-GS的表达量、LMW-GS亚基以及醇溶蛋白等组成的不同,也是造成沉淀值和面筋弹性差异的重要原因。栗站稳[2]对443份国内外材料的分析结果表明,与国外品种相比优质亚基的频率明显偏低,是我国小麦加工品质差的重要原因之一;另外,中国品种醇溶蛋白谱带数目较少,且含有非优质谱带,可能是烘烤品质较差的另一个原因。目前,对小麦高分子量谷蛋白亚基(HMW-GS)的深入研究通过基因工程技术改善小麦品质已成为选育优质品种的一种方法。 1.2沉淀值(沉降值) 沉淀值即小麦面粉蛋白参加沉淀反应的沉淀体积,沉淀值测定法包括Zaleny法和微量SDS沉淀法。大量研究表明,沉淀值与面包体积、面团流变性参数、比沉淀值及高分子量麦谷蛋白亚基品质评分等都存在显著或极显著正相关,沉淀值是反应蛋白质含量和品质的综合指标,国际上已将沉降值作为鉴定小麦品质的重要标准。沉降值遗传力较高,高于蛋白质含量遗传力,比其他方法能更深刻地反映出遗传差异。所以,沉降值具有高遗传力,并与面粉品质呈显著相关,可作为品质育种的早代选择指标。 1

醇溶蛋白的提取 用25

醇溶蛋白的提取用25%的2-氯乙醇进行三步法提取 取单粒小麦种子约0.03g,用电动粉碎机磨碎后,装入1.5mL离心管。先加入0.5mol/L的NaCl0.3mL振荡混匀后室温下提取2h以上,4000r/min离心15min,通过该步骤去除盐溶性蛋白(包括清蛋白和球蛋白)。弃去上清液,加0.5mL蒸馏水,振荡混匀后室温下提取0.5h,4000r/min离心15min,弃上清液(该步骤重复两次)。加入25%的2-氯乙醇0.3mL,振荡混匀后室温下提取0.5h,10000r/min离心10min,所得上清液即为醇溶蛋白(邵锦震等,2003)。上清液按 1:4 体积比加入上样缓冲液(含质量分数40%的蔗糖和0.15%甲基绿,pH=5.0)。混匀后上样或于4℃保存,上样量10μl。 制备胶板 A14ml凝胶Buffer,用冰醋酸调至pH 3.1 B 封底胶 2ml凝胶Buffer(pH3.1)加10μl H2O2(0.7%) C分离胶 12ml凝胶Buffer(pH3.1)加10μl H2O2 (0.7%) D封顶液 70%乙醇 E 浓缩胶 2ml凝胶Buffer加2ml ddH2O加10μl H2O2(0.7%) 加入浓缩胶后,选择合适的梳子,小心均匀用力将梳子插入(高居荣等,2003)。 2.2.2.3 恒压电泳 待胶凝固好后,小心拔出梳子,将胶板固定在电泳槽上,加入1×电极缓冲液。每孔加10μl蛋白提取液(醇溶蛋白上清液:上样缓冲液=1:4),为消除边缘效应,两头的梳子孔加上样缓冲液。以电压100V,电流200mA的条件跑完浓缩胶部分,约30min。变换电压,调为300V,电流200mA,跑完分离胶,约1h。上述两个条件都是以甲基绿指示剂作为指示条件。待指示剂跑完分离胶后,继续跑两个半小时。 2.2.2.4 拆板染色、扫描 电泳后,小心的把胶板拆下来,用考马斯亮兰R-250染色,放在摇床上以使染色均匀,至少两小时。醇溶蛋白的提取采用70%的乙醇进行三步法提取。 取单粒小麦种子约0.03g,用电动粉碎机磨碎后,装入1.5mL离心管。先加入0.5mol/L 的NaCl 0.5mL振荡后室温下提取2h以上,4000r/min离心15min,通过该步骤去除盐溶性蛋白。去除上清液,用0.5mL蒸馏水溶解沉淀,振荡后室温下提取0.5h以上,4000r/min离心15min,弃上清液,通过该步骤去除水溶性蛋白(该步骤重复两次)。用70%乙醇0.5mL 溶解沉淀,振荡后室温下提取0.5h以上,10000r/min离心10min,所得上清液即为可用于HPLC的醇溶蛋白。

