马尔可夫调制的随机时滞IS-LM模型的 随机稳定性仿真

马尔可夫调制的随机时滞IS-LM模型的 随机稳定性仿真
马尔可夫调制的随机时滞IS-LM模型的 随机稳定性仿真

隐马尔可夫模型及其应用

小论文写作: 隐马尔可夫模型及其应用 学院:数学与统计学院专业:信息与计算科学学生:卢富毓学号:20101910072 内容摘要:隐马尔可夫模型是序列数据处理和统计学习的重要概率模型,已经成功被应用到多工程任务中。本小论文首先从隐马尔可夫模型基本理论和模型的表达式出发,进一步阐述了隐马尔可夫模型的应用。 HMM 隐马尔可夫模型(Hidden Markov Model,HMM)作为一种统计分析模型,创立于20世纪70年代。80 年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。 隐马尔可夫模型状态变迁图(例子如下) x—隐含状态 y—可观察的输出 a—转换概率(transition probabilities) b—输出概率(output probabilities) 隐马尔可夫模型它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。 在正常的马尔可夫模型中,状态对于观察者来说是直接可见的。这样状态的转换概率便是全部的参数。而在隐马尔可夫模型中,状态并不是直接可见的,但受状态影响的某些变量则是可见的。每一个状态在可能输出的符号上都有一概率分布。因此输出符号的序列能够透露出状态序列的一些信息。 HMM的基本理论 隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。所以,隐马尔可夫模型是一个双重随机过程----具有一定状态数的隐马尔可夫链和显示随机函数集。自20世纪80年代以来,HMM被应用于语音识别,取得重大成功。到了

5最标准全面的马尔可夫模型例题(以中天会计事务所为例)

中天会计事务所马尔可夫模型例题一、问题分析 中天会计事务所由于公司业务日益繁忙,常造成公司事务工作应接不暇,解决该公司出现的这种问题的有效办法是要实施人力资源的供给预测技术。根据对该公司材料的深入分析,可采用马尔可夫模型这一供给预测方法对该事务所的人力资源状况进行预测。 马尔可夫分析法是一种统计方法,其方法的基本思想是:找出过去人力资源变动的规律,用以来推测未来人力变动的趋势。马尔可夫分析法适用于外在环境变化不大的情况下,如果外在环境变化较大的时候这种方法则难以用过去的经验情况预测未来。马尔可夫分析法的分析过程通常是分几个时期来收集数据,然后在得出平均值,利用这些数据代表每一种职位的人员变动频率,就可以推测出人员的变动情况。 二、项目策划 (一)第一步是编制人员变动概率矩阵表。 根据公司提供的内部资料:公司的各职位人员如下表1所示。 表1:各职位人员表 职位代号人数 合伙人P 40 经理M 80 高级会计师S 120 会计员 A 160 制作一个人员变动概率矩阵表,表中的每一个元素表示从一个时期到另一个时期(如从某一年到下一年)在两个工作之间调动的雇员数量的历年平均百分比(以小数表示)。(注:一般以3—5年为周期来估计年平均百分比。周期越长,根据过去人员变动所推测的未来人员变动就越准确。) 表2:历年平均百分比人员变动概率矩阵表 职位合伙人 P 经理M 高级会计师S 会计员A 职位年度离职升为 合伙 人 离职升为经 理 降为 会计 员 离职升为高级 会计师 离职 2005 0.20 0.08 0.13 0.07 0.05 0.11 0.12 0.11 2006 0.23 0.07 0.27 0.05 0.08 0.12 0.15 0.29 2007 0.17 0.13 0.20 0.08 0.03 0.10 0.17 0.20 2008 0.21 0.12 0.21 0.03 0.07 0.09 0.13 0.19 2009 0.19 0.10 0.19 0.02 0.02 0.08 0.18 0.21 平均0.20 0.10 0.20 0.05 0.05 0.10 0.15 0.20

