Zr4+掺杂TiO2光催化剂的制备与表征

Zr4+掺杂TiO2光催化剂的制备与表征
Zr4+掺杂TiO2光催化剂的制备与表征

2008年10月 The Chinese Journal of Process Engineering Oct. 2008

收稿日期:2008?07?10,修回日期:2008?08?06

基金项目:深圳市科技计划基金资助项目(编号:07K164D0)

作者简介:唐建军(1973?),男,湖南省东安县人,博士,副教授,城市环境工程专业,E-mail: tangjj7384@https://www.360docs.net/doc/677976831.html,.

Zr 4+掺杂TiO 2光催化剂的制备与表征

唐建军1

, 邹 原1

, 邓爱华1

, 李荣先2

(1. 深圳职业技术学院深圳市工业节水与城市污水资源化技术重点实验室,广东 深圳 518055;2. 深圳清华大学研究院,广东 深圳 518057)

摘 要:以ZrCl 4及TiOSO 4为前驱物,用尿素热分解共沉淀法制备了Zr 4+掺杂TiO 2光催化剂Zr/TiO 2,并用XRD, TEM,

BET, FT-IR 等表征了其物相及光催化性能. 结果表明,Zr 4+掺杂使TiO 2纳米晶粒细化(粒径14~17 nm),

比表面积增大,同时有效抑制了TiO 2从锐钛矿到金红石的晶型转变;Zr 4+掺杂使TiO 2表面的羟基数量增加,改善了对苯酚的吸附性能;Zr 4+掺杂提高了TiO 2的光催化活性,以4%Zr/TiO 2作光催化剂,反应100 min 后对苯酚的降解率达100%,TOC 去除率超过80%.

关键词:光催化;Zr 4+掺杂;苯酚;TiO 2

中图分类号:O643 文献标识码:A 文章编号:1009?606X(2008)05?1026?04

1 前 言

自Fujishima 等[1]报道可在TiO 2电极上将水光解成H 2和O 2后,Carey 等[2]成功地将TiO 2光催化技术应用于降解水中的有机污染物,自此TiO 2光催化技术受到广泛关注. 光催化具有操作简单、反应条件温和、可降解几乎所有污染物等突出优点,以其解决日益严重的水和空气污染问题的研究发展非常迅速. 但TiO 2光催化走向真正的应用目前仍存在困难[3,4]:

(1) 光生载流子(空穴?电子对)很容易重新复合,导致量子效率较低(一般不到5%);(2) TiO 2禁带宽度为3.2 eV ,激发波长387 nm ,属于紫外光区,而太阳光谱中此波长范围不到5%.

为克服这些不足,采用多种手段对TiO 2进行改性,如金属或金属离子掺杂[5,6]、非金属阴离子掺杂[7,8]、氢还原TiO 2引入更多的氧空位生成Ti 3+[9]、与其他半导体复合[10,11]等. 过渡金属离子掺杂既可在TiO 2晶体引入缺陷,影响电子与空穴复合,又可改善TiO 2的光吸收性能[12],

受到广泛关注. 但目前还鲜见Zr 4+掺杂TiO 2的报道,且在为数不多的研究中,一般采用价格昂贵的钛酸四丁酯作前驱物,以工艺复杂的溶胶凝胶法合成[13?15].

本工作以工业级原料TiOSO 4为前驱物、

ZrCl 4为掺杂Zr 源,采用一种简易的方法,即尿素热分解共沉淀法,制备Zr 4+掺杂TiO 2光催化剂,研究了Zr 4+掺杂对TiO 2各种性能的影响,并以苯酚为模型污染物,评价Zr 4+掺杂TiO 2光催化剂的光催化活性.

2 实 验

2.1 催化剂的制备

取30 mL 浓硫酸(96%, AR)用去离子水(Millipore 纯

水机,下同)稀释至300 mL ,再将100 g TiOSO 4(纯度大于93%)溶入其中,形成A 液;取定量ZrCl 4(AR)溶入适量浓硫酸中,形成B 液;混合A 液和B 液,并稀释至4 L ;向混合液中加入250 g 尿素(AR),于90~100℃温度下持续搅拌至溶液pH 值为7,再搅拌3~5 h. 用Hitachi CR22GII 型高速冷冻离心机分离沉淀物,用去离子水洗涤沉淀物数次,直至母液用2%(ω) BaCl 2溶液检测不到SO 42?为止,再将沉淀物置于恒温干燥箱中(控制温度105℃)烘12~24 h. 研磨干燥物并过筛,于500℃的空气气氛下煅烧2 h ,即得不同Zr 4+掺杂量的TiO 2光催化剂,记为A%Zr/TiO 2,其中A%表示Zr 4+的质量掺杂量.

2.2 测试和表征

XRD 分析采用PANalytical X ′Pent Pro 型X 射线衍射仪,室温,Cu K α源,40 kV ,40 mA ,波长λ=0.15406 nm ,依据Scherrer 公式[16]计算样品平均粒径. BET 比表面积分析采用3H-2000全自动氮吸附比表面仪,粉体形貌的TEM 分析采用JEM-1200EX 型透射电镜,SEM 分析采用JSM-6700F 型扫描电镜,FT-IR 分析采用Nicolet Magana-IR 550型傅立叶红外光谱仪. 2.3 光催化实验

实验装置为圆柱形套筒光反应器,光源是功率11 W 、主波长254 nm 的紫外杀菌灯,以石英玻璃作保护套管. 实验过程中,首先配制250 mL 100 mg/L 的苯酚溶液(AR),以NaOH 及HNO 3溶液调节其pH 至5;加入250 mg 催化剂,避光分散60 min. 取样分析暗态吸附后的苯酚浓度,确定苯酚在光催化剂表面的吸附情况. 将分散后的悬浊液转移至光反应器中,再开启自来水循

环冷却装置及紫外灯. 间隔一定时间取样,水样先经高速冷冻离心机分离,再由0.45 μm 的微孔滤膜过滤后用于浓度分析.

苯酚浓度分析采用Waters1525型高效液相色谱仪,进样量20 μL ,流动相乙腈/水(60/40, ?),流速 1.0 mL/min ,分离柱SYMMETRY C18, 4.6 mm ×250 mm ,2487高灵敏度双通道紫外检测器. TOC 分析采用Shimadzu TOC-VCPH 型总有机碳分析仪,高灵敏度TC 催化剂,温度680℃.

