Dust mass-loss rates from AGB stars in the Fornax and Sagittarius dwarf Spheroidal galaxies

Dust mass-loss rates from AGB stars in the Fornax and Sagittarius dwarf Spheroidal galaxies
Dust mass-loss rates from AGB stars in the Fornax and Sagittarius dwarf Spheroidal galaxies

a r X i v :0710.4468v 2 [a s t r o -p h ] 25 O c t 2007

Mon.Not.R.Astron.Soc.000,1–12(2002)Printed 2February 2008

(MN L A T E X style ?le v2.2)

Dust mass-loss rates from AGB stars in the Fornax and Sagittarius

dwarf Spheroidal galaxies

Eric Lagadec 1??Albert A.Zijlstra 1,2,Mikako Matsuura 3,4,J.W.Menzies 2,Jacco Th.van Loon 5,Patricia A.Whitelock 2,6

1

Department of Astronomy,University of Manchester,Sackville street,Manchester M601QD,UK 2South African Astronomical Observatory,PO Box 9,7935Observatory,South Africa

3Division of Optical and IR Astronomy,National Astronomical Observatory of Japan,Osawa 2-21-1,Mitaka,Tokyo 181-8588,Japan 4Department of Physics and Astronomy University College London Gower Street,London WC1E 6BT,UK

5Astrophysics Group,School of Physical &Geographical Sciences,Keele University,Staffordshire ST55BG,UK

6National Astrophysics and Space Science Programme,Department of Mathematics and Applied Mathematics,and Department of Astronomy,University of Cape Town,Rondebosch,7701,South Africa

Accepted .Received 1988

ABSTRACT

To study the effect of metallicity on the mass-loss rate of asymptotic giant branch (AGB)stars,we have conducted mid-infrared photometric measurements of such stars in the Sagittarius (Sgr dSph)and Fornax dwarf spheroidal galaxies with the 10-μm camera VISIR at the VLT.We derive mass-loss rates for 29AGB stars in Sgr dSph and 2in Fornax.The dust mass-loss rates are estimated from the K ?[9]and K ?[11]colours.Radiative transfer models are used to check the consistency of the method.Published IRAS and Spitzer data con?rm that the same tight correlation between K ?[12]colour and dust mass-loss rates is observed for AGB stars from galaxies with different metallicities,i.e.the Galaxy,the LMC and the SMC.

The derived dust mass-loss rates are in the range 5×10?10to 3×10?8M ⊙yr ?1for the observed AGB stars in Sgr dSph and around 5×10?9M ⊙yr ?1for those in Fornax;while val-ues obtained with the two different methods are of the same order of magnitude.The mass-loss rates for these stars are higher than the nuclear burning rates,so they will terminate their AGB phase by the depletion of their stellar mantles before their core can grow signi?cantly.Some observed stars have lower mass-loss rates than the minimum value predicted by theoretical models.

Key words:circumstellar matter –infrared:stars.

1INTRODUCTION

Stars with initial mass in the range 0.8–8M ⊙go through an asymp-totic giant branch (AGB)phase towards the end of their evolution.This evolutionary phase is dominated by strong mass loss.The star expels material at rates up to 10?4M ⊙yr ?1,eventually ejecting between 20and 80per cent of its initial main-sequence mass.This process is of great importance for the chemical evolution of our Galaxy.Mass loss from AGB stars contributes to around half of the gas recycled by stars (Maeder 1992),and is a dominant source of Galactic dust.

The mass-loss mechanism of AGB stars is a two-step pro-cess.First,shocks due to pulsations from the star produce gas over-densities in an extended atmosphere (e.g.H¨o fner et al.1998).This triggers the formation of dust.Secondly,radiation pressure acceler-

?