基于马尔可夫模型的语言发展趋势预测

基于马尔可夫模型的语言发展趋势预测 发表时间:2019-03-14T15:24:06.727Z 来源:《知识-力量》2019年6月中作者:张浩1 姜晓丽1 朱英豪2 [导读] 为了预测世界语言发展趋势,将语言使用者分为两个部分来分别预测其数量。 (1.华北理工大学建筑工程学院,河北唐山 063210;2.华北理工大学以升教育创新基地,河北唐山 063210)摘要:为了预测世界语言发展趋势,将语言使用者分为两个部分来分别预测其数量。对于母语使用者,根据语言区域的自然增长率和净移民率计算出随时间变化的母语使用者的人数。对于第二或第三语言使用者,将影响使用者人数的三种因子归一化处理,利用层次分析法赋予相应的权重后得到各种语言的发展强度数值。建立马尔可夫预测模型模拟若干年后的第二或第三语言使用者数量,并模拟50年内排名前十四的语言的母语使用者数量的变化趋势。关键词:层次分析法;马尔可夫模型;聚类分析;语言使用者 人类不仅仅只掌握母语这一种语言,越来越多的人开始说第二语言甚至第三语言。在考虑某种语言的总使用人数时,需要在母语使用者人数的基础上加上第二或者第三语言使用者人数。根据可能影响语言的使用的因素,模拟各种语言的使用者随时间变化的分布。建立模型预测在未来50年里,英语的母语使用者的数量和语言的总使用者的数量的变化,并考虑它们是否会被另一种语言替代。 1.模型假设 ●忽略小概率灭绝事件,比如重大自然灾害的影响导致某一语言的灭绝等。 ●在几十年的时间里,各个语言区域都是稳定的发展,不会出现特别大的起伏的情况。 ●假设每个国家的移民一旦定居,他们的子孙都以此国家的官方语言为母语。 2.数量预测模型对于语言使用者数量的预测,我们需要将其分为母语使用者和其它的语言使用者(包括第二和第三语言使用者)两个方向来调查。 2.1母语使用者针对国家而言,母语使用者人数与该国家的居民人数直接相关。根据该国家的移民率,我们可以得到母语使用者人数随时间的变化为: 2.2 总使用者对于一种语言的总使用者人数,我们需要全面考虑它的变化,不仅仅考虑语言区域居民人数的增加或者减少,还需要考虑其它的语言使用者的变化。上文我们已经得知母语使用者的数量随时间的变化,下面我们将解决其它的语言使用者的预测问题。 2.2.1三种影响因子根据上文可得,我们将影响语言发展的因素分为区域的综合实力、商业往来和旅游业的发展状况三个部分。针对这三个部分,我们选取三个指标作为影响因子,分别是区域人均GDP、区域贸易对GDP的贡献度、区域国际游客数量。[1~2] 为进行统一,我们将十种语言的三种影响因子均除以该影响因子中的最大值。将得到的新结果运用层次分析法构造判断矩阵,得出三种影响因子的权重向量分别为0.545、0.272、0.183。我们可以得到关于语言发展强度的方程: 2.2.2马尔科夫模型以其亲代的第二语言作为他的初始状态,余下的九种语言是另外的九种状态,建立马尔科夫预测模型[3]。然后基于语言的发展强度,根据两种语言之间的强度比值来确定一个人的语言从一种状态转移到另一种状态的概率值。定义世界十大母语依次用数字0-9表示其语言状态,由此计算状态转移矩阵。 2.3 模型的应用 2. 3.1英语的语言使用者我们搜集到英语语言区域的平均自然增长率和平均净移民率[4]分别为1.04和0.0039,根据公式1我们可以求解得出英语的母语使用者在五十年以后的数量为:(4)

马尔可夫模型介绍(从零开始)

马尔可夫模型介绍(从零开始) (一):定义及简介: 介绍(introduction) 通常我们总是对寻找某一段时间上的模式感兴趣,这些模式可能出现在很多领域:一个人在使用电脑的时候使用的命令的序列模式;一句话中的单词的序列;口语中的音素序列。总之能产生一系列事件的地方都能产生有用的模式。 考虑一个最简单的情况:有人(柯南?)试图从一块海藻来推断天气的情况。一些民间的传说认为“soggy”的海藻意味着潮湿(wet)的天气,“dry”的海藻预示着晴朗(sun)。如果海藻处于中间状态“damp”,那就无法确定了。但是,天气的情况不可能严格的按照海藻的状态来变化,所以我们可以说在一定程度上可能是雨天或是晴天。另一个有价值的信息是之前某些天的天气情况,结合昨天的天气和可以观察到的海藻的状态,我们就可以为今天的天气做一个较好的预报。 这是在我们这个系列的介绍中一个非常典型的系统。 ?首先我们介绍一个可以随时间产生概率性模型的系统,例如天气在晴天或者雨天之间变动。?接下来我们试图去预言我们所不能观察到的"隐形"的系统状态,在上面的例子中,能被观察到的序列就是海藻的状态吗,隐形的系统就是天气情况 ?然后我们看一下关于我们这个模型的一些问题,在上面那个例子中,也许我们想知道 1. 如果我们观察一个星期每一天的海藻的状态,我们是否能知相应的其天气情况 2. 如果给出一个海藻状态的序列,我们是否能判断是冬天还是夏天?我们假设,如果海藻干(d ry)了一段时间,那就意味着是夏天如果海藻潮湿(soggy)了一段时间,那可能就是冬天。 (二):生成模式(Generating Patterns) ?确定的模式(Deterministic Patterns) 考虑交通灯的例子,一个序列可能是红-红/橙-绿-橙-红。这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替