蛋白质的分类

蛋白质的分类 摘要:蛋白质的种类繁多,结构复杂,所以分类也就各异。 一、按来源分类 蛋白质按来源可以分为动物蛋白和植物蛋白,两者所含的氨基酸是不同的。动物性蛋白质主要为提取自牛奶的乳清蛋白,其所含必需氨基酸种类齐全,比例合理,但是含有胆固醇。植物性蛋白质主要来源于大豆的大豆蛋白,最多的优点就是不含胆固醇。 二、按组成成分分类 按照化学组成,蛋白质通常可以分为简单蛋白质、结合蛋白质和衍生蛋白质。简单蛋白质经水解得氨基酸和氨基酸衍生物;结合蛋白质经水解得氨基酸、非蛋白的辅基和其他(结合蛋白质的非氨基酸部分称为辅基);蛋白质经变性作用和改性修饰得到衍生蛋白质。 简单蛋白质(simpleproteins),按溶解度不同可分为: ①清蛋白(albumins):溶于水及稀盐、稀酸或稀碱溶液,能被饱和硫酸铵所沉淀,加热可凝固。广泛存在于生物体内,如血清蛋白、乳清蛋白、蛋清蛋白等。 ②球蛋白(globulins):不溶于水而溶于稀盐、稀酸和稀碱溶液,能被半饱和硫酸铵所沉淀。普遍存在于生物体内,如血清球蛋白、肌球蛋白和植物种子球蛋白等。 ③谷蛋白(glutelins):不溶于水、乙醇及中性盐溶液,但易溶于稀酸或稀碱。如米谷蛋白和麦谷蛋白等。 ④醇溶谷蛋白(prolamines):不溶于水及无水乙醇,但溶于70%~80%乙醇、稀酸和稀碱。分子中脯氨酸和酰胺较多,非极性侧链远较极性侧链多。这类蛋白质主要存在于谷物种子中,如玉米醇溶蛋白、麦醇溶蛋白等。 ⑤组蛋白(histones):溶于水及稀酸,但为稀氨水所沉淀。分子中组氨酸、赖氨酸较多,分子呈碱性,如小牛胸腺组蛋白等。 ⑥精蛋白(protamines):溶于水及稀酸,不溶于氨水。分子中碱性氨基酸(精氨酸和赖氨酸)特别多,因此呈碱性,如鲑精蛋白等。 ⑦硬蛋白(scleroprotein):不溶于水、盐、稀酸或稀碱。这类蛋白质是动物体内作为结缔组织及保护功能的蛋白质,如角蛋白、胶原、网硬蛋白和弹性蛋白等。 根据辅基的不同,结合蛋白质(conjugated proteins)可分为: ①核蛋白(nucleoproteins):辅基是核酸,如脱氧核糖核蛋白、核糖体、烟草花叶病毒等。 ②脂蛋白(1ipoproteins):与脂质结合的蛋白质。脂质成分有磷脂、固醇和中性脂等,如血液中的β1—脂蛋白、卵黄球蛋白等。 ③糖蛋白和黏蛋白(glycoproteins):辅基成分为半乳糖、甘露糖、己糖胺、己糖醛酸、唾液酸、硫酸或磷酸等中的一种或多种。糖蛋白可溶于碱性溶液中,如卵清蛋白、γ—球蛋白、血清类黏蛋白等。