3 结果与分析

3.1 催化剂表征

图1为Zr 4+掺杂与未掺杂的TiO 2的XRD 图谱对比. 可以看出,在500℃煅烧时,未掺杂样品由锐钛矿和金红石组成,而Zr 4+掺杂后的样品则仅出现锐钛矿衍射峰,

图1 纯TiO 2与Zr 4+

掺杂TiO 2的XRD 图谱对比

Fig.1 Comparison of XRD patterns between pure TiO 2

and Zr 4+-doped TiO 2

说明Zr 4+的掺杂一定程度上抑制了TiO 2从锐钛矿到金红石的晶型转变. 1%(ω)掺杂量的样品没有出现ZrO 2的特征衍射峰,说明Zr 4+以取代掺杂形式进入到TiO 2的晶格中;当掺杂量达4%(ω)时,在2θ=30.5o 处开始出现ZrO 2的特征衍射峰,说明此时Zr 4+已在TiO 2的晶格中达到饱和,而有部分游离于晶相外,以ZrO 2的形式沉积于TiO 2的表面.

如表1所示,掺杂Zr 4+后TiO 2粒径减小,BET 比表面积则增大;当Zr 4+掺杂量达4%(ω),TiO 2的粒径开始出现增大的趋势,从XRD 谱分析,可能是因为此时已生成ZrO 2新相并堆积在TiO 2表面. 表1同时表明,Zr 4+的掺杂明显改善了TiO 2光催化剂对模型污染物苯酚的吸附性能.

表1 Zr 4+掺杂TiO 2光催化剂表征结果

Table 1 Characteristic results of Zr-doped TiO 2 photocatalyst

Amount of Zr (%, ω) Grain size (nm) Specific surface area (m 2

/g) Phenol adsorption

(mmol/g) 0.0 20.3 64.8 0.188 0.5 16.5 75.5 0.242 1.0 13.6 87.6 0.355 4.0 14.1 87.2 0.372

为进一步了解样品的形貌特征及粒径,对掺杂

1%(ω) Zr 4+的TiO 2样品作TEM 及SEM 测试,如图2所示. TEM 结果表明,样品粒子表面光滑,呈球形和类球形,粒径约20 nm ,与表1结果基本一致;SEM 结果表明,样品的颗粒尺寸在数微米尺度,且分布不均匀. 由此可见,本研究制备的Zr 4+掺杂TiO 2光催化剂存在明显的团聚现象,是湿法制备纳米颗粒时可能形成一些难以分散的晶体硬团聚所造成的[17].

(a) TEM image (b) SEM image

图2 1%Zr/TiO 2的TEM 和SEM 图

Fig.2 TEM and SEM photographs of 1%Zr/TiO 2

图3为不同Zr 4+掺杂量TiO 2样品的FT-IR 谱图对比. 3439及1600 cm ?1处为样品表面结合水的O ?H 伸缩振动和弯曲振动特征峰,700~370 cm ?1为Ti ?O ?Ti 的宽带吸收,1340 cm ?1处的弱峰则为Ti ?OH 的特征峰.

图3表明,未掺杂的TiO 2光催化剂的Ti ?OH 峰明显比Zr 4+掺杂后的弱,且在Zr 4+掺杂量由0.5%(ω)增大至4%(ω)时,Ti ?OH 峰略呈增强的趋势.

20

30

40

50607080

Anatase

Rutile ZrO 2

○●TiO 2

1%Zr/TiO 2

4%Zr/TiO 2

I n y e n s i t y

2θ (o

)

0.1 μm

图3 纯TiO 2与Zr 4+掺杂TiO 2的FT-IR 图谱对比

Fig.3 Comparison of FT-IR spectra between pure TiO 2 and

Zr 4+-doped TiO 2

3.2 光催化实验

图4为不同Zr 4+掺杂量的样品对苯酚的光催化降解情况. 可以看出,随着反应的进行,溶液中的苯酚浓度C t 及TOC 浓度均不断减小,说明苯酚的降解不仅是其分子结构的破坏,矿化过程也在同步进行;Zr 4+掺杂TiO 2光催化剂的催化活性明显较未掺杂的好,且随Zr 4+掺杂量从0.5%(ω)增大至4%(ω),样品的光催化活性明显增强. 以4%Zr/TiO 2作光催化剂,反应100 min 后,对苯酚的降解率达100%,TOC 去除率超过80%.

由以上结果可见,Zr/TiO 2较TiO 2催化活性高是由于Zr 4+的掺杂促使TiO 2晶粒细化和比表面积增大、表面羟基数量增加及对污染物的吸附性能提高所致.

图4 纯TiO 2与Zr 4+

掺杂TiO 2光催化降解苯酚及对TOC 去除的对比

Fig.4 Comparison of phenol photocatalytic degradation and TOC removal between pure TiO 2 and Zr 4+-doped TiO 2

4 结 论

(1) 以TiOSO 4及ZrCl 4为前驱物,采用尿素热分解共沉淀法制备了Zr 4+掺杂TiO 2光催化剂.

(2) 当掺杂量小于4%(ω)时,Zr 4+是以进入TiO 2晶格的形式实现掺杂的.

(3) 由于Zr 4+的掺杂,使TiO 2的粒径减小、比表面积增大、表面羟基数量增加,并改善了对苯酚的吸附性能,从而提高了TiO 2的光催化活性. 以4%Zr/TiO 2作光催化剂,反应100 min 后对苯酚的降解率达100%,TOC 去除率超过80%.

参考文献:

[1] Fujishima A, Honda K. Electrochemical Photolysis of Water at a

Semiconductor Electrode [J]. Nature, 1972, 238(1): 37?38.

[2] Carey J H, Lawrence J, Tosine H M. Photodechloination of PCB ′S in

the Presence of Titanium Dioxide in Aqueous Suspension [J]. Bull. Environ. Contam. Toxicol., 1976, 16(1): 697?701.

[3] Hoai B T, Maithaa K, Eric P, et al. From the Fundamental of

Photocatalysis to Its Application in Environmental Protection in Solar Purification of Water in Arid Countries [J]. Res. Chem. Intermed., 2005, 31(4/6): 449?461.

[4] 籍宏伟,马万红,赵进才,等. 可见光诱导TiO 2光催化的研究进

展 [J]. 科学通报, 2003, 48(21): 2199?2204.

[5] Ohno T, Tagawa F. Photocatalytic Oxidation of Water by Visible Light

Using Ruthenium-doped Titanium Dioxide Powder [J]. J. Photochem. Photobiochem. A: Chem., 1999, 127(1/3): 107?110.

