基于MATLAB的时间序列建模与预测

基于MATLAB的时间序列建模与预测
基于MATLAB的时间序列建模与预测

时间序列预测模型

时间序列预测模型时间序列是指把某一变量在不同时间上的数值按时间先后顺序排列起来所形成的序列,它的时间单位可以是分、时、日、周、旬、月、季、年等。时间序列模型就是利用时间序列建立的数学模型,它主要被用来对未来进行短期预测,属于趋势预测法。一、简单一次移动平均预测法例1.某企业1月~11月的销售收入时间序列如下表所示.取n 4,试用简单一次移动平均法预测第12月的销售收入,并计算预测的标准误差. 二、加权一次移动平均预测法简单一次移动平均预测法,是把参与平均的数据在预测中所起的作用同等对待,但参与平均的各期数据所起的作用往往是不同的。为此,需要采用加权移动平均法进行预测,加权一次移动平均预测法是其中比较简单的一种。三、指数平滑预测法 1、一次指数平滑预测法一元线性回归模型 * 项数n的数值,要根据时间序列的特点而定,不宜过大或过小.n过大会降低移动平均数的敏感性,影响预测的准确性;n过小,移动平均数易受随机变动的影响,难以反映实际趋势.一般取n的大小能包含季节变动和周期变动的时期为好,这样可消除它们的影响.对于没有季节变动和周期变动的时间序列,项数n的取值可取较大的数;如果历史数据的类型呈上升或下降型的发展趋势,则项数n的数值应取较小的数,这样能取得较好的预测效果. 1102.7 1015.1 963.9 892.7 816.4 772.0 705.1 649.8 606.9 574.6 533.8 销售收入 11 10 9 8 7 6 5 4 3 2 1 月份 t 158542.7 993.6 12 12950.4 19016.4 17662.4 24617.6 27989.3

时间序列ARIMA模型的SAS程序编写

goptions vsize=7cm hsize=10cm; data b; format time monyy5.; input monyy7. asr; dif=dif(asr) ; keep time asr dif; cards; Jan1999 50 Feb1999 54.5 Mar1999 51 Apr1999 49 May1999 50 Jun1999 52 Jul1999 49 Aug1999 49 Sep1999 55 Oct1999 58 Nov1999 60 Dec1999 67.6 Jan2000 62 Feb2000 58.4 Mar2000 55 Apr2000 52.7 May2000 54.4 Jun2000 55.9 Jul2000 53.6 Aug2000 53.4 Sep2000 58.7 Oct2000 62.8 Nov2000 64.2 Dec2000 73.9 Jan2001 66.9 Feb2001 61.7 Mar2001 58.5 Apr2001 56.3 May2001 60.1 Jun2001 60.3 Jul2001 58 Aug2001 58.5 Sep2001 64.3 Oct2001 68.5 Nov2001 70.6 Dec2001 79.2 Jan2002 72.4

Feb2002 67.3 Mar2002 62.9 Apr2002 60.7 May2002 65.9 Jun2002 65.8 Jul2002 62.9 Aug2002 63.6 Sep2002 70.5 Oct2002 76 Nov2002 79 Dec2002 85.1 Jan2003 79.9 Feb2003 73.5 Mar2003 69.5 Apr2003 64.8 May2003 67.6 Jun2003 73.4 Jul2003 70.2 Aug2003 71.6 Sep2003 79.3 Oct2003 85.5 Nov2003 88.5 Dec2003 98.4 Jan2004 90.8 Feb2004 81.8 Mar2004 78.8 Apr2004 75 May2004 81 Jun2004 83.9 Jul2004 80.1 Aug2004 81.1 Sep2004 89.7 Oct2004 98.7 Nov2004 101.7 Dec2004 116.3 Jan2005 103.7 Feb2005 94.2 Mar2005 89.1 Apr2005 86.2 May2005 91.9 Jun2005 98.6 Jul2005 92.2 Aug2005 96.1 Sep2005 103.5