基于神经网络隐马尔可夫模型的混合

基于神经网络/隐马尔可夫模型的混合 语音识别方法的研究现状 摘要:作为大词汇量连续语音识别系统的主流技术,隐马尔可夫模型(HMM )方法已经取得了相当的成功。但是,由于HMM 在理论上的一些缺陷,使得目前的连续语音识别系统只能在非常有限的范围内得到应用。也就是说,从根本意义上说,语音识别是一个尚未解决的问题,仍旧是一个科学上的问题,离工程化还有相当的距离。所以,不断地探索新模型与新方法对彻底解决这一问题至关重要。另一方面,近几年的研究表明,神经网络(ANN )具有极强的对复杂模式的分类能力。在连续语音识别的研究中,理应考虑结合两者之长来提高识别系统的性能,尤其是声学层面上的识别率。本文旨在介绍国外这方面的前沿成果,并结合我们自己在这方面的工作,对其发展方向提出一些看法。 关键词:神经网络,隐马尔可夫模型,混合方法。 一. 概况 近年来,自动语音识别的研究已经取得了非常大的进步,许多科研单位和大公司的语音识别系统在实验室中都表现出了较高的识别率。但是,这些识别系统在实际场合的应用效果是不能令人满意的,或者说,目前的识别系统只能在非常有限的范围内得到应用。 为了根本解决语音识别问题,我们还必须不断地探索新模型与新方法。首先,我们回顾一下当前语音识别中最为成功的方法。 语音的产生可以看作是由信息源通过一个有噪信道,把语言序列W 转换为一个信号序列S 的过程[1],如图1所示。因此,语音识别就是一个最大后验概率(MAP )的解码问题。 有 噪 信 道 通 道 解 码 图1 根据贝叶斯公式,该解码问题被表示为: arg max (/)arg max (/)()() W W P W A P A W P W P A ∈∈=ΓΓ 其中A 是声学特征向量,P(A/W)是声学模型,P(W)是语言模型,可以认为P(A)与P(W)无关 [2][3],则(1)式等同于: argmax (/)argmax (/)() W W P W A P A W P W ∈∈=ΓΓ

马尔科夫转换模型例子

The R User Conference 2009 July 8-10, Agrocampus-Ouest, Rennes, France
Estimating Markovian Switching Regression Models in An application to model energy price in Spain
S. Fontdecaba, M. P. Mu?oz , J. A. Sànchez*
Department of Statistics and Operations Research Universitat Politècnica de Catalunya - UPC
* josep.a.sanchez@https://www.360docs.net/doc/677832943.html,

Markovian Switching Models. An application to model energy price in Spain
1 Introduction & Objectives 2 Methodology 3 Data 4 Results 5 Conclusions
Outline
1. Introduction & Objectives 2. Methodology 3. Application to energy price 4. Results 5. Conclusions
2

Markovian Switching Models. An application to model energy price in Spain
1 Introduction & Objectives 2 Methodology 3 Data 4 Results 5 Conclusions
1. Introduction
The model we consider is of the MARKOVIAN SWITCHING (MS) type, originally defined by Hamilton (1989).
?MSVAR library - Krolszing (1998) (not available free acces: OX) ?MSVARlib - Bellone (2005) (Less user friendly) ?MSRegression - Perlin (2007) (Libraries in Matlab)
3

HMM隐形马尔可夫模型实验报告(可打印修改)

《模式识别与机器学习》 课程实验报告

1实验内容 1. Design an HMM model, and generate sequential data (training and test) with the model. 2. Learning model parameters on the training data. 3. Test the model learned on the test data:Estimate the most probable values for the latent variables. 2实验环境 Window7, matlab 7.11.0 3实验原理 HMM即隐性马尔可夫模型,此模型可认为是状态空间模型的一个特殊情况。当令状态空间模型中的潜变量为离散的时,我们即得到了隐性马尔可夫模型。 3.1模型状态 在一个典型的HMM模型中,通常有两个状态集合来描述该模型状态: 1. 隐含状态,通常用S表示。 这些状态之间满足马尔可夫性质,是马尔可夫模型中实际所隐含的状态。这些状态通常无法通过直接观测而得到。(例如S1、S2、S3等等)。 2. 可观测状态,通常用O表示。 在模型中与隐含状态相关联,可通过直接观测而得到。(例如O1、O2、O3 等等)。可观测状态的数目不一定要和隐含状态的数目一致。

3.2模型参数 一个典型的HMM模型包含以下参数: 1. 初始状态概率矩阵π。 表示隐含状态在初始时刻t=1时刻的概率矩阵,(例如t=1时,P(S1) =p1、P(S2)=P2、P(S3)=p3,则初始状态概率矩阵π=[ p1 p2 p3 ]). 2. 隐含状态转移概率矩阵A。 描述了HMM模型中各个状态之间的转移概率,N代表隐含状态数目。其中Aij = P( Sj | Si ),1≤i,,j≤N。表示在 t 时刻、状态为 Si 的条件下,在t+1 时刻状态是 Sj 的概率。 3. 观测状态发射概率矩阵B。 表示在 t 时刻、隐含状态是 Sj 条件下,观察状态为 Oi 的概率。令N代表隐含状态数目,M代表可观测状态数目,则:Bij = P( Oi |Sj ), 1≤i≤M,1≤j≤N. 一般来说,可以用λ=(A,B,π)三元组来表示一个隐性马尔可夫模型。给定了这三个参数,我们便得到了一个HMM模型。在实验过程中,我们在matlab环境下指定各组参数,得到一个HMM后,便可以利用这个模型生成一定量的数据作为训练集与测试集。 3.3相关算法 根据实验内容,可以得知这个实验中主要涉及到利用HMM解决的三类问题: 1.给定观察得到的序列O,如何调整参数λ,使P(O|λ)最大。即通过给定 O,不断估算一个适合的参数λ=(A,B,π),使发生这个O的概率P(O|λ)最大。这个问题的一种有效解决算法是Baum-Welch算法,即EM算法的一种特殊形式。且通过对BW算法的分析可以看出,该算法以前后向算法为基础。前后向算法用于计算在某一时刻t,潜变量处于某一状态的概率。EM 算法的具体过程在此不再赘述。 2.给定观测序列O=O1O2O3…Ot和模型参数λ=(A,B,π),怎样有效计算某一