E-mail:https://www.360docs.net/doc/6e8477613.html,gadec@https://www.360docs.net/doc/6e8477613.html,

?Based on observations collected at the European Southern Observatory,Chile (ESO Programme 075.D-0443(A))

ates the dust to the escape velocity.The gas is carried along through friction with the dust particles.Pulsations alone can explain mass-loss rates up to about 10?7M ⊙yr ?1,but the much higher rates ob-served require dust-driven winds (Bowen &Wilson 1991).The importance of metallicity on the mass-loss rates of AGB stars is not well understood.In low metallicity environments less dust is expected to form,leading to lower predicted mass-loss rates.Theoretical work by Bowen &Willson (1991)predicts that for metallicities below [Fe/H]=?1dust-driven winds fail,and the wind becomes pulsation-driven.This would affect the evolution of a low metallicity host galaxy in two obvious ways.First the stellar dust production would be much reduced and therefore the composi-tion of the material out of which new stars and planets were forming would be signi?cantly different.Secondly the much weaker dust-driven winds allow the degenerate core of the AGB star to grow for longer,resulting in much higher masses for the remnant white dwarfs.In extreme cases,the core could reach the Chandrasekhar limit before mass loss terminates its evolution.The Bowen &Will-son mass-loss rates predict the occurrence of AGB supernovae at

2Eric Lagadec et al.

very low metallicities(Zijlstra2004).It is therefore important to test whether dust-driven winds exist at low metallicity.

Observations in the Magellanic Clouds and the Galaxy have shown that the dust mass-loss rates are smaller in the Magellanic Clouds.Assuming that the dust-to-gas ratio is a linear function of metallicity([Fe/H]=?0.6(Venn1999)and[Fe/H]=?0.3for the Small and Large Magellanic Clouds respectively)yields the con-clusion that the total mass-loss rate(dust+gas)may be similar in the three galaxies(van Loon2000,2006),although this assumption may not be strictly correct,as the dust in the carbon stars comes from primary carbon.In order to obtain further constraints on the effect of metallicity on the mass-loss rates from AGB stars,and to know if dust-driven mass loss can occur at very low metallicities, we need to study the mass-loss rates from more metal-poor AGB stars.

The dusty circumstellar envelopes surrounding these AGB stars absorb the radiation from the central star and re-emit it in the thermal infrared.Observations at infrared wavelengths have en-abled the study of mass-loss from Galactic and Magellanic Clouds AGB stars.Thanks to the sensitivity achievable with mid-infrared

instruments on8m class ground-based telescopes,it is now possi-ble to perform such studies for AGB stars in more distant Local Group galaxies.

We thus observed AGB stars in the Fornax dSph(Fornax)and Sagittarius(Sgr dSph)dwarf spheroidal galaxies using the mid-infrared camera VISIR on the VLT(ESO,Chile).Fornax is a satel-lite galaxy of the Milky Way,at a distance of~138kpc.Sgr dSph is located behind the Galactic disc and bulge at a distance of~24 kpc.It is currently being torn apart by tidal forces(Majewski et al. 2003).Those galaxies have low metallicities(see section2).Fur-thermore the distances of both galaxies are quite well known,mak-ing an estimation of the mass-loss rates easier than it is for stars within the Galaxy.

2OBSERV ATIONS AND TARGET SELECTION

2.1Target galaxies

We selected targets in two satellite galaxies of the Milky Way:the Sgr dSph and the Fornax Dwarf Spheroidal galaxy.Their distance moduli are taken as17.02mag for Sgr dSph(Mateo et al.1995) and20.66mag for Fornax(Bersier2000).

Sgr dSph is located behind the Galactic Bulge.It is a sub-stantial galaxy,but it is being disrupted by the Milky Way:the tidal tails surround the Galaxy.The majority of its stellar popu-lation has a metallicity in the range[Fe/H]=?0.4to?0.7and an age of8.0±1.5Gyr(Bellazzini et al.2006).Two of the four planetary nebulae in this galaxy have identical abundances of [Fe/H]=?0.55(Dudziak et al.2000).The carbon stars discovered by Whitelock et al.(1996,1999)are plausibly related to the same population as the planetary nebulae.A more metal-rich population with[Fe/H]=?0.25also exists(Zijlstra et al.2006a;Bonifacio et al.2004),although it may not be uniformly distributed over the galaxy.Finally,there is a minor,very metal-poor,population with Fe/H]~?2which is seen in the globular clusters,but also in one tidal-tail planetary nebula.