[6] 苏碧桃,董娜,慕红梅,等. Fe 3+?CdS/TiO 2复合半导体光催化剂

的制备与表征 [J]. 精细化工, 2007, 24(9): 856?859.

[7] Asahi R, Ohwika T, Morikawa T, et al. Visible-light Photo-catalysis in

Nitrogen-doped Titanium Oxides [J]. Science, 2001, 293(13): 269?271.

[8] 唐建军,王岳俊,谢炜平,等. N/TiO 2光催化剂的制备及掺杂过程

分析 [J]. 过程工程学报, 2008, 8(1): 172?176.

[9] 刘鸿,吴合进,孙福侠,等. 氢还原二氧化钛光催化降解磺基水

杨酸的研究 [J]. 分子催化, 2001, 15(1): 47?50.

[10] Li F B, Gu G B, Li X J. Preparation, Characterization and

Photo-catalytic Behavior of Y 2O 3/TiO 2 Composite Semiconductor Nanopowder [J]. J. Rare Earth, 2001, 19(3): 187?191.

[11] 陈顺玉,李旦振,付贤智,等. SnO 2掺杂对TiO 2/Si 纳米复合材

料性能的影响 [J]. 分子科学学报, 2007, 23(1): 18?21.

[12] 唐建军,邹原,张伟,等. Fe/TiO 2光催化降解水溶液中的4-氯苯

酚 [J]. 环境污染与防治, 2008, (2): 21?24.

[13] Gao B F, Ma Y , Cao Y A, et al. Preparation and Photocatalytic

Properties of Ti 1?x Zr x O 2 Solid Solution [J]. Chin. J. Chem., 2007, 25(4): 484?489.

4000300020001000015202530354045

43

21Zr 4+

(%, ω) 1. 0

2. 0.5

3. 1

4. 4

T r a n s m i t t a n c e (%)

Wavenumber (cm ?1

)0204060801000.0

0.20.40.60.81.0

C t /C 0

Time (min)020*********

0.2

0.40.60.81.0

T O C t /T O C 0

Time (min)

[14] 刘国光,张锋,谢友海,等. Zr/TiO纳米颗粒的制备及其光催化

活性 [J]. 环境科学学报, 2006, 26(5): 846?850.

[15] 毕怀庆,袁文辉,韦朝海. 掺锆纳米TiO2制备表征及其对光催化

活性的影响 [J]. 材料科学与工程学报, 2004, 22(1): 98?101. [16] 张立德,牟其美. 纳米材料学 [M]. 沈阳:辽宁科学技术出版社,

1994. 95.

[17] 唐玉朝,黄显怀,俞汉青,等. N掺杂 TiO2光催化剂的制备及其

可见光活性研究 [J]. 无机化学学报, 2005, 25(11): 1747?1751.

Preparation and Characterization of Zr4+-doped TiO2 Photocatalyst

TANG Jian-jun1, ZOU Yuan1, DENG Ai-hua1, LI Rong-xian2

(1. Key Lab. Ind. Water Conservation & Municipal Wastewater Resour. Technol. Shenzhen,

Shenzhen Polytechnic, Shenzhen, Guangdong 518055, China;

2. Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong 518057, China)

Abstract: Zr4+-doped TiO2 photocatalyst was prepared by urea thermal decomposition and homogeneous co-precipitation method using

TiOSO4 and ZrCl4 as precursors, the phase and photocatalytic activity of Zr/TiO2 were characterized by XRD, TEM, BET and FT-IR techniques. XRD results indicate that Zr4+-doped TiO2 has small crystal size (14 to 17 nm) and large specific surface area, and phase transformation from anatase to rutile is effectively inhibited. FT-IR results indicate that the presence of Zr4+-dopet in TiO2 accelerates its

surface hydroxyl groups, and improves the adsorption characteristics of phenol. Photocatalysis results indicate that Zr4+ doping increases photocatalytic activity of TiO2, the degradation rate of phenol and removal rate of TOC after 100 min reaction reach as high as 100% and

80% respectively with 4%Zr/TiO2 photocatalyst.

Key words: photocatalysis; Zr4+ doping; phenol; TiO2

二氧化钛光催化分解甲醛原理

二氧化钛光催化分解甲 醛原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

纳米二氧化钛光催化分解甲醛原理 1. 光催化剂的发现历史 自从1972年Fujishima和Honda[2]发现TiO2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。而1976年Carey等[3]将TiO2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO2作为一种去除有机物的一种有效方法应用到了水和空气的清洁净化领域。1985年,日本科学家Tadashi Matsunaga等[4]第一个发现了TiO2在紫外光下有杀菌作用。近年来科学家们又对TiO2进行了深入的研究,并取得了很大的进步。但是以前的研究多数是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。纳米TiO2良好的光催化性能使它成为了解决这一问的热点研究方向。纳米TiO2以其催化活性高、化学稳定性好、使用安全, 2. 纳米TiO2光催化机理 纳米TiO2是一种n型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。由于TiO2纳米粒子的粒径在1~100 nm,所以其电子的Fermi能级是分立的,而不是像金属导体中的能级是连续的,在纳米TiO2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为 eV,当纳米TiO2接受波长为 nm以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后迅速迁移到其表面并激活被吸附的O2和H2O,产生高活性羟基自由基(·OH)和超氧离子自由基(·O2- )[7],当污染物以及细菌吸附其表面时,会发生两个步骤:

光催化剂的制备

光催化剂的制备 目前,实验室制备和合成纳米TiO2光催化剂的方法很多,大致可以分为气相法,液相法和固相法。 1.2.2.1 气相法 气相法是利用气体或通过加热使钛盐变为蒸气,然后发生物理或化学变化,最后冷却-凝聚-长大形成纳米TiO2粒子的方法。采用气相法制备的纳米TiO2粒子纯度高,粒径分布窄,尺寸均匀,化学活性好,但是制备工艺复杂,成本高,产率低。常见的气相法包括氢氧火焰水解法、气相氧化法,气相水解法、气相分解法等。 1.2.2.2 液相法 液相法是生产各种氧化物颗粒的主要方法之一。它的基本原理是:将可溶性金属钛盐,按所制备材料的组成配制溶液,再用沉淀剂使金属离子均匀沉淀出来。与气相法相比,液相法制备纳米TiO2薄膜具有工艺简单、合成温度低、能耗少以及设备投资小的优点,是制备纳米TiO2粉体和薄膜较理想的方法,是目前实验室和工业上广泛采用的制备薄膜和超微粉的方法。主要包括溶胶-凝胶法,水热合成法、液相沉积法,水解法,微乳液法等。溶胶凝胶法一般是以有机或者无机钛盐为原料,在有机介质中(酸或有机聚合添加剂)进行水解、缩聚反应,最后将得到的溶胶干燥、煅烧得到TiO2纳米颗粒。整个反应过程如下: Ti(OR)4 + nH2 O →Ti(OR) (OH) + nROH水解反应4-n n 4-n n-1 2 2 2Ti(OR) (OH) →[Ti(OR) (OH) ] O + H O缩聚反应 Ti(OR) + 2H2O →TiO +4HOR总反应 与传统的纳米材料制备方法相比,溶胶-凝胶法制备的TiO2纳米颗粒具有纯度高,粒径分布窄,单分散性好,反应容易控制等优点,但是成本高,工艺时间长。 水热合成法是在密闭高压反应釜中加入前驱体溶液,高温高压条件下发生反应制备纳米级TiO2粉末的方法。该方法的优点在于制备的纳米TiO2粉体晶粒完整,原始粒径小,分布较均匀,但反应条件为高温、高压,因而对设备材质、安全要求较严格。 液相沉积法是利用水溶液中氟的金属配位离子和金属氧化物之间的化学平 衡反应,将金属氧化物沉积到反应液中的衬底上,最后煅烧得到纳米TiO2材料[8]。液相沉积法的优点是:工艺简单,不需要使用特殊的设备,成本较低;室温下就能制备大比表面积的TiO2膜;对衬底无选择,可以在各种形状各种材料的衬底上沉积;膜厚可控制。水解法是以无机钛盐为原料,在严格的条件下控制钛盐的水解速度,制得纳米TiO2粉末。水解法制备纳米TiO2具有以下特点:方法操作简单,成本低;通过控制不同条件可以直接得到其它方法需经高温下煅烧才能得到的金红石型二氧化钛。如果能克服洗涤干燥过程中粉末的流失和团聚,解决纳米二氧化钛的收率和粒径不理想的问题,那么水解法就是制备TiO2粉末最经济的方法。 微乳液法是指以不溶于水的有机溶剂为分散介质,以水溶液为分散相的分散 体系,由于表面活性剂(有时也添加助表面活性剂,如低级醇)的存在,该体系 是一种分散相分布均匀、透明、各向同性的热力学稳定体系。微乳液的液滴或称 “水池”是一种特殊的纳米空间,以此为反应器可以制备粒径得以控制的纳米微 粒。微乳液法具有操作简单、粒径大小可控、粒子分散性好、分布窄、易于实现 连续化生产操作,容易团聚等特点。

二氧化钛光催化剂的制备研究

实验题目:二氧化钛光催化剂的制备研究 实验仪器及药品:钛酸正四丁脂(分析纯),无水乙醇(分析纯),冰醋酸(分 析纯),盐酸(分析纯),蒸馏水。恒温磁力搅拌器,搅拌子,烧杯(100 mL),恒压漏斗(50 mL),量筒(10 mL, 50 mL)。恒温箱,马啡炉。1g/l亚甲基蓝标准溶液、蒸馏水、烧杯(100ml)、紫外光分度仪、紫外灯 实验原理:溶胶(Sol)是具有液体特征的胶体体系,分散的粒~1000nm之间。凝 胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空子是固体或者大分子,分散的粒子大小在1隙中充有液体或气体,凝胶中分散相的含量很低,一般在1%~3%之间。简单的讲,溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。 溶剂化:M(H2O)nz+=M(H2O)n-1(OH)(z-1)+H+ 水解反应:M(OR)n+xH2O=M(OH)x(OR)n-x+xROH------M(OH)n 缩聚反应: 失水缩聚:-M-O H+HO-M-=-M-O-M-+H2O 失醇缩聚:-M-OR+HO-M-=-M-O-M-+ROH 钛酸四丁脂在酸性条件下,水解产物为含钛离子溶胶 含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团,最后形成稳定凝胶实验步骤:(一)、二氧化钛的制备 1、室温下量取22ml无水乙醇,加入到洗净吹干的烧杯中,放入转子后用保鲜膜密封。室温下量取17mL钛酸丁酯,打开自理搅拌器。将酞酸丁酯缓慢滴入到22mL无水乙醇中,边加入边搅拌。滴加完毕后用保鲜膜密封,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A。 2、将0.3 mL冰醋酸,到另35mL无水乙醇中,滴入浓硝酸约3-4d,调节pH值,使pH=2-3,得到溶液B。 3、室温水浴下,在剧烈搅拌下将已移入恒压漏斗中的溶液B缓慢滴入溶液A中,滴加速度控制在大约2d/s.滴加完毕后得浅黄色溶液,继续搅拌大约半小时后,缓慢逐滴滴加去离子水,控制1d/min左右。逐滴滴加直至出现凝胶。 4、静置凝胶2h以上,将凝胶放入恒温箱在160℃下烘干4h,得到细小颗粒物后研磨至白色粉末。将白色粉末在500℃下煅烧2-3h得到白色TiO2粉体3.8048g。 (二)、二氧化钛产物的检测

材料表征的方法(英语)

材料表征的方法 1.Elemental Analysis 元素分析 Atomic absorption spectroscopy 原子吸收光谱 Auger electron spectroscopy (AES) 俄歇电子能谱 Electron probe microanalysis (EPMA) 电子探针微分析 Electron spectroscopy for chemical analysis (ESCA) 化学分析电子能谱 Energy dispersive spectroscopy (EDS) 能量色散谱 Flame photometry 火焰光度法 Wavelength dispersive spectroscopy (WDS) X-ray fluorescence X射线荧光 2. Molecular and Solid State Analysis 分子与固态分析 Chromatography [gas chromatography (GC), size exclusion chromatography (SEC)] 色谱[气相色谱,体积排除色谱] Electron diffraction 电子衍射 Electron microscopy [scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning TEM (STEM)] 电子显微镜 Electron spin resonance (ESR) 电子自旋共振 Infrared spectroscopy (IR) 红外光谱 Mass spectrometry 质谱 Mercury porosimetry 压汞法 Mossbauer spectroscopy 穆斯堡尔谱 Nuclear magnetic resonance (NMR) 核磁共振 Neutron diffraction 中子衍射 Optical microscopy 光学显微镜 Optical rotatory dispersion (ORD) 旋光色散 Raman spectroscopy 拉曼光谱 Rutherford back scattering (RBS) 卢瑟福背散射 Small angle x-ray scattering (SAXS) 小角X射线散射 Thermal analysis [differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), differential thermal analysis (DTA) temperature desorption spectroscopy (TDS), thermomechanical analysis (TMA)] 热分析[差示扫描量热计法,热-重分析,微分热分析,升温脱附,热机械分析] UV spectroscopy 紫外光谱 X-ray techniques [x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), x-ray emission, x-ray absorption] X射线技术[x射线光电子能谱,x射线衍射,x射线发射,x射线吸收] 3. Surface Characterization Techniques 表面表征技术

锂离子电池正极材料制备与表征.