马尔科夫转移矩阵模型

马尔柯夫转移矩阵法 马尔柯夫转移矩阵法-马尔柯夫过程和风险估计 由于风险过程常常伴随一定的随机过程,而在随机过程理论中的一种重要模型就是马尔柯夫过程模型。 马尔柯夫转移矩阵法-马尔柯夫预测法 马尔柯夫预测以俄国数学家A.A.Markov名字命名,是利用状态之间转移概率矩阵预测事件发生的状态及其发展变化趋势,也是一种随时间序列分析法。它基于马尔柯夫链,根据事件的目前状况预测其将来各个时刻(或时期)的变动状况。 1.马尔柯夫链。状态是指某一事件在某个时刻(或时期)出现的某种结果。事件的发展,从一种状态转变为另一种状态,称为状态转移。在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移过程就称为马尔柯夫过程。马尔柯夫链是参数t只取离散值的马尔柯夫过程。 2.状态转移概率矩阵。在事件发展变化的过程中,从某一种状态出发,下以时刻转移到其他状态的可能性,称为状态转移概率,只用统计特性描述随机过程的状态转移概率。 若事物有n中状态,则从一种状态开始相应就有n个状态转移概率,即。 将事物n个状态的转移概率一次排列,可以得到一个n行n列的矩阵: 3.马尔柯夫预测模型。一次转移概率的预测方程为: 式中:K——第K个时刻; S(K)——第K个时刻的状态预测; S(0)——对象的初始状态; P——一步转移概率矩阵。 应用马尔柯夫预测法的基本要求是状态转移概率矩阵必须具有一定的稳定性

马尔柯夫转移矩阵法-4.1马尔柯夫过程 在一个随机过程中,对于每一t0时刻,系统的下一时刻状态概率仅与t0时刻的状态有关,而与系统是怎样和何时进入这种状态以及t0时刻以前的状态无关(即所谓无后效性),这种随机过程称为马尔柯夫随机过程。 对随机过程X(t)取确定的n+1个时刻t0<t1<t2<…<tn,对应实数x0,x1,x2,…,xn,如果条件分布函数满足: 则随机过程X(t)即为马尔柯夫过程的数学描述。 依过程参数集和状态集的离散与连续性,马尔柯夫过程可分为马尔柯夫链-时间和状态均离散的过程、连续马尔柯夫链-时间连续和状态离散、连续马尔柯夫过程-时间连续和状态连续。 马尔柯夫转移矩阵法-4.2马尔柯夫过程与风险估计 从定义中可知,确定某一时刻的风险状态后,该风险转移的下一个状态所服从的概率规律,可以用马尔柯夫过程的数学描述估计出来。马尔柯夫风险过程的重要假定是在一定时间和客观条件下,风险状态的转移概率固定不变。转移概率是在给定时刻风险状态相关之下的下一时刻条件概率;转移概率构成的矩阵称为转移矩阵,矩阵中各元素具有非负性,而且行的和值为1。 例如某雷达每次开机状态记录如表4所示。由于雷达下一次开机状态只与现在的开机状态有关,而与以前的状态无关,所以它就形成了一个典型的马尔柯夫链。 取P11—开机连续正常状态的概率,P12—由正常状态转不正常的概率,P21—由不正常状态转正常的概率,P22—开机连续不正常状态的概率。由表4可知,在23次开机状态统计中,11次开机正常,3次连续正常,7次由正常转不正常;12次开机不正常,4次连续不正常,8次由不正常转正常;由于最后一次统计状态是开机正常状态,没有后继状态,所以P11=3/(11-1)=0.3,P12=7/(11-1)=0.7,P21=8/12=0.67,P22=4/12=0.33因为最后一次统计是正常状态,所以不正常状态的总数不减一。 表4某雷达每次开机状态记录表 类别开机次序 1234567891011121314151617181920212223