Fornax shows similar mass and properties to Sgr dSph,but is too far from the Galaxy to suffer obvious tidal disruption.It also shows evidence for an extended period of star formation with the metallicity increasing over time.The younger population(at ~3108yr even younger than Sgr dSph)has a metallicity of

01234 -4

-6

-8

Figure1.The M K

s

,J?K diagram of the observed sample.Squares rep-resent the Sgr dSph stars and triangles the Fornax stars.Circles show the stellar population of Fornax(See Section2.2for more details).

[Fe/H]=?0.7(Saviane et al.2000)to~?0.6(Pont et al.2004). The dominant population has an age of2–10Gyr and metallicity [Fe/H]=?1.0(Saviane et al.)or?0.9(Pont et al.).There is also a very metal-poor population as in Sgr dSph,with[Fe/H]~?2.The most metal-rich population is found mainly in the central regions.

2.2Target selection

The targets within Sgr dSph(this galaxy subtends an angle of~10o in the sky and its center coordinates areα(2000)=18h55m04s andδ(2000)=-30o28′42′′))were selected in two ways.First,we used the list of carbon stars given by Whitelock et al.(1999—their table1)with preference being given to the Miras with mea-sured periods or to stars with near-infrared red colours;these are spectroscopically con?rmed carbon stars.These are the stars with WMIF names in column3of Table1.Secondly,stars were selected from the two micron all sky survey(2MASS)catalogue with the following properties:8

Mass-losing AGB stars in Sgr and Fornax3

is probably represented.de Laverny et al.(2006)?nd for two Sgr dSph carbon stars(not observed by us)[M/H]=?0.5and?0.8.

Two carbon stars in Fornax were observed:these have simi-larly red colours to the Sgr dSph sample and are spectroscopically con?rmed carbon stars(Matsuura et al.2007).Both stars are lo-cated in the outer regions of Fornax(7′and15′from the centre). We assume that they have the[Fe/H]~?0.9of the dominant pop-ulation,as the more metal-rich population is concentrated to the centre(Saviane et al.2000).

We also observed the star IRAS20176–1458,selected from Mauron et al.(2004).This is a carbon star in the Galactic halo.All AGB carbon stars in the halo are expected to have escaped from one of the satellite galaxies,and the proximity of this star to the main body of Sgr dSph may indicate an association.Assuming an absolute magnitude of M bol=?4,its distance is around15kpc which is not inconsistent with the tidal tail of Sgr(Law et al.2005). The star lies several degrees off the location of the tidal stream (Majewski et al.2003),but as noted by these authors,carbon stars may trace a different tidal event than the M stars.Mauron et al. (2004)argue against an association with Sgr dSph.

The interstellar reddening towards Fornax is quite small, E(B?V)~0.03,and thus negligible in K s(Demers et al.2002). For Sgr dSph,the reddening is estimated to be E(B?V)~0.14 (Layden&Sarajedini2000).The reddening law from Rieke& Lebofsky(1985)yields(A J,A H,A K)=(0.13,0.09,0.05).The star Sgr01is closer to the Bulge and may suffer a higher extinction:the NED model indicates E(B?V)=0.24for this position.

The observed stars in both galaxies are shown in the(de-reddened)M K vs J?K diagram in Fig.1.Squares represent stars in Sgr dSph and triangles stars in Fornax.To show that the programme stars are on the AGB,we over-plotted the distribution of Fornax?eld stars:these data come from an unpublished sur-vey using the1.4m IRSF at Sutherland,and refer to a large area around the centre of Fornax.The tip of the red giant branch(RGB) is clearly visible,with a gap just above it showing the onset of hy-drogen burning and thermal pulses.

Most of the selected stars have magnitudes consistent with thermal-pulsing AGB stars.They show a similar range to the mass-losing AGB stars in the SMC(Lagadec et al.2007),but tend to be located towards the fainter end of those stars,with only three stars above M K=?8.