第 32卷第 1期吉首大学学报 (自然科学版 Vol. 32 No. 1 2011年 1月 Journ al of Jishou University (Natural Science Edition J an. 2011 文章编号 :1007-2985(2011 01-0088-05 正极材料 Li(Ni 1/3C o 1/3Mn 1/3 1-x Cr x O 2的合成与表征 *梁凯 1, 2, 莫如宝2, 刘建本 2, 何则强 1, 2 (1. 生态旅游应用技术湖南省重点实验室 , 湖南吉首 416000; 2. 吉首大学化学 化工学院 , 湖南吉首 416000 摘要 :采用草酸盐共沉淀法合成一系列的 Li(Ni 1/3Co 1/3M n 1/3 1-x Cr x O 2正极材料 (0 x 0. 1 , 用 X 射线衍射仪 (XRD 和扫描电子显微镜 (SEM 分析合成 产物的晶体结构及表面形貌 ; 利用充放电仪测定了产物的电化学性能 . 结果表明 , 合成的 L i(N i 1/3Co 1/3M n 1/3 1-x Cr x O 2(x =0. 01, 0. 03, 0. 05, 0. 07 均保持 - 2NaFeO 2层状结构相 , 属于空间 R3m 点群 . L i(Ni 1/3 Co 1/3M n 1/3 0. 95Cr0. 05O 2的电化学性能最佳 , 首次放电容量达 158. 6mA h/g, 在 2. 5~4. 5V 区间 30次循环后比容量衰竭率仅为 3. 92%.Li(Ni 1/3Co 1/3M n 1/3 0. 95Cr 0. 05O 2和 Li(Ni 1/3Co 1/3M n 1/3 CrO 2的电极阻抗变化不同 , 进而影响其电化学性能 . 关键词 :锂离子电池 ; 正极材料 ; 掺杂 ; 电化学性能 中图分类号 :O614. 111; T M 912. 9 文献标志码 :A 锂离子电池因具有比能量高、循环性能好、自放电小、无记忆效应等优点[1], 近年在数码相机、笔记本电脑、电动车及军用通信等领域得到广泛运用 . 目 前 , 研究较多的正极材料主要有层状 LiCoO 2[2]、 LiNiO 2[3]、 LiM nO 2[4]及三元材料 Li(Ni 1/3Co 1/3M n 1/3 CrO 2[5]、尖晶石状 LiMn 2O4[6], 橄榄石型 LiFePO 4[7]等 , 但这些材料都各有优缺点 :如市场上占据领导地位的商业化正极材料LiCoO 2是运用最为成熟的正极材料 , 但 Co 元素价格昂贵且对环境会造成污染 [8]; 尖晶石状 LiMn 2O 4价格相对低廉且较为安全 , 但由于 Jahn Teller 效应 [9]等原因 使得材料循环性能较差 ; 橄榄石型 LiFePO 4具有循环性能好、安全无污染等优点 ,

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

二氧化钛光催化剂

Ti O2纳米颗粒的制备及表征 在关于有关Ti O2纳米颗粒的研究中,制备方法的研究是很多的,同时,采用溶胶-凝胶法合成纳米Ti O2的文献报道比较多,通常采用溶胶-凝胶法合成的前驱物为无定形结构的,经过进一步的热处理后或者水热晶化才能得到晶型产物[49]。烧结过程能促使晶型转变,但是往往引起颗粒之间的团聚和颗粒的生长[50]。一般情况下,在大于300℃温度烧结处理得 到锐钛矿型Ti O2、大于600℃的温度烧结处理得到金红石型Ti O2。Ti O2的很多种性质取决于颗粒尺寸和晶化度。优化制备条件,得到分散性良好,催化性能好的光催化剂是很有研究意义的。 实验原理 溶胶-凝胶法是从材料制备的湿化学法中发展起来的一种新方法,是以金属醇盐或无机 盐为原料,其反应过程是将金属醇盐或无机盐在有机介质中进行水解、缩聚反应,使溶液形成溶胶,继而形成凝胶。凝胶经陈化、干燥、煅烧、研磨得到粉体产品。其中由于较多研究者以醇盐为原料,故也将其称为醇盐水解法。在溶胶-凝胶法中,溶胶通常是指固体分散在 液体中形成胶体溶液,凝胶是在溶胶聚沉过程中的特定条件下,形成的一种介于固态和液态间的冻状物质,是由胶粒组成的三维空间网状结构,网络了全部或部分介质,是一种相当稠厚的物质。 本文中,钛酸四丁酯(Ti(OC4H9)4)在水中水解,并发生缩聚反应,生成含有氢氧化钛(Ti(OH)4)粒子的溶胶溶液,反应继续进行变成凝胶,反应方程式如下: 水解Ti(OC4H9)4+4 H2O →Ti (OH)4+ 4HO C4H9 (2-1) 缩聚2Ti (OH)4→[Ti (OH)3]2O+H2O (2-2) 总反应式表示为: Ti(OC4H9)4+ 2H2O→Ti O2 + 4 C4H10O (2-3) 上式表示反应物全部参加反应的情况,实际上,水解和缩聚的方式随反应条 件的变化而变化。反应过程为: (1) 水解反应:可能包含对金属离子的配位,水分子的氢可能与OR 基的氧通过氢键引起 水解。 (2) 缩聚反应:在溶液中,原钛酸和负一价的原钛酸反应,生成钛酸二聚体,此二聚体进 一步作用生成三聚体、四聚体等多钛酸。在形成多钛酸时Ti-O-Ti 键也可以在链的中部形成,这样可得到支链多钛酸,多钛酸进一步聚合形成胶态Ti O2,这就是通常所说的 Ti O2溶胶的胶凝过程[53]。 本论文选用价格较低、使用较为普遍的钛酸四丁酯(Ti(OC4H9)4)作为钛源,选用乙醇为 溶剂,乙醇在钛酸四丁酯的水解反应过程中并不直接参与水解和缩聚反应,但它作为溶剂对体系起着稀释作用,它在Ti(OC4H9)4分子与水分子周围均形成由乙醇分子组成的包覆层, 阻碍反应物分子的碰撞,并在溶胶粒子周围形成“溶剂笼”,从而阻碍了溶胶粒子的生长以及溶胶团簇间的键合,使得干燥后的干凝胶能保持疏松多孔的状态,经焙烧后所得粒子比表面积较大。此外,在制备溶胶的过程中还要加入适量的冰乙酸,冰乙酸在反应过程中可能有两种作用:一是抑制水解,二是使胶体粒子带有正电荷,阻止胶粒凝聚,从而避免干凝胶粒尺寸过大。根据上述机理分析和本实验室前人研究的基础上,确定制备Ti O2溶胶的各物料组分摩尔比为Ti(OC4H9)4:HAc:H2O:Et OH:(NH4)2CO3 =1:2:15:18:X,其中X值变化的范围是0~4,加入碳酸铵的目的是使反应过程中产生气体和微小的固体载体,但又不会对生成的Ti O2造成掺杂等影响,使颗粒分散更均匀,细小。