基于MATLAB的太阳黑子时间序列与仿真

2012.3 26 基于MATLAB 的太阳黑子时间序列 分析与仿真 周园 肖洪祥 董俊飞 桂林理工大学信息科学与工程学院 广西 541004 摘要:本文研究了时间序列的分析方法,具体分析了基于最大Lyapunov 指数的方法在太阳黑子时间序列分析中的应用。介绍利用MATLAB 对太阳黑子时间序列进行分析与仿真的方法,并给出相关的流程、程序和相应的仿真结果。最终证明太阳黑子时间序列是一个混沌时间序列。 关键词:混沌时间序列;最大Lyapunov 指数;太阳黑子数;仿真 0 引言 在非线性系统中,初始条件的微小变化,往往会导致结果以指数级的大小发生分离,这时我们称这个系统存在混沌。时间序列是非线性动力系统的一种模型。如果时间序列对初始条件敏感,采用传统线性时间序列分析方法将很难予以分析,因此传统时间序列预测模型对混沌时间序列的拟合和预测准确度都很差。经过混沌学的发展,可以使用序列本身的规律对其进行预测。Lyapunov 指数法即是其中之一。通过最大Lyapunov 指数的数值,可以判断一个时间序列是否是混沌时间序列,亦即该非线性系统中是否存在着混沌。本文对太阳黑子序列进行分析,证明其是一个混沌时间序列。 1 基于Lyapunov 指数的时间序列分析方法 对时间序列进行分析,首先必须进行相空间重构。根据有限的数据重构吸引子以研究系统动力行为的方法即是相空间重构。主要思想为:系统中每个分量的演化皆是由与之联系的其他分量所决定的,相关分量的信息隐含在任意其他分量的变化过程中,即是运用系统的任何一个观察量可以重构出整个系统的模型。 设时间序列为{}t x ,其中1,2,...,t N =。重构相空间m R 的元素组为: (1)(,,)(,,...,),T=1,2,3,...,T T T T m X m N X X X p τττ++-= (1) 其中,N 为重构相空间维数;τ为延迟时间间隔数,且为正整数;(1)p N m τ=--为时间序列嵌入相空间的向量数,N 为时间序列的数据点数。 由Tokens 定理,在理论条件下可任选τ。但在现实条件下时间序列都是有限长且有噪声的。因而在重构相空间时, τ的选取至关重要。目前所采用的方法大多是通过经验来选 择τ, 从而使得T X 和T X τ+相互独立并不完全相关。 Lyapunov 指数是描述奇异吸引子性质的数据量。在m 维离散系统中存在m 个Lyapunov 指数,即Lyapunov 指数族。正的Lyapunov 指数意为在此维度方向,系统以指数级速度分离。1983年,G.Grebogi 证明了若最大Lyapunov 指数 max 0λ>,则系统一定存在着混沌。因此要判断一个时间序 列是否为混沌时间序列,必须求出其最大Lyapunov 指数。为了保证领域点沿着不同的轨道运动,最近邻域点间必须有分离间隔。此处取分离间隔为/w T t =?,其中T 为用FFT 计算出的序列平均周期;t ?为序列的采样周期。 2 计算机仿真步骤 仿真步骤如图1所示。输入太阳黑子年平均序列,通过 FFT 算法计算得到其平均周期T 。计算分离间隔作为时间窗 ωτ。由公式得到嵌入维数m 。运用所得的参数使用Wolf 法 算出最大Lyapunov 指数。进而判断该序列是否是混沌序列。

利用SPSS和Matlab进行时间序列预测

§7.利用SPSS 和Matlab 进行时间序列预测 1.移动平均和滑动平均计算 例1:下表给出了某地区1990~2004年粮食产量数据(表1)。试分别用Matlab 和SPSS 软件,对该地区的粮食产量进行移动平均和和滑动平均计算。 表1 某地区1990~2004年粮食产量及其平滑结果 移动平均 滑动平均 年份 自然序号 粮食产量y (单位:104 t )三点移动 五点移动 三点滑动 五点滑动 1990 1 3149.44 1991 2 3303.66 3154.47 1992 3 3010.30 3010.30 3141.19 3242.44 1993 4 3109.61 3154.47 3253.04 3263.32 1994 5 3639.21 3141.19 3334.21 3295.88 1995 6 3253.80 3253.04 3242.44 3453.17 3461.80 1996 7 3466.50 3334.21 3263.32 3520.07 3618.81 1997 8 3839.90 3453.17 3295.88 3733.69 3692.89 1998 9 3894.66 3520.07 3461.80 3914.72 3892.78 1999 10 4009.61 3733.69 3618.81 4052.51 4019.78 2000 11 4253.25 3914.72 3692.89 4121.45 4075.78 2001 12 4101.50 4052.51 3892.78 4158.21 4148.58 2002 13 4119.88 4121.45 4019.78 4160.01 4227.01 2003 14 4258.65 4158.21 4075.78 4260.11 2004 15 4401.79 4160.01 4148.58 利用spss 进行移动平均计算主要有以下步骤: (1) 在菜单中依次选择transform->Create time series…,在弹出的对话框中 的单击function 下面的下拉条,选择Prior moving average 方法,span 框中输入数值为3(表示进行三点滑动平均)。