如何用简单易懂的例子解释隐马尔可夫模型

如何用简单易懂的例子解释隐马尔可夫模型?- 知乎 隐马尔可夫(HMM)好讲,简单易懂不好讲。我想说个更通俗易懂的例子。我希望我的读者是对这个问题感兴趣的入门者,所以我会多阐述数学思想,少写公式。霍金曾经说过,你多写一个公式,就会少一半的读者。 还是用最经典的例子,掷骰子。假设我手里有三个不同的骰子。第一个骰子是我们平常见的骰子(称这个骰子为D6),6个面,每个面(1,2,3,4,5,6)出现的概率是1/6。第二个骰子是个四面体(称这个骰子为D4),每个面(1,2,3,4)出现的概率是1/4。第三个骰子有八个面(称这个骰子为D8),每个面(1,2,3,4,5,6,7,8)出现的概率是1/8。 假设我们开始掷骰子,我们先从三个骰子里挑一个,挑到每一个骰子的概率都是1/3。然后我们掷骰子,得到一个数字,1,2,3,4,5,6,7,8中的一个。不停的重复上述过程,我们会得到一串数字,每个数字都是1,2,3,4,5,6,7,8中的一个。例如我们可能得到这么一串数字(掷骰子10次):1 6 3 5 2 7 3 5 2 4 这串数字叫做可见状态链。但是在隐马尔可夫模型中,我们不仅仅有这么一串可见状态链,还有一串隐含状态链。在这个例子里,这串隐含状态链就是你用的骰子的序列。比如,隐含状态链有可能是:D6 D8 D8 D6 D4 D8 D6 D6 D4 D8 一般来说,HMM中说到的马尔可夫链其实是指隐含状态链,因为隐含状态(骰子)之间存在转

换概率(transition probability)。在我们这个例子里,D6的下一个状态是D4,D6,D8的概率都是1/3。D4,D8的下一个状态是D4,D6,D8的转换概率也都一样是1/3。这样设定是为了最开始容易说清楚,但是我们其实是可以随意设定转换概率的。比如,我们可以这样定义,D6后面不能接D4,D6后面是D6的概率是0.9,是D8的概率是0.1。这样就是一个新的HMM。 同样的,尽管可见状态之间没有转换概率,但是隐含状态和可见状态之间有一个概率叫做输出概率(emission probability)。就我们的例子来说,六面骰(D6)产生1的输出概率是1/6。产生2,3,4,5,6的概率也都是1/6。我们同样可以对输出概率进行其他定义。比如,我有一个被赌场动过手脚的六面骰子,掷出来是1的概率更大,是1/2,掷出来是2,3,4,5,6的概率是1/10。 其实对于HMM来说,如果提前知道所有隐含状态之间的转换概率和所有隐含状态到所有可见状态之间的输出概率,做模拟是相当容易的。但是应用HMM模型时候呢,往往是缺失了一部分信息的,有时候你知道骰子有几种,每种骰子是什么,但是不知道掷出来的骰子序列;有时候你只是看到了很多次掷骰子的结果,剩下的什么都不知道。如果应用算法去估计这些缺失的信息,就成了一个很重要的问题。这些算法我会在下面详细讲。 ×××××××××××××××××××××××××××××××××××××××××××××××××××××××如果你只想看一个简单易懂的例子,就不需要往下看了。 ×××××××××××××××××××××××××××××××××××××××××××××××××××××××说两句废话,答主认为呢,要了解一个算法,要做到以下两点:会其意,知其形。答主回答的,其实主要是第一点。但是这一点呢,恰恰是最重要,而且很多书上不会讲的。正如你在追一个姑娘,姑娘对你说“你什么都没做错!”你要是只看姑娘的表达形式呢,认为自己什么都没做错,

隐马尔可夫模型

隐马尔可夫模型 维基百科,自由的百科全书 跳转到:导航, 搜索 隐马尔可夫模型状态变迁图(例子) x—隐含状态 y—可观察的输出 a—转换概率(transition probabilities) b—输出概率(output probabilities) 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。 在正常的马尔可夫模型中,状态对于观察者来说是直接可见的。这样状态的转换概率便是全部的参数。而在隐马尔可夫模型中,状态并不

是直接可见的,但受状态影响的某些变量则是可见的。每一个状态在可能输出的符号上都有一概率分布。因此输出符号的序列能够透露出状态序列的一些信息。 目录 [隐藏] ? 1 马尔可夫模型的演化 ? 2 使用隐马尔可夫模型 o 2.1 具体实例 o 2.2 隐马尔可夫模型的应用 ? 3 历史 ? 4 参见 ? 5 注解 ? 6 参考书目 ?7 外部连接 [编辑]马尔可夫模型的演化 上边的图示强调了HMM的状态变迁。有时,明确的表示出模型的演化也是有用的,我们用x(t1)与x(t2)来表达不同时刻t1和t2的状态。 在这个图中,每一个时间块(x(t), y(t))都可以向前或向后延伸。通常,时间的起点被设置为t=0 或t=1.

另外,最近的一些方法使用Junction tree算法来解决这三个问题。[编辑]具体实例 假设你有一个住得很远的朋友,他每天跟你打电话告诉你他那天作了什么.你的朋友仅仅对三种活动感兴趣:公园散步,购物以及清理房间.他选择做什么事情只凭天气.你对于他所住的地方的天气情况并不了解,但是你知道总的趋势.在他告诉你每天所做的事情基础上,你想要猜测他所在地的天气情况. 你认为天气的运行就像一个马尔可夫链.其有两个状态 "雨"和"晴",但是你无法直接观察它们,也就是说,它们对于你是隐藏的.每天,你的朋友有一定的概率进行下列活动:"散步", "购物", 或 "清理".