材料表征方法思考题答案

第一章XRD 1.X射线的定义、性质、连续X射线和特征X射线的产生、特点。 答:X射线定义:高速运动的粒子与某种物质相撞击后猝然减速,且与该物质中的内层电子相互作用而产生的。性质:看不见;能使气体电离,使照相底片感光,具有很强的穿透能力,还能使物质发出荧光;在磁场和电场中都不发生偏转;当穿过物体时只有部分被散射;能杀伤生物细胞。 连续X射线产生:经典物理学解释——由于极大数量的电子射到阳极上的时间和条件不相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱。量子力学解释——大量的电子在到达靶面的时间、条件均不同,而且还有多次碰撞,因而产生不同能量不同强度的光子序列,即形成连续谱。特点:强度随波长连续变化 特征X射线产生:当管电压达到或高于某一临界值时,阴极发出的电子在电场的加速下,可以将物质原子深层的电子击到能量较高的外部壳层或击出原子外,使原子电离。此时的原子处于激发态。处于激发态的原子有自发回到激发态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量降低。原子从高能态变为低能态时,多出的能量以X射线的形式释放出来。因物质一定,原子结构一定,两特定能级间的能级差一定,故辐射出波长一定的特征X射线。特点:仅在特定的波长处有特别强的强度峰。 2.X射线与物质的相互作用 答:X射线与物质的相互作用,如图所示 一束X射线通过物体后,其强度因散射和吸收而被衰减,并且吸收是造成强度衰减的主要原因。 散射分为两部分,即相干散射和不相干散射。当X射线照射到物质的某个晶面时可以产生反射线,当反射线与X射线的频率、位相一致时,在相同反射方向上的各个反射波相互干涉,产生相干散射;当X射线经束缚力不大的电子或自由电子散射后,产生波长比入射X射线波长长的X射线,且波长随着散射方向的不同而改变,这种现象称为不相干散射。其中相干散射是X射线在晶体中产生衍射现象的基础。 物质对X射线的吸收是指X射线通过物质时,光子的能量变成了其它形式的能量,即产生了光电子、俄歇电子和荧光X射线。当X射线入射到物质的内层时,使内层的电子受激发而离开物质的壳层,则该电子就是光电子,与此同时产生内层空位。此时,外层电子将填充到内层空位,相应伴随着原子能量降低,放出的能量就是荧光X射线。当放出的荧光X射线回到外层时,将使外层电子受激发,从而产生俄歇电子而出去。产生光电子和荧光X射线的过程称为光电子效应,产生俄歇电子的过程称为俄歇效应。示意图见下:

材料制备与表征复习范围2

1材料的性能与材料的成分密切相关,而与其结构无关。这句话对吗? 答:不对。高分子材料的结构决定其性能,对结构的控制和改性,可获得不同特性的高分子材料。高分子材料独特的结构和易改性、易加工特点,使其具有其他材料不可比拟、不可取代的优异性能,从而广泛用于科学技术、国防建设和国民经济各个领域,并已成为现代社会生活中衣食住行用各个方面不可缺少的材料。 2什么是能带理论?绝缘体、半导体、和导体的能带结构如何? 答:在形成分子时,原子轨道构成具有分立能级的分子轨道。晶体是由大量的原子有序堆积而成的。由原子轨道所构成的分子轨道的数量非常之大,以至于可以将所形成的分子轨道的能级看成是准连续的,即形成了能带。在0K时电子在能带中所占据的最高充填能级称为费米能级。固体的能带可以用能态密度表示,它表示了在单位能量间隔内电子状态的数目。能态密度为零的区间称为禁带,最高完全占据的能带称为价带,最低未完全占据的能带称为导带。 金属材料中导带被部分充填,因而具有电子导电性。 半导体和绝缘体的导带都是空的,价带完全充满,两者的区别是禁带的宽度不同。 绝缘体:价带为满带,禁带较宽达3~6eV,满带电子不能或较难激发到相邻的空带半导体:价带为满带,禁带宽度为0.1~1.5eV,一定条件下满带电子可激发到相邻的空带,从而在满带上留下空穴,空带中的电子和满带中的空穴都参与导电。导体:价带部分填入,电子很容易跃迁到高能态形成电流,或价带为满带,但与相邻空带相连或重叠,相当于一个未满的能带。 4. 超导体的主要性能指标有几个?简述其主要应用领域? 答:三个1)临界温度Tc 2)临界磁场强度Hc 3)临界电流密度Jc 应用领域:超导输电、超导发电机、电能的超导储存、超导磁悬浮、电磁炮、超导计算机、生物超导、医学检测等。 5 超导材料零电阻效应迈斯纳效应 答:具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 在较高的温度时是导体或半导体,甚至是绝缘体,可是当温度降到某一特定值Tc时,它的直流电阻突然下降为零,这一现象称为零电阻效应。 超导态下,外磁场的磁化使超导体表面产生感应电流,感应电流在超导体内产生的磁场正好和外磁场相抵消,导致超导体内部磁场为零,即具有完全抗磁性,这种现象就是迈斯纳效应。 6 介电常数的概念 答:介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一个系数,以字母ε表示,单位为法/米(F/m)。 定义为电位移D和电场强度E之比,ε=D/Ε。电位移D的单位是库/二次方米(C/m^2)。 7 材料按组成结构分为哪几种材料;按性能分为哪两种材料? 答:从物理化学属性来分,可分为金属材料、无机非金属材料、有机高分子材料和不同类型材料所组成的复合材料。 按化学状态分类金属材料无机物非金属材料陶瓷材料有机材料高分子材料 按物理性质分类高强度材料耐高温材料超硬材料导电材料绝缘材料磁性材料透光材料半导体材料 按状态分类单晶材料多晶质材料非晶态材料准晶态材料 按物理效应分类压电材料热电材料铁电材料光电材料电光材料声光材料磁光材