时间序列MATLAB程序

时间序列MATLAB程序

时间序列 移动平均法 clc,clear y=[533.8 574.6 606.9 649.8 705.1 772.0 816.4 892.7 963.9 1015.1 1102.7]; m=length(y); n=[4,5];%n为移动平均的项数 for i=1:length(n) %由于n的取值不同,下面使用了细胞数组 for j=1:m-n(i)+1

yhat{i}(j)=sum(y(j:j+n(i)-1))/n(i); end y12(i)=yhat{i}(end);%提出第12月份的预测值 s(i)=sqrt(mean((y(n(i)+1:end)-yhat{i}(1:end-1)).^2));%求预测的标准误差end y12, s %分别显示两种方法的预测值和预测的标准误差 指数平滑 一次指数平滑 程序: clc,clear yt=load('dianqi.txt'); %读取dianqi.txt的数据, n=length(yt); %求yt的长度 alpha=[0.2 0.5 0.8]; %输入a的值 m=length(alpha) yhat(1,[1:m])=(yt(1)+yt(2))/2; %求第一个预测值索引

for i=2:n yhat(i,:)=alpha*yt(i-1)+(1-alpha).*yhat(i-1,:); end yhat %求预测值 err=sqrt(mean((repmat(yt,1,m)-yhat).^2)) %求预测的标准误差 xlswrite('dianqi.xls',yhat) %把预测数据写到Excel文件,准备在word表格中使用yhat1988=alpha*yt(n)+(1-alpha).*yhat(n,:) %求1988的预测值 二次指数平滑

matlab时间序列的多时间尺度小波分析

小波分析—时间序列的多时间尺度分析 一、问题引入 1.时间序列(Time Series ) 时间序列是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列。在时间序列研究中,时域和频域是常用的两种基本形式。其中: 时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息; 频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。 然而,许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。显然,时域分析和频域分析对此均无能为力。 2.多时间尺度 河流因受季节气候和流域地下地质因素的综合作用的影响,就会呈现出时间尺度从日、月到年,甚至到千万年的多时间尺度径流变化特征。推而广之,这个尺度分析,可以运用到对人文历史的认识,以及我们个人生活及人生的思考。 3.小波分析 产生:基于以往对于时间序列分析的各种缺点,融合多时间尺度的理念,小波分析在上世纪80年代应运而生,为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。 优点: 相对于Fourier 分析:Fourier 分析只考虑时域和频域之间的一对一的映射,它以单个变量(时间或频率)的函数标示信号;小波分析则利用联合时间-尺度函数分析非平稳信号。 相对于时域分析:时域分析在时域平面上标示非平稳信号,小波分析描述非平稳信号虽然也在二维平面上,但不是在时域平面上,而是在所谓的时间尺度平面上,在小波分析中,人们可以在不同尺度上来观测信号这种对信号分析的多尺度观点是小波分析的基本特征。 应用范围: 目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应用。在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,突变点的监测和周期成分的识别以及多时间尺度的分析等。 二、小波分析基本原理 1. 小波函数 小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2 ∈ψ(有限能量空间)且满足: ?+∞ ∞-=0dt )t (ψ (1) 式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系: )a b t (a )t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2)

时间序列MATLAB程序

时间序列 移动平均法 clc,clear y=[533.8 574.6 606.9 649.8 705.1 772.0 816.4 892.7 963.9 1015.1 1102.7]; m=length(y); n=[4,5];%n为移动平均的项数 for i=1:length(n) %由于n的取值不同,下面使用了细胞数组 for j=1:m-n(i)+1

yhat{i}(j)=sum(y(j:j+n(i)-1))/n(i); end y12(i)=yhat{i}(end);%提出第12月份的预测值 s(i)=sqrt(mean((y(n(i)+1:end)-yhat{i}(1:end-1)).^2));%求预测的标准误差end y12, s %分别显示两种方法的预测值和预测的标准误差 指数平滑 一次指数平滑 程序: clc,clear yt=load('dianqi.txt'); %读取dianqi.txt的数据, n=length(yt); %求yt的长度 alpha=[0.2 0.5 0.8]; %输入a的值 m=length(alpha) yhat(1,[1:m])=(yt(1)+yt(2))/2; %求第一个预测值索引 for i=2:n yhat(i,:)=alpha*yt(i-1)+(1-alpha).*yhat(i-1,:);

end yhat %求预测值 err=sqrt(mean((repmat(yt,1,m)-yhat).^2)) %求预测的标准误差 xlswrite('dianqi.xls',yhat) %把预测数据写到Excel文件,准备在word表格中使用yhat1988=alpha*yt(n)+(1-alpha).*yhat(n,:) %求1988的预测值 二次指数平滑

时间序列模型的建立与预测

第六节时间序列模型的建立与预测 ARIMA过程y t用 Φ (L) (Δd y t)= α+Θ(L) u t 表示,其中Φ (L)和Θ (L)分别是p, q阶的以L为变数的多项式,它们的根都在单位圆之外。α为Δd y t过程的漂移项,Δd y t表示对y t 进行d次差分之后可以表达为一个平稳的可逆的ARMA 过程。这是随机过程的一般表达式。它既包括了AR,MA 和ARMA过程,也包括了单整的AR,MA和ARMA过程。 可取 图建立时间序列模型程序图 建立时间序列模型通常包括三个步骤。(1)模型的识别,(2)模型参数的估计,(3)诊断与检验。