马尔可夫及隐马尔可夫模型在数据挖掘中的应用

马尔可夫及隐马尔可夫模型在数据挖掘中的应用 侯传宇1,2 (1.合肥工业大学计算机与信息学院,安徽合肥230009;2.宿州学院数学系,安徽宿州234000) 摘要:随着用户对于数据挖掘的精确度与准确度要求的日益提高,马尔可夫模型与隐马尔可夫模型被广泛用于数据挖掘领域。本文阐述了马尔可夫模型和隐马尔可夫模型数据挖掘领域的应用,以及隐马尔可夫模型可解决的问题,以供其他研究者借鉴。 关键词:马尔可夫模型;隐马尔可夫模型;数据挖掘 中图分类号:TP311文献标识码:A文章编号:1009-3044(2008)07-11186-03 TheApplicationofMarkovModelsandHiddenMarkovModelsinDataMining HOUChuan-yu1,2 (1.SchoolofComputerandInformation,HefeiUniversityofTechnology,Hefei230009,China;2.DepartmentofMathematics,SuzhouCol-lege,Suzhou234000,China) Abstract:Withthecustomer'srequirementraisingdaybydayinaccuracyandaccurate,MarkovModelsandHiddenMarkovModelswereextensivelyusedinDataMining.ThispaperintroducedtheapplicationofMarkovModelsandHiddenMarkovModelsinDataMining,andsomeproblemsthatcouldbesolvedbyHiddenMarkovModels,whichcouldprovidehelptoresearchersinthisdomain. Keywords:MarkovModels;HiddenMarkovModels;DataMining 1引言 当前Internet与数据库的高速发展,信息以海量增长,对于越来越多的数据,如何寻找有用的信息是人们所关心的问题,也是数据挖掘的任务。数据挖掘(DataMining,DM),又称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD),是从90年代初兴起的一门数据库技术。数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘是多学科交叉的产物,结合了数据库、人工智能、统计学、机器学习、可视化等技术,通过发现有用的新规律和新概念,提高了数据拥有者对大量原始数据的深层次理解、认识和应用,解决了“数据丰富,知识贫乏”的问题,具有广泛的应用前景。 数据挖掘能从大量数据中抽取出隐藏在数据之中的有用信息,从而为决策者进行决策提供重要的依据,大大提高决策的科学性和减小决策的盲目性也可以帮助商业管理者更好地理解用户的行为,制订相应的用户服务政策,从而增加商业机会。例如电信公司通过发现用户通话的规律,制定更合理的优惠政策。随着用户对于挖掘数据的精度与准确度要求的提高,大量数据挖掘算法涌现。其中,数学模型—马尔可夫模型与隐马尔可夫模型应用在许多挖掘领域,如:语音识别、自动文本抽取、数据流分类等,取得了较好的挖掘效果。 2马尔可夫模型及隐马尔可夫模型简介 马尔可夫模型(MarkovModels,MM)可来描述为:如果一个系统有N个状态,S1,S2,……,Sn,随着时间的推移,该系统从某一状态转移到另一状态,系统在时间t的状态记为qt。系统在时间t处于状态sj(1≤j≤N)的概率取决于其在时间1,2,……,t-1的状态,该概率为:p(qt=sj|qt-1=si,qt-2=sk,……)。 若系统在时间t的状态只与其在时间t-1的状态相关,则该系统构成一个离散的一阶马尔柯夫链(时间与状态都是离散的)又称为齐次马氏链,即: p(qt=sj|qt-1=si,qt-2=sk,……)=p(qt=sj|qt-1=si)(1)若(1)式是独立于时间t的随机过程,即状态于时间无关,则称为马尔可夫过程。 用Pij(t)表示,在任一时刻s,qs从状态i经过时间t转移到状态j的概率。Pij(t)表示其转移概率。则可通过其转移矩阵来求其n步转移矩阵,令p=p(1)=Pij(t),则其n步转移矩阵为p(n)=pn。若初始状态的概率分布P"(0),则可以求得其n步的概率分布:P"(n)=P"(0)p(n)。 收稿日期:2008-01-15 作者简介:侯传宇(1980-),男,安徽利辛人,助教,合肥工业大学在职研究生,研究方向:人工智能与数据挖掘。