TiO2光催化剂的制备与研究概况

TiO2光催化剂的制备与研究概况 昆明理工大学 摘要:TiO2是目前最受关注的光催化剂之一,本文综述了TiO2光催化原理,制备方法及其作为光催化剂在污水处理、空气净化和抗菌等方面的应用。 关键词:TiO2催化剂制备应用 Preparation and research of TiO2 as photocatalyst Hui fumei (Kunming University of Science and Technology) Abstract:Ti02 is one of the most promising photocatalysts at present.The mechanism and the synthesis of the photocatalytsts,and its application in water treatment,air purification and anti—bacteria were reviewed. Keywords :TiO2 photocatalysts preparation application 引言TiO2是一种非常优秀的催化剂,以其活性高、热稳定性好、持续时间长、价格便宜所以倍受人们重视。广泛应用在传感器[1]、太阳能电池[2]、锂离子电池[3]、催化剂[4]、颜料[5]、化妆品、过滤陶瓷二氧化钛纳滤膜[6]、吸附等领域。尤其在自然环境日趋恶化、污染十分严重,水资源不断减少的今天,TiO2光催化剂的应用研究具有非常重要的意义。虽然TiO2光催化剂在光催化反应的应用已取得不少成绩。在研究和应用中却依然存在很多问题需要解决。二氧化钛光催化剂的催化活性受到各方面因素的影响:首先TiO2是宽禁带材料,仅能吸收太阳光谱的紫外光部分,通常需要用紫外光源来激发,太阳能利用效率低,这限制了其实际的应用:其次在制备和回收过程中,超细纳米粒子的过滤极为困难;第三纳米粉体在存放过程中容易团聚。都在一定程度上限制TTiO2光催化剂的广泛应用。 1 TiO2光催化原理 锐钛型TiO2,的禁带宽度为3.2 eV,在波长小于400 nm的光照射下,价带电子被激发到导带形成空穴电子对。在电场的作用下,电子与空穴发生分离,迁移到粒子表面的不同位置。热力学理论表明,分布在表面的空穴h可以将吸附在TiO2表面的H2O分子氧化成OH·自由基。OH·自由基氧化能力是水体中存在的氧化剂中最强的,能氧化大部分有机污染物及部分无机污染物,将其最终降解为CO2、H2O等无害物质,而且OH·自由基对反应物几

二氧化钛作为光催化剂的研究

二氧化钛光催化剂的研究进展1972 年,A.Fujishima 等首次发现在光电池中受辐射的TiO2,表面能持续发生水的氧化还原反应,这一发现揭开了光催化材料研究和应用的序幕。1976 年J.H.Carey 等报道了TiO2水浊液在近紫外光的照射下可使多氯联苯脱氯。S.N.Frank 等也于1977 年用TiO2粉末光催化降解了含CN-的溶液。由此,开始了TiO2光催化技术在环保领域的应用研究,继而引起了污水治理方面的技术革命。近十几年来,随着社会的发展和人们对环境保护的觉醒,纳米级半导体光催化材料的研究引起了国内外物理、化学、材料和环境等领域科学家的广泛关注,成为最活跃的研究领域之一。 TiO2 是一种重要的无机材料,其具有较高的折光系数和稳定的物理化学性能。以TiO2 做光催化剂的非均相光催化氧化有机物技术越来越受到人们的关注,被广泛地用来光解水、杀菌和制备太阳能敏化电池等。特别是在环境保护方面,TiO2 作为 光催化剂更是展现了广阔的应用前景。但TiO2 的禁带宽度是3.2eV,需要能量大于3.2eV 的紫外光(波长小于380nm)才能使其激发产生光生电子-空穴对,因此对可见光的响应低,导致太阳能利用率低(只利用约3~5%的紫外光部分)。同时光生电子和光生空穴的快速复合大大降低了TiO2 光催化的量子效率,直接影响到TiO2 光催化剂的催化活性。因此,提高光催化剂的量子效率和光催化活性成为光催化研究的核心内容。通过科学工

作者对二氧化钛的物质结构、制备方法、催化性能、催化机理等方面的深入系统的研究,这种快速高效、性能稳定、无毒无害的新型光催化材料在废水处理、有害气体净化、卫生保健、建筑物材料、纺织品、涂料、军事、太阳能贮存与转换以及光化学合成等领域得到了广泛应用。 1 TiO2光催化作用机理 “光催化”从字面意思看,似乎是指反应中光作为催化剂参加反应,然而事实并非如此。光子本身是一种反应物质,在反应过程中被消耗掉了,真正扮演催化剂角色的却是TiO2。因此,“光催化”反应的内涵是指在有光参与的条件下,发生在光催化剂及其表面吸附物(如H2O分子和被分解物等)之间的一种光化学反应和氧化还原过程。其具体的作用机理如下。 从结构上看,TiO2之所以在光照条件下能够进行氧化还原反应,是由于其电子结构为一个满的价带和一个空的导带。当光子能量(hν)达到或超过其带隙能时,电子就可从价带激发到导带,同时在价带产生相应的空穴,即生成电子(e-)、空穴(h+)对。通常情况下,激活态的导带电子和价带空穴会重新复合为中性体(N),产生能量,以光能(hν′)或热能的形式散失掉。 TiO2+hν→e-+h+ (1) e-+h+→N+energy(hν′

纳米材料的表征方法

纳米材料的表征及其催化效果评价方式纳米材料的表征主要目的是确定纳米材料的一些物理化学特性如形貌、尺寸、粒径、等电点、化学组成、晶型结构、禁带宽度和吸光特性等。 纳米材料催化效果评价方式主要是在光照(紫外、可见光、红外光或者太阳光)条件下纳米材料对一些污染物质(甲基橙、罗丹明B、亚甲基蓝和Cr6+等)的降解或者对一些物质的转化(用于选择性的合成过程)。评价指标为污染物质的去除效率、物质的转化效率以及反应的一级动力学常数k的大小。