模型的识别就是通过对相关图的分析,初步确定适合于给定样本的ARIMA模型形式,即确定d, p, q的取值。 模型参数估计就是待初步确定模型形式后对模型参数进行估计。样本容量应该50以上。 诊断与检验就是以样本为基础检验拟合的模型,以求发现某些不妥之处。如果模型的某些参数估计值不能通过显著性检验,或者残差序列不能近似为一个白噪声过程,应返回第一步再次对模型进行识别。如果上述两个问题都不存在,就可接受所建立的模型。建摸过程用上图表示。下面对建摸过程做详细论述。 1、模型的识别 模型的识别主要依赖于对相关图与偏相关图的分析。在对经济时间序列进行分析之前,首先应对样本数据取对数,目的是消除数据中可能存在的异方差,然后分析其相关图。 识别的第1步是判断随机过程是否平稳。由前面知识可知,如果一个随机过程是平稳的,其特征方程的根都应在单位圆之外;如果 (L) = 0的根接近单位圆,自相关函数将衰减的很慢。所以在分析相关图时,如果发现其衰减很慢,即可认为该时间序列是非平稳的。这时应对该时间序列进行差分,同时分析差分序列的相关图以判断差分序列的平稳性,直至得到一个平稳的序列。对于经济时间序列,差分次数d通常只取0,1或2。 实际中也要防止过度差分。一般来说平稳序列差分得到的仍然是平稳序列,但当差分次数过多时存在两个缺点,(1)序列的样本容量减小;(2)方差变大;所以建模过程中要防止差分过度。对于一个序列,差分后若数据的极差变大,说明差分过度。 第2步是在平稳时间序列基础上识别ARMA模型阶数p, q。表1给出了不同ARMA模型的自相关函数和偏自相关函数。当然一个过程的自相关函数和偏自相关函数通常是未知的。用样本得到的只是估计的自相关函数和偏自相关函数,即相关图和偏相关图。建立ARMA模型,时间序列的相关图与偏相关图可为识别模型参数p, q提供信息。相关图和偏相关图(估计的自相关系数和偏自相关系数)通常比真实的自相关系数和偏自相关系数的方差要大,并表现为更高的自相关。实际中相关图,偏相关图的特征不会像自相关函数与偏自相关函数那样“规范”,所以应该善于从相关图,偏相关图中识别出模型的真实参数p, q。另外,估计的模型形式不是唯一的,所以在模型识别阶段应多选择几种模型形式,以供进一步选择。

多因素时间序列的灰色预测模型

第 39卷 第 2期 2007年 4月 西 安 建 筑 科 技 大 学 ( 学 报 ( 自然科学版) ) V ol.39 No.2 Apr . 2007 J 1Xi ’an Univ . of Arch . & Tech . Natural Scie nce Editio n 多因素时间序列的灰色预测模型 苏变萍 ,曹艳平 ,王 婷 (西安建筑科技大学理学院 ,陕西 西安 710055) 摘 要:对于传统的单因素时间序列预测法在实际应用中的不足之处 ,提出采用灰色 DGM (1 ,1) 模型和多元 线性回归原理相结合的方法 ,综合各种因素建立多因素时间序列的灰色预测模型。它首先利用 DGM (1 ,1) 模 型对影响事物发展趋势的各项因素进行预测 ;然后利用多元线性回归法将各种因素综合起来 ,以预测事物的 发展趋势。最后将该模型应用于预测分析陕西省的就业状况 ,取得了较好的预测效果 ,同时也验证了此模型 的可行性。 关键词: 时间序列 ;单因素 ;多因素 ;预测模型 中图分类号:TB114 文献标识码:A 文章编号 :100627930 2007 022******* ( ) 多年以来 ,对时间序列的预测研究 ,大多是停留在对单因素时间序列上 ,对其预测通常采用的是趋 势外推法 ,而且该方法适合于原始时间序列规律性较好的情况 ,若时间序列中包含了随机因素的影 响 ,再采用这种方法得出的预测结果可能会失真. 同时 ,客观世界又是复杂多变的 ,事物的发展通常不 是由某个单个因素决定 ,往往是许多错综复杂的因素综合作用的结果 ,为了对某项事物的发展做出更加 符合实际的预测 ,这就需要来探讨多因素时间序列的预测问题 ,正是基于这些 ,本文在应用灰色 D GM (1 ,1)模型对单因素时间序列预测的基础上 ,结合多元回归原理 ,提出建立多因素时间序列的灰色预测 模型 ,这样就充分发挥了二者的优点 ,既克服了时间序列的随机因素影响 ,又综合考虑了影响事物发展 的多种因素 ,从而达到提高预测精度和增加预测结果可靠性的效果. 1 模型的建立 设 Y = (y (1) , y (2) , …, y( n)) 表示事物发展的特征因素时间序列, X i = (x i (1) , x i (2) , …, x i ( n)) (i = 1 ,2 , …, p) 表示影响事物发展的单因素时间序列. 1.1 单因素时间序列的 DGM(1 ,1) 模型 对于单因素原始时间序列{ X i } (i = 1 ,2 , …, p) ,根据灰色系统理论建模方法 ,得 D GM (1 ,1) 模 型 : x i (1) a (1 - a) + a b ,t > 1 1.2 多因素时间序列的预测模型 为了能将影响事物发展的众多因素结合起来进行综合预测和相关因素的预测分析 ,在经过多次研 究与比较后,采用多元回归的原理建立多因素时间序列的灰色预测模型: y t = a 0 + a 1 x 1 t + a 2 x 2 t + …+ a p x p t 2 式中 y t 为该事物在 t 时刻的预测值;x i t i = 1 ,2 , …, p 为第 i 个单因素 ,通过应用上述的灰色 3收稿日期 :2005201209 修改稿日期:2006204212 基金项目 :陕西省教育厅专项基金项目 01J K133( ) 作者简介 :苏变萍 19632( ) ,女 ,山西忻州人 ,副教授 ,博士研究生 ,研究方向为计量经济学. [122] (0) (0) (0) ( ) ( ) [4] (0) x (1) = x (1) ^ x (t) = (1) ( ) ^ ^ ^ ^ ^ ^