连续隐马尔科夫链模型简介

4.1 连续隐马尔科夫链模型(CHMM) 在交通规划和决策的角度估计特定出行者的确切的出行目的没有必要,推测出行者在一定条件下会有某种目的的概率就能够满足要求。因此本文提出一种基于无监督机器学习的连续隐马尔科夫链模型(CHMM)来识别公共自行车出行链借还车出行目的,根据个人属性、出行时间和站点土地利用属性数据,得到每次借还车活动属于某种出行目的的概率,进一步识别公共自行车出行链最可能的出行目的活动链。 4.1.1连续隐马尔科夫链模型概述 隐马尔可夫链模型(Hidden Markov Model,HMM)是一种统计模型,它被用来描述一个含有隐含未知状态的马尔可夫链。隐马尔可夫链模型是马尔可夫链的一种,其隐藏状态不能被直接观察到,但能通过观测向量序列推断出来,每个观测向量都是通过状态成员的概率密度分布表现,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。 本文将隐马尔科夫链和混合高斯融合在一起,形成一个连续的隐马尔科夫链模型(CHMM),并应用该模型来识别公共自行车出行链借还车活动目的。连续隐马尔科夫链模型采用无监督的机器学习技术,用于训练的数据无需是标记的数据,该模型既不需要标记训练数据,也没有后续的样本测试,如提示-回忆调查。相反,该模型仅利用智能卡和总的土地利用数据。后者为隐藏活动提供额外的解释变量。出行链内各活动的时间和空间信息是从IC卡数据获得,相关土地利用数据是根据南京土地利用规划图和百度地图POI数据获得。 在本文的研究中,一个马尔可夫链可以解释为出行者在两个连续活动状态之间的状态转换,确定一个状态只取决于它之前的状态,一个状态对应一个出行者未知的借还车活动[48-50]。本研究坚持传统的马尔可夫过程的假设,将它包含进无监督的机器学习模型。“隐藏马尔可夫”源于一个事实,即一系列出行链的活动是不可观察的。 对于CHMM,高斯混合模型负责的是马尔可夫链的输入端,每一个活动模式下的隐藏状态都有属于一个特征空间的集群输出概率,每个集群是观察不到的,隐藏状态集群的数量必须事先给出。一些研究者称这些集群为二级隐状态[51]。

隐马尔可夫模型(HMM)简介

隐马尔可夫模型(HMM)简介 (一) 阿黄是大家敬爱的警官,他性格开朗,身体强壮,是大家心目中健康的典范。 但是,近一个月来阿黄的身体状况出现异常:情绪失控的状况时有发生。有时候忍不住放声大笑,有时候有时候愁眉不展,有时候老泪纵横,有时候勃然大怒…… 如此变化无常的情绪失控是由什么引起的呢?据警队同事勇男描述,由于复习考试寝室不熄灯与多媒体作业的困扰,阿黄近日出现了失眠等症状;与此同时,阿黄近日登陆一个叫做“xiaonei 网”的网站十分频繁。经医生进一步诊断,由于其他人也遇到同样的考试压力、作息不规律的情况而并未出现情绪失控;并且,其它登陆XIAONEI网的众多同学表现正常,因此可基本排除它们是情绪失控的原因。黄SIR的病情一度陷入僵局…… 最近,阿黄的病情有了新的眉目:据一位对手相学与占卜术十分精通的小巫婆透露,阿黄曾经私下请她对自己的病情进行诊断。经过观察与分析终于有了重大发现:原来阿黄的病情正在被潜伏在他体内的三种侍神控制!他们是:修罗王、阿修罗、罗刹神。 据悉,这三种侍神是情绪积聚激化而形成的自然神灵,他们相克相生,是游离于个体意识之外的精神产物,可以对人的情绪起到支配作用。每一天,都会有一位侍神主宰阿黄的情绪。并且,不同的侍神会导致不同的情绪突然表现。然而,当前的科技水平无法帮助我们诊断,当前哪位侍神是主宰侍神;更糟的是,不同的侍神(3个)与不同的情绪(4种)并不存在显而易见的一一对应关系。 所以,乍看上去,阿黄的病情再次陷入僵局…… 我们怎样才能把握阿黄情绪变化的规律? 我们怎样才能通过阿黄的情绪变化,推测他体内侍神的变化规律? 关键词:两类状态: 情绪状态(观察状态):放声大笑,愁眉不展,老泪纵横,勃然大怒 侍神状态(隐状态):修罗王,阿修罗,罗刹神 (二) 阿黄的病情引来了很多好心人的关心。这与阿黄真诚善良的品格不无关系。 关于侍神的特点,占卜师和很多好心人找来了许多珍贵资料。其中很多人经过一段时间的观察与记录后,在貌似毫无规律的数据背后,发现了侍神与情绪之间的内在规律!!他们在多次观测后,

马尔可夫链模型讲解

马尔可夫链模型(Markov Chain Model) 目录 [隐藏] 1 马尔可夫链模型概述 2 马尔可夫链模型的性质 3 离散状态空间中的马尔可夫链模 型 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建立 o 5.2 马尔可夫模型的应用 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为 。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态 的个数。对于任意i∈s,有。 3)是系统的初始概率分布,q i是系统在初始时刻处 于状态i的概率,满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X | X n) n+ 1 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