水溶性的抗菌小麦醇溶蛋白纳米粒子构建及性能研究

水溶性的抗菌小麦醇溶蛋白纳米粒子构建及 性能研究 王丽娟1,胡二坤2,尹寿伟1,杨晓泉1 (1.华南理工大学轻工与食品学院食物蛋白工程研究中心,广东广州 510640) (2.河南职业技术学院烹饪食品系,河南郑州 450046) 摘要:本研究围绕小麦醇溶蛋白(gliadin )自组装展开,以NaCas 作为稳定剂利用水相反溶剂过程中gliadin 与thymol 共组装构建水溶性的抗菌gliadin/NaCas 胶体粒子。利用纳米粒度仪、扫描电镜等技术手段表征纳米粒子的形貌、尺度,并研究了thymol 的释放动力学及纳米粒子的持续抗菌性能。Gliadin/NaCas 胶体粒子是纳米尺度的球形颗粒,尺度均一(PDI=0.31)。此类纳米粒子具有良好的水溶性及冻干复溶性,荷载疏水类抗菌剂(thymol )不影响胶体粒子的复溶性能。Gliadin/NaCas 胶体粒子具有很强的荷载和控释能力,thymol 与gliadin 比例介于1:10~3:4时胶体粒子的尺度仅略有增加(从约270 nm 增加至约300 nm ),thymol 的包封率高达96%;经过7 d 释放,仅释放约30%的thymol 。Gliadin/NaCas 纳米粒子在模拟食品体系中具有持续抗菌能力。本研究为功能性抗菌食品配料的研制提供全新的技术解决手段。 关键词:小麦醇溶蛋白/酪蛋白酸钠纳米粒子;百里香酚;抗菌纳米粒子;水溶性;控释;形貌学 文章篇号:1673-9078(2014)5-1-5 Fabrication and Characterization of Water-soluble Antimicrobial Gliadin Nanoparticles W ANG Li-juan 1, HU Er-kun 2, YIN Shou-wei 1, YANG Xiao-quan 1 (1.Research and Development Center of Food Proteins, Department of Food Science and Technology, South China University of Technology, Guangzhou 510640, China) (2.College of Cooking and Food, Henan Polytechnic, Zhengzhou 450046, China) Abstract: The objective of this work is to fabricate water-soluble and antimicrobial gliadin nanoparticles stabilized by sodium caseinate (NaCas) via the synchronous-assembly process of thymol and gliadin during the anti-solvent approach. Morphological attributes, particle size, antimicrobial properties as well as release profiles of thymol-loaded nanoparticles were investigated. The gliadin/NaCas nanoparticles were spherical in shape and uniform with PDI value of 0.31, possessing the water-solubility and re-dispersibility after freeze-drying. Thymol loading resulted in a slight increase in particle size from ~ 270 nm to ~300 nm at the thymol-to-gliadin ratios of 1:10~3:4, but did not affect the re-dispersibility of the nanoparticles. Morover, these nanoparticles had strong encapsulation capacity, and the encapsulation efficiency (EE) of thymol was as high as 96%. The nanoparticles sustained the release of thymol, and the accumulative release after 7 day was about 30%. These nanoparticles were also effective in delaying the growth of Staphylococcus aureus in M-H broth at 37 ℃. This work opens a promising pathway for the manufacture of water-soluble vehicle for antimicrobials to design novel antimicrobial food formulation. Key words: gliadin/NaCas nanoparticles; thymol; water-solubility; morphology; sustained release; antimcribial nanoparticles 食品加工、运输和储藏环节中致病菌污染是造成食源性疾病的主要因素。在食品配方中添加抗菌剂等 1 收稿日期:2014-01-16 基金项目:广东省自然基金项目资助项目(S2013010012097);华南理工大学中央高校基本科研业务费滚动项目(2014ZG0021) 作者简介:王丽娟(1963-),女,博士,副教授,主要从事粮食、油脂及植物蛋白工程研究 通讯作者:尹寿伟(1980-),男,博士,主要从事新型食品包装材料研究 传统方法具有局限性,如植物精油类抗菌剂影响食品 的风味及蛋白(肽)类抗菌剂与食品组分反应而快速失效[1]。建纳(微)米尺度的抗菌剂输送载体为解决食品货架期内中有害微生物污染引起食品安全问题提供新技术途径。美国田纳西大学的钟启新教授的研究小组利用超临界反溶剂、喷雾干燥造粒技术合成了微米尺度的、以zein 为壁材的微胶囊作为溶菌酶、nisin 和thymol 等的输送载体[2~3]。但是所形成的微米尺度

相关文档
最新文档