MATLAB动态神经网络在时间序列预测中的应用

MATLAB动态神经网络在时间序列预测中的应用 摘要:本文在介绍了Matlab神经网络工具箱的基础上,主要对时间序列预测工具箱的使用作了说明,并用实例仿真说明如何进行时间序列预测的调用实现,通过不断的调整参数,最后使训练的模型比较理想,满足实际的需求,表明了直接使用时间序列预测的有效性,并为Matlab神经网络工具箱的使用提供了新的方法。 关键词:Matlab;神经网络;时间序列;预测 引言 时间序列是根据时间顺序得到跟时间相关的变量或者参数的观测数据[1]。对时间序列的研究主要是挖掘其中有价值的信息,找到其中变化的内在规律[2]。时间序列预测是时间序列分析研究的主要内容,是指根据现有的和历史的时间序列的数据,建立能反映时间序列中所包含的动态依存关系的数学模型[3],从而能对序列未来的趋势做出合理的预测。简单的说,时间序列预测就是用已有的数据预测下一个时间段的值。目前,时间序列预测已经广泛应用在自然界、经济、化学、科学工程等各个领域。 随着Matlab版本的不断更新,神经网络工具箱不断的完善,使得仿真的实现日益简单,R2010b后的版本对时间序列预测的实现不需要手动写代码,网络训练完毕,从Simple Script可看到网络代码,并可对代码进行编辑、改编,因此,只要调用就可应用在各个领域。本文结合时间序列预测的特点,将Matlab神经网络工具箱中的时间序列预测应用到温度预测的实例中,通过快速的仿真及不断的调整参数,从而形成较理想的数学模型,为后期进行温度的预测奠定了基础。 1Matlab神经网络工具箱简介 神经网络分为静态和动态两类。静态神经网络是无反馈、无记忆的,输出仅依赖于当前的输入,例如BP神经网络和RBF神经网络。动态神经网络是有记忆的神经网络,其输出依赖于当前和以前的输入。动态神经网络又分为有反馈和无反馈,有反馈指输出依赖于当前输入和前一个输入输出,无反馈指输出依赖于当前和之前的输入。因此,动态神经网络比静态神经网络功能强,本文选择动态神经网络进行时间序列预测。 Matlab神经网络工具箱提供了一系列用于模型训练的工具,包括曲线拟合工具箱、模式识别工具箱、聚类工具箱和时间序列工具箱,利用这些工具箱可进行快速的调整参数,通过仿真得到直观的结果。另外,Matlab神经网络工具箱还提供人机交互界面,可根据提示一步一步的完成模型的训练,并对仿真的结果进行分析,直到满足要求为止。 选择时间序列工具箱或者直接在命令窗口中输入ntstool,可打开时间序列预测工具箱界面,根据数据选择符合哪种情况,根据人机交互界面的提示,将数据

时间序列分析-降水量预测模型

课程名称: 时间序列分析 题目: 降水量预测 院系:理学院 专业班级:数学与应用数学10-1 学号: 87 学生姓名:戴永红 指导教师:__潘洁_ 2013年 12 月 13日

1.问题提出 能不能通过以前的降水序列为样本预测出2002的降水量? 2.选题 以国家黄河水利委员会建站的山西省河曲水文站1952年至2002年51年的资料为例,以1952年至2001年50年的降水序列作为样本,建立线性时间序列模型并预测2002年的降水状态与降水量,并与2002年的实际数据比较说明本模型的具体应用及预测效果。资料数据见表1。 表1 山西省河曲水文站55年降水量时间序列