1 、结构表征 XRD,ED,FT-IR, Raman,DLS 2 、成份分析 AAS,ICP-AES,XPS,EDS 3 、形貌表征 TEM,SEM,AFM 4 、性质表征-光、电、磁、热、力等 … UV-Vis,PL,Photocurrent

1. TEM TEM为透射电子显微镜,分辨率为~,放大倍数为几万~百万倍,用于观察超微结构,即小于微米、光学显微镜下无法看清的结构。TEM是一种对纳米材料形貌、粒径和尺寸进行表征的常规仪器,一般纳米材料的文献中都会用到。 The morphologies of the samples were studied by a Shimadzu SSX-550 field-emission scanning electron microscopy (SEM) system, and a JEOL JEM-2010 transmission electron microscopy (TEM)[1]. 一般情况下,TEM还会装配High-Resolution TEM(高分辨率透射电子显微镜)、EDX(能量弥散X射线谱)和SAED(选区电子衍射)。High-Resolution TEM用于观察纳米材料的晶面参数,推断出纳米材料的晶型;EDX一般用于分析样品里面含有的元素,以及元素所占的比率;SAED用于实现晶体样品的形貌特征与晶体学性质的原位分析。

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用 自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH)和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

纳米二氧化钛的制备及光催化

苏州科技大学 材料科技进展 化学生物与材料工程学院 材料化学专业 题目:纳米二氧化钛的制备及光催化 姓名:吕岩 学号:1020213103 指导老师:刘成宝 起止时间:5月20日——6月8日

纳米二氧化钛的制备及光催化 吕岩 (苏州科技学院,化学与生物工程材料学院,江苏,苏州,215009) 摘要:纳米二氧化钛是种重要的纳米材料,其在众多领域有着广泛的应用。本文主要介绍纳米二氧化钛的多种制备方法,包括化学气相法(化学气相沉积法、化学气相水解法等)、液相法( 溶胶凝胶法、沉淀法、水热合成法等)两大类,并分析了各种工艺的优劣。并介绍纳米二氧化钛光催化反应原理,基本方法,影响因素,及其广泛的应用。通过介绍纳米二氧化钛的制备及光催化的研究,更深刻理解其在生产生活中应用。 关键词:纳米TiO2,制备方法,光催化. The study on preparation of nanometer TiO and photocatalytic 2 Lv Yan (University of Science and Technology of Suzhou,School of Chemical and Biological Engineering Materials,Jiangsu,Suzhou,215009) Abstract: A s an important nanomaterial nanometer TiO2 has wide app lications in many fields, such as environmental production. Preparation methods of nanomaterial TiO2w ere briefly summarized, including chemical gas phase method( CVD and chem ical gas phase hydro lysis method etc. ) and liquid phase method( sol- gelmethod, precipitation method, hydrothermal synthesismethod etc. ). The advan tages and disadvanges o f everym ethod w ere analyzed. Introduce nano TiO2reaction principle, basic method, influence factors, and its wide application. Through the introduction of the preparation of nano TiO2 research, a deeper understanding of its application in the production and living. Key words: nanometer T iO2; preparation method, photocatalysis 引言: 纳米二氧化钛是一种新型的光催化无机功能材料,由于其粒径在1~ 100 nm 之间, 具有粒径小、比表面积大表面活性高、分散性好等特点, 表现出独特的物理化学性质。它具有良好的透明性,紫外线吸收性及熔点低、磁性强、热导性强、高效、无毒、成本低和不造成二次污染等优点等奇异特性;还具有良好的抗菌作用,使用过程中不会发生自身损耗,而且资源丰富,价格低廉,因此在光催化降解废水中的有机物、涂料、精细陶瓷、塑料、催化剂、及化妆品等方面应用广泛,成为新型功能材料研究的热点之一。本文将对纳米二氧化钛的制备及光催化在做一些简单介绍。 1.纳米TiO2的制备 纳米TiO2的制备方法有很多, 归纳起来主要有固相法、气相法和液相法等,

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学 徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH )和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

材料制备与表征复习资料

2009级《材料制备与表征》复习范围一.铁电材料 1、感应式极化:离子晶体中最主要的极化形式是电子位移极化和离子位移极化,这两种极化都属于感应式极化,极化强度大小依赖于外施电场。线性关系,E=0,P=0。 2、自发极化:铁电体所表现的自发极化,却是不依赖于外电场,并能随外电场反向而发生反转。非线性关系,E=0,P≠0。 3、铁电体(ferroelectric):具有自发极化,且自发极化方向能随外场改变的晶体。它们最显著的特征,或者说宏观的表现就是具有电滞回线。 4、电滞回线(hysteresis curve):铁电体在铁电态下极化对电场关系的典型回线。 5、电畴(domain):在铁电体中,固有电偶极矩在一定的子区域内取向相同的这些区域就称为电畴或畴。 6、畴壁(domain wall):畴的间界。 7、铁电相变:铁电相与顺电相之间的转变。当温度超过某一值时,自发极化消失,铁电体变为顺电体。 8、居里温度(Curie temperature or Curie point):铁电相变的温度。 9、铁电体的分类:1)按结晶化学;2)按力学性质;3)按相转变的微观机构;4)按极化轴多少。 10、铁电陶瓷:在一定温度范围内具有自发极化,且自发极化能为外电场所转向的陶瓷称为铁电陶瓷。 典型的铁电材料BaTiO3 什么是电畴?电畴是如何形成的,180°畴和90°畴有何异同? 答:在铁电体中,固有电偶极矩在一定的子区域内取向相同的这些区域就称为电畴或畴。 电畴的形成过程:新畴成核、畴的纵向长大、畴的横向扩张和畴的合并四个阶段。 180°畴自发极化方向相反,反平行,在晶体中不产生应力;180°畴前移速度比侧向移动速度快几个数量级。畴壁薄。90°畴的自发极化方向相互正交,有应力产生。新畴的发展主要依靠外电场推动90°畴壁的侧向运动。畴壁较厚。 自发极化与铁电体的概念? 答:自发极化:铁电体所表现的自发极化,却是不依赖于外电场,并能随外电场反向而发生反转。非线性关系,E=0,P≠0。 铁电体(ferroelectric):具有自发极化,且自发极化方向能随外场改变的晶体。它们最显著的特征,或者说宏观的表现就是具有电滞回线。

相关文档
最新文档