论述马尔可夫模型的降水预测方法

随机过程与随机信号处理课程论文

论述马尔可夫模型的降水预测方法 摘要:预测是人们对未知事物或不确定事物行为与状态作出主观的判断。中长 期降水量的预测是气象科学的一个难点问题, 也是水文学中的一个重要问题。今年来,针对降水预测的随机过程多采用随机过程中的马尔可夫链。本文总结了降水预测的马尔可夫预测的多种方法和模型,对其中的各种方法的马尔可夫链进行了比较和分析,得出了一些有用的结论。 关键字:降水预测,随机过程,马尔可夫链,模拟 前言:大气降水是自然界水循环的一个重要环节。尤其在干旱半干旱地区, 降 水是水资源的主要补给来源, 降水量的大小,决定着该地区水资源的丰富程度。因此, 在水资源预测、水文预报中经常需要对降水量进行预报。然而, 由于气象条件的变异性、多样性和复杂性, 降水过程存在着大量的不确定性与随机性, 因此到目前为止还难以通过物理成因来确定出未来某一时段降水量的准确数值。在实际的降水预测中,有时不必预测出某一年的降水量,仅需预测出某个时段内降水的状况既可满足工作需要。因此,预测的范围相应扩大,精度相应提高。因此对降水的预测可采用随机过程的马尔可夫链来实现。 用随机过程中马尔可夫链进行预测是一种较为广泛的预测方法。它可用来预测未来某时间发生的变化, 如预测运输物资需求量、运输市场等等。马尔可夫链, 就是一种随机时间序列, 它表示若已知系统的现在状态, 则系统未来状态的规律就可确定, 而不管系统如何过渡到现在的状态。我们在现实生活中, 有很多情况具有这种属性, 如生物群体的生长与死亡, 一群体增加一个还是减少一个个体, 它只与当前该生物群体大小有关, 而与过去生物群体大小无关。] 本文针对降水预测过程中采用马尔可夫链进行模拟进行了综述和总结。主要的方法有利用传统的马尔可夫链的方法模拟;有采用加权的马尔可夫链模拟来进行预测;还有基于模糊马尔可夫链状模型预测的方法;还有通过聚类分析建立降水序列的分级标准来采用滑动平均的马尔可夫链模型来预测降水量;从这些方法中我们可以看出,马尔可夫链对降水预测有着重要的理论指导意义。 1.随机过程基本原理 我们知道,随机变量的特点是,每次试验结果都是一个实现不可预知的,但为确定的量。而在实际中遇到的许多物理现象,实验所得到的结果是一个随时间变化的随机变量,且用一个或多个随机变量我们有时无法描述很多这种现象的的全部统计规律,这种情况下把随时间变化的随机变量的总体叫做随机过程。对随机过程的定义如下:

马尔可夫状态转移组别动态因子模型的估计与应用

马尔可夫状态转移组别动态因子模型的估计与应用 林建浩 中山大学岭南学院 (详细摘要) 结合马尔可夫状态转移(Hamilton,1989)、动态因子(Stock and Watson,1989,1991,1993)以及组别因子(Goyal et al., 2008;Hallin and Liska,2011)三种建模思想,本文提出一种马尔可夫组别动态因子(MS-GS-DF)模型。该模型以动态共同因子刻画经济变量的协动性,同时区分了不同类型经济体共同因子的组别覆盖性,并通过马尔可夫状态转移刻画经济变量在不同状态下的非对称转换。不同于Goyal et al.(2008)与Hallin and Liska(2011)假定组别因子之间相互独立,本文模型设定两种途径以刻画组别因子之间的相关关系:一是在组别因子的V AR形式中允许一种类似于Granger因果关系的存在;二是通过假定组别因子的均值和(或)方差由相同的状态变量驱动而存在相关。该模型具有较高的灵活性,可以刻画原有模型不能刻画的许多经济现象,在宏观经济分析以及证券市场研究中有重要的应用价值。例如,可用于研究经济变量在跨地区、分组别的非线性协动关系;也可用于分析一致指数、滞后指数以及领先指数等三大宏观景气指标的协同运动。 MS-GS-DF模型可以写成包含马尔可夫区制转移参数的状态空间模型形式。此时,参数的非线性性质使得标准的Kalman滤波不再适用;Lam算法通过将部分状态向量的初始成分视为待估参数,可以精确地得到极大似然估计,但这一方法需要很高的计算成本与较大的数据量。针对这些局限性,本文尝试结合Kim算法的基本框架进行不可观测成分与模型参数的估计,具体过程为:首先,假定参数已知,利用Kalman滤波获得不可观测成分(包括分组因子与特定误差项)的滤波推断;其次,利用Hamilton滤波获得马尔可夫状态转移概率的滤波推断;再次,根据Kim(1994,1999)的近似方法,对各种可能状态的条件信息近似化简为M种状态的非条件信息,同时得到近似似然函数;最后,通过非线性数值优化方法获得参数的近似极大似然估计。 最后,基于上述MS-GS-DF模型,本文研究了通货膨胀的国际协动性现象。在对1995M1至2011M2通货膨胀数据的实证研究中,以美国、欧元区、日本以及加拿大等发达经济体构造第一组别通胀因子,以金砖四国作为新兴经济体构造第二组别通胀因子,得到以下发现:第一,金砖四国通货膨胀共同因子的均值和方差都大于发达经济体;第二,平滑概率显示全球经济在样本期大部分时间处于通胀状态,只是在2001年网络泡沫破灭以及2008年金融危机等个别月份出现通缩状态;第三,通过计算国别通货膨胀序列与通胀共同因子的相关系数以及方差贡献比例,发现发达经济体通货膨胀具有较高的国际协动性,而金砖四国则明显以国别特殊性为主。上述发现为不同类型经济合作组织的货币政策国际协作提供了依据。

相关文档
最新文档