3.原理 模型表示 均值为0,具有有理谱密度的平稳时间序列的线性随机模型的三种形式,描述如下: 1、()AR p 自回归模型:1122t t t p t p t ωφωφωφωα-------=L 由2p +个参数刻画; 2、()MA q 滑动平均模型:1122t t t t q t q ωαθαθαθα---=----L 由2q +个参数刻画; 3、(,)ARMA p q 混和模型: 11221122t t t p t p t t t q t q ωφωφωφωαθαθαθα----------=----L L (,)ARMA p q 混和模型由3p q ++个参数刻画; 自相关函数k ρ和偏相关函数kk φ 1、自相关函数k ρ刻画了任意两个时刻之间的关系,0/k k ργγ= 2、偏相关函数kk φ刻画了平稳序列任意一个长1k +的片段在中间值11,t t k ωω++-L 固定的条件下,两端t ω,t k ω+的线性联系密切程度。 3、线性模型k ρ、kk φ的性质 表2 三种线性模型下相关函数性质 模型识别

MATLAB在时间序列分析中的应用

《MATLAB语言》课程论文 MATLAB在时间序列分析中的应用 姓名:李伟 学号:12010245258 专业:通信工程 班级:10级通信一班 指导老师:汤全武 学院:物理电气信息学院 完成日期:2011.12.10

MATLAB 在时间序列分析中的应用 (李伟 12010245258 2010级通信1班) [摘要]Matlab 强大的科学计算和可视化功能使其在各个领域中得到了广泛的应用.采用Maflab 进行时序列分析可以极大地简化编程工作,并具有界面友好、操作方便的特点.介绍了使用Matlab 进行时间序列分析的基本方法和步骤,并通过实例进行了说明. [关键词]Matlab 时间序列 谱分析 一、问题的提出 1984年美国的MathWorks 公司推出了Mat —lab ,在许多领域得到了充分的利用.其强大的科学计算与可视化功能,开放式的可扩展环境以及其各种功能强大的工具箱(ToolBox),使得它成为计算机辅助设计与分析、算法研究和应用开发的基本工具和首选平台.时间序列分析是采用参数模型对观测得到的有序随机数据进行分析的一种处理方法,通过时间序列可以对系统的动态特性进行分析、对系统的状态进行预测,从而为系统的状态监控和故障诊断提供依据.Matlab 工具箱中包含了许多函数,借助于这些函数可以方便地实现系统的时间序列分析. 二、时间序列分析原理及实现 时间序列分析(autoRegressive movingAverage)是对有序的随机数据(信号)处理的一种方法,它的出发点是承认数据的有序性和相关性,通过数据内部的相互关系来辨识系统的变化规律,它的建模方法是将系统的输出看作是在白噪声输入下的响应.具体地讲,就是针对一组试验数据,建立系统的参数模型,ARMA(m ,n)的参数模型可以表示为: 10()()()m n x t x t t τλτλ?τ?σλ==+-=-∑∑ (1) 式中:{ (t), (t 一1), (t 一2)? 。 (t —m)}为有序的时间序列,{ (t), (t 一1),? , (t —A)}为有序的白噪声序列,方程的左边为系统的自回归部分,它反映了系统的固有特性,右边表示系统的滑动平均部分,当0τ?=时为MA 模型,当0λ?=时为AR 模型.辨识系统模型参数的方法有很多种,常用的方法主要有最dx-乘法、辅助变量法、Marple 法等.根据不同的需要和研究对象可以采用不同的建模方法.在建立了系统的模型后,可以对系统的状态进行预测、分析预测误差、进行谱分析.关于这些算法的基本原理,可以参考文献[2~4],这些在Matlab 中都提供了相应的函数. 采用Matlab 进行时间序列分析主要包括4步.