2.3VISIR observations

The observations were made with the VLT spectrometer and im-ager for the mid-infrared(VISIR,Lagage et al.2004),located at the Cassegrain focus of the Very Large Telescope(VLT)UT3at Paranal,Chile.The settings of our observations gave a0.075′′per pixel scale and a?eld of view of32.5′′×32.5′′.These observations were carried out in visitor mode during4nights from the24th to the28th of July2005.We observed29AGB stars in Sgr dSph,2 in Fornax and1in the Galactic halo.Some observations were re-peated if the?rst measurement was made in poor seeing conditions. The log of the observations is presented Table1.

The observations were affected by unstable weather:approx-imately half the time was non-photometric and could not be used. Seeing as reported by the optical seeing monitor varied between0.4 and3arcsec.

To reduce the background emission from the sky and the tele-scope,we used the standard mid-infrared technique of chopping and nodding.To avoid saturation of the detector by the ambient photon background,each individual nod cycle was split into many short exposures of~10ms each.This procedure was repeated for as many cycles as needed to obtain suf?cient signal-to-noise.

The data reduction was performed using our own IDL rou-tines.Images were corrected for bad pixels,and then co-added to produce a single?at-?eld corrected image,comprising the average of the chop and nod differences.Standard stars were observed and analysed in the same way to?ux-calibrate our observations.The ?ux calibration was performed using standard aperture photometry methods,applied to the programme and reference stars.

We observed all the stars with the VISIR PAH1?lter (λc=8.59μm,?λ=0.42μm).The brighter stars were also ob-served with the VISIR PAH2?lter(λc=11.25μm,?λ=0.59μm). The?lters were selected for their very good sensitivity:they avoid the telluric ozone band.The zero-points for the two?lters are taken as53.7(8.59μm)and31.5Jy(11.59μm)respectively(values taken for a blackbody with T ef f=10000K and using Vega as a reference). The magnitudes derived using these zero-points are designated be-low as[9]and[11]respectively.

The measured magnitudes,together with the2MASS or SAAO JHK photometry,are listed in Table2.For comparison, we also list the IRAS[12]magnitude,taken from the Faint Source Catalogue(FSC),available for six sources.The IRAS magnitude is not colour-corrected.The IRAS magnitudes are in most cases a lit-tle brighter,by a few tenths of a magnitude.The IRAS?lter extends to longer wavelengths than the VISIR?lter,and the IRAS detected stars are red.The photometry is accurate to better than±0.05mag at JHK for the stars observed at SAAO and around±0.02-0.03mag for the stars observed with2MASS.

Fig.2shows the relation between the J?K colour and the K?[9]and K?[11]colours.Stars in Sgr dSph are shown corrected for interstellar reddening(using the values listed in section2.2,with a higher value for Sgr01).Stars with J?K<2exhibit little reddening and on average only a small mid-infrared excess.Among the blue stars,only Sgr13shows signi?cant excess?ux at9μm.

For redder stars,the J?K colour and the mid-infrared excess show correlated evidence for circumstellar dust.

The lower panel shows the[9]?[11]colour as function of J?K.The observations show no clear trend,although a trend does appear when the stars are separated on the basis of their9μm magnitude.The open squares show the Sgr dSph stars with[9]>6 and the closed squares those with[9]<6.The brighter stars gen-erally have redder J?K colours.This can be understood as more dust(brighter[9])resulting in higher optical depths and thus more reddening at J?K.

2.4Bolometric magnitudes

The JHK magnitudes and the bolometric corrections derived by Whitelock et al.(2006)were used to estimate the apparent bolo-metric magnitudes of the programme stars:

BC K=+0.972+2.9292×(J?K)?1.1144×(J?K)2 +0.1595×(J?K)3?9.568910?3(J?K)4.(1) Because this equation is based on magnitudes from the SAAO sys-tem,we converted all the photometry to the SAAO system and then reddening corrected it.The absolute bolometric magnitudes were then calculated assuming distance moduli of17.02for Sgr dSph (Mateo et al.,1995)and20.66for Fornax(Bersier2000).The re-sults for the Sgr dSph stars are listed in Table2.