时间序列分析R语言程序

#例 2.1 绘制 1964—— 1999 年中国年纱产量序列时序 图(数据见附录 1.2) 附录 1.2.csv",header=T)# 如果有标题,用 T;没有标题用F plot(Data1.2,type='o') #例 2.1 续 tdat1.2=Data1.2[,2] a1.2=acf(tdat1.2) #例 2.2 绘制 1962 年 1 月至 1975 年 12 月平均每头奶 牛产奶量序列时序图(数据见附录 1.3) 附录 1.3.csv",header=F) tdat1.3=as.vector(t(as.matrix(Data1.3)))[1:168]#矩阵转置转向量 plot(tdat1.3,type='l') #例 2.2 续 acf(tdat1.3)#把字去掉 pacf(tdat1.3) #例 2.3 绘制 1949—— 1998 年北京市每年最高气温序 列时序图 附录 1.4.csv",header=T) plot(Data1.4,type='o')附录 1.5.csv",header=T) plot(Data1.5,type='o',xlim=c(1950,2010),ylim=c(60,100) ) tdat1.5=Data1.5[,2] a1.5=acf(tdat1.5) #白噪声检验 Box.test(tdat1.5,type="Ljung-Box",lag=6) Box.test(tdat1.5,type="Ljung-Box",lag=12) #例 2.5 续选择合适的ARMA模型拟合序列 acf(tdat1.5) pacf(tdat1.5) #根据自相关系数图和偏自相关系数图可以判断为 AR ( 1)模型 #例 2.5 续 P81 口径的求法在文档上 #P83 arima(tdat1.5,order=c(1,0,0),method="ML")#极大似然估计 ar1=arima(tdat1.5,order=c(1,0,0),method="ML") summary(ar1) ev=ar1$residuals acf(ev) pacf(ev) #参数的显著性检验 t1=0.6914/0.0989 p1=pt(t1,df=48,lower.tail=F)*2 #ar1 的显著性检验 ##不会定义坐标轴t2=81.5509/ 1.7453 #例 2.3 续p2=pt(t2,df=48,lower.tail=F)*2 tdat1.4=Data1.4[,2]#残差白噪声检验 a1.4=acf(tdat1.4)Box.test(ev,type="Ljung-Box",lag=6,fitdf=1) #例 2.3 续Box.test(ev,type="Ljung-Box",lag=12,fitdf=1) Box.test(tdat1.4,type="Ljung-Box",lag=6)#例 2.5 续 P94 预测及置信区间 Box.test(tdat1.4,type="Ljung-Box",lag=12)predict(arima(tdat1.5,order=c(1,0,0)),n.ahead=5) tdat1.5.fore=predict(arima(tdat1.5,order=c(1,0,0)),n.ahea #例 2.4 随机产生1000 个服从标准正态分布的白噪声d=5) 序列观察值,并绘制时序图 Data2.4=rnorm(1000,0,1)U=tdat1.5.fore$pred+1.96*tdat1.5.fore$se Data2.4L=tdat1.5.fore$pred-1.96*tdat1.5.fore$se plot(Data2.4,type='l') #例 2.4 续plot(c(tdat1.5,tdat1.5.fore$pred),type="l",col=1:2) a2.4=acf(Data2.4)lines(U,col="blue",lty="dashed") #例 2.4 续lines(L,col="blue",lty="dashed") Box.test(Data2.4,type="Ljung-Box",lag=6) Box.test(Data2.4,type="Ljung-Box",lag=12)#例 3.1.1 例 3.5例3.5续 #方法一 plot.ts(arima.sim(n=100,list(ar=0.8))) #例 2.5 对 1950—— 1998 年北京市城乡居民定期储蓄#方法二 所占比例序列的平稳性与纯随机性进行检验x0=runif(1) x=rep(0,1500)

时间序列分析R语言程序

#例2.1 绘制1964——1999年中国年纱产量序列时序图(数据见附录1.2) Data1.2=read.csv("C:\\Users\\Administrator\\Desktop \\附录1.2.csv",header=T)#如果有标题,用T;没有标题用F plot(Data1.2,type='o') #例2.1续 tdat1.2=Data1.2[,2] a1.2=acf(tdat1.2) #例2.2绘制1962年1月至1975年12月平均每头奶牛产奶量序列时序图(数据见附录1.3) Data1.3=read.csv("C:\\Users\\Administrator\\Desktop \\附录1.3.csv",header=F) tdat1.3=as.vector(t(as.matrix(Data1.3)))[1:168]#矩阵转置转向量 plot(tdat1.3,type='l') #例2.2续 acf(tdat1.3) #把字去掉 pacf(tdat1.3) #例2.3绘制1949——1998年市每年最高气温序列时序图 Data1.4=read.csv("C:\\Users\\Administrator\\Desktop \\附录1.4.csv",header=T) plot(Data1.4,type='o') ##不会定义坐标轴 #例2.3续 tdat1.4=Data1.4[,2] a1.4=acf(tdat1.4) #例2.3续 Box.test(tdat1.4,type="Ljung-Box",lag=6) Box.test(tdat1.4,type="Ljung-Box",lag=12) #例2.4随机产生1000个服从标准正态分布的白噪声序列观察值,并绘制时序图 Data2.4=rnorm(1000,0,1) Data2.4 plot(Data2.4,type='l') #例2.4续 a2.4=acf(Data2.4) #例2.4续 Box.test(Data2.4,type="Ljung-Box",lag=6) Box.test(Data2.4,type="Ljung-Box",lag=12) #例2.5对1950——1998年市城乡居民定期储蓄所占比例序列的平稳性与纯随机性进行检验 Data1.5=read.csv("C:\\Users\\Administrator\\Desktop \\附录1.5.csv",header=T) plot(Data1.5,type='o',xlim=c(1950,2010),ylim=c(60,10 0)) tdat1.5=Data1.5[,2] a1.5=acf(tdat1.5) #白噪声检验 Box.test(tdat1.5,type="Ljung-Box",lag=6) Box.test(tdat1.5,type="Ljung-Box",lag=12) #例2.5续选择合适的ARMA模型拟合序列 acf(tdat1.5) pacf(tdat1.5) #根据自相关系数图和偏自相关系数图可以判断为AR (1)模型 #例2.5续P81 口径的求法在文档上 #P83 arima(tdat1.5,order=c(1,0,0),method="ML")#极大似然估计 ar1=arima(tdat1.5,order=c(1,0,0),method="ML") summary(ar1) ev=ar1$residuals acf(ev) pacf(ev) #参数的显著性检验 t1=0.6914/0.0989 p1=pt(t1,df=48,lower.tail=F)*2 #ar1的显著性检验 t2=81.5509/ 1.7453 p2=pt(t2,df=48,lower.tail=F)*2 #残差白噪声检验 Box.test(ev,type="Ljung-Box",lag=6,fitdf=1) Box.test(ev,type="Ljung-Box",lag=12,fitdf=1) #例2.5续P94预测及置信区间 predict(arima(tdat1.5,order=c(1,0,0)),n.ahead=5) tdat1.5.fore=predict(arima(tdat1.5,order=c(1,0,0)),n.a head=5) U=tdat1.5.fore$pred+1.96*tdat1.5.fore$se L=tdat1.5.fore$pred-1.96*tdat1.5.fore$se plot(c(tdat1.5,tdat1.5.fore$pred),type="l",col=1:2) lines(U,col="blue",lty="dashed") lines(L,col="blue",lty="dashed") Word 文档

MATLAB动态神经网络在时间序列预测中的应用

龙源期刊网 https://www.360docs.net/doc/648277083.html, MATLAB动态神经网络在时间序列预测中的应用 作者:张云丽韩宪忠王克俭 来源:《科学与技术》2014年第08期 摘要:本文在介绍了Matlab神经网络工具箱的基础上,主要对时间序列预测工具箱的使 用作了说明,并用实例仿真说明如何进行时间序列预测的调用实现,通过不断的调整参数,最后使训练的模型比较理想,满足实际的需求,表明了直接使用时间序列预测的有效性,并为Matlab神经网络工具箱的使用提供了新的方法。 关键词:Matlab;神经网络;时间序列;预测 中图分类号:TP391.41 文献识别码:A 引言 时间序列是根据时间顺序得到跟时间相关的变量或者参数的观测数据[1]。对时间序列的 研究主要是挖掘其中有价值的信息,找到其中变化的内在规律[2]。时间序列预测是时间序列 分析研究的主要内容,是指根据现有的和历史的时间序列的数据,建立能反映时间序列中所包含的动态依存关系的数学模型[3],从而能对序列未来的趋势做出合理的预测。简单的说,时 间序列预测就是用已有的数据预测下一个时间段的值。目前,时间序列预测已经广泛应用在自然界、经济、化学、科学工程等各个领域。 随着Matlab版本的不断更新,神经网络工具箱不断的完善,使得仿真的实现日益简单, R2010b后的版本对时间序列预测的实现不需要手动写代码,网络训练完毕,从Simple Script 可看到网络代码,并可对代码进行编辑、改编,因此,只要调用就可应用在各个领域。本文结合时间序列预测的特点,将Matlab神经网络工具箱中的时间序列预测应用到温度预测的实例中,通过快速的仿真及不断的调整参数,从而形成较理想的数学模型,为后期进行温度的预测奠定了基础。 1Matlab神经网络工具箱简介 神经网络分为静态和动态两类。静态神经网络是无反馈、无记忆的,输出仅依赖于当前的输入,例如BP神经网络和RBF神经网络。动态神经网络是有记忆的神经网络,其输出依赖于当前和以前的输入。动态神经网络又分为有反馈和无反馈,有反馈指输出依赖于当前输入和前一个输入输出,无反馈指输出依赖于当前和之前的输入。因此,动态神经网络比静态神经网络功能强,本文选择动态神经网络进行时间序列预测。

典型时间序列模型分析..doc

实验1 典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型:AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对对上述三种模型进行统计特性分析,通过对2 阶模型的仿真分析,探讨几种模型的适用范围,并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有 AR(2)模型, X(n)=-0.3X(n-1)-0.5X(n-2)+W(n) 其中:W(n)是零均值正态白噪声,方差为4。 (1)用MA TLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形 (2)用产生的500 个观测点估计X(n)的均值和方差 (3)画出理论的功率谱 (4)估计X(n)的相关函数和功率谱 【分析】给定二阶的AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 1 2 1 ()10.30.5H z z z --= ++ 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, ()() 2 2 12 12exp 11x w z jw P w a z a z σ--==++ 可以看出, () x P w 完全由两个极点位置决定。 对于 AR 模型的自相关函数,有下面的公式: 这称为 Yule-Walker 方程,当相关长度大于p 时,由递推式求出: 这样,就可以求出理论的 AR 模型的自相关序列。

1.产生样本函数,并画出波形 2.题目中的AR 过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20 点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2 阶AR 过程 plot(x,'r'); ylabel('x(n)'); title('邹先雄——产生的AR 随机序列'); grid on; 得到的输出序列波形为: 2.估计均值和方差 可以首先计算出理论输出的均值和方差,得到 x m ,对于方差可以先求出理论自相 关输出,然后取零点的值。

相关文档
最新文档