The histogram of the luminosity distribution is shown in Fig.3.The tip of the RGB(TRGB)is also indicated,using the cal-

4Eric Lagadec et

al.

Figure2.The interstellar reddening-corrected J?K colours versus the

mid-infrared excess.Squares are the Sgr dSph stars;triangles are the two

stars in Fornax and the star symbol represents the Galactic halo carbon star.

The lower panel shows the[9]?[11]colour,where the?lled squares show

Sgr dSph stars with[9]<6mag and the open squares the fainter stars.

ibration of Bellazzini et al.(2001).The large majority of stars are

within one magnitude of this tip.One star(Sgr27)is signi?cantly

below the TRGB(by~0.7mag).

3METHODS TO DETERMINE MASS-LOSS RATES

FROM INFRARED COLOURS

The mid-infrared colours can be used to obtain mass-loss rates from

these AGB stars.From a survey of Miras in the South Galactic Cap,

Whitelock et al.(1994)showed that the mass-loss rates and the

K?[12]colour are tightly correlated,where[12]is the IRAS12μm

magnitude(see?g.21in their paper).This can be understood from

the fact that the K magnitude is a measure of the emission from the

star,while the[12]magnitude a measure of emission from dust in

the circumstellar envelope.The K?[12]colour will thus increase

with mass-loss rate.

Mass-loss rates from Galactic AGB stars have also been esti-

mated using dust radiative transfer models(e.g.,Le Bertre1997).

For these models,a dust composition is assumed,as well as a dust

grain size,a density distribution,an expansion velocity for the en-

velope,and a temperature and luminosity for the central star.The

optical depth is a free parameter.The best?t model of the observed

SED gives an estimate of the optical depth of the dusty envelope.

If we assume that dust is composed of spherical grains of a given

composition and size,we can determine their optical properties us-

ing Mie theory.The expansion velocity of circumstellar envelopes

-2-3-4-5-6-7

2

4

6

8

10

TRGB

Figure3.Distribution of bolometric magnitudes of the observed stars in

Sgr dSph,assuming a distance modulus of17.02.

of Galactic AGB stars have been estimated using CO observations

(e.g.,Loup et al.1993).Thus by determining the optical depths

of the envelopes,we can estimate mass-loss rates.The values es-

timated with these dusty radiative transfer models are consistent

with those derived from the CO emission line measurements(e.g.,

Le Bertre1997).For more information about infrared methods to

determine mass-loss rates from AGB stars,we refer to the review

by van Loon(2006).

4METHODS FOR DETERMINING THE MASS-LOSS

RATE

4.1Method1:calibrated colour relations

4.1.1Calibration

As mentioned in Section3,a tight correlation exists between the

K?[12]colour and the mass-loss rates for Galactic AGB stars

(Whitelock et al.1994).Here,the12μm magnitude represents the

broad-band IRAS measurement.The Whitelock et al.sample con-

tains58O-rich stars and only3C-rich https://www.360docs.net/doc/6e8477613.html,ing a further sample

of239Galactic C-rich stars,Whitelock et al.(2006)determined the

correlation between K?[12]and mass-loss rates for C-rich AGB

stars.This relation was quanti?ed as:

log(˙M total)=?7.668+0.7305(K?[12])

?5.398×10?2(K?[12])2

+1.343×10?3(K?[12])3(2)

Our observations used VISIR?lters with wavelengths close

to12μm.The two?lters,selected because of their high sensitiv-

ity,have wavelengths centred at8.59and11.25μm.To derive an

equivalent relation to Eq.2for these?lters,we retrieved all the

available IRAS LRS spectra used by Whitelock et al.(2006).We

then convolved these spectra with the VISIR transmission curves

for the?lters used.We also convolved them with the IRAS12μm

Mass-losing AGB stars in Sgr and Fornax5 Table1.Log of the https://www.360docs.net/doc/6e8477613.html,s and adopted coordinates.t PAH1and t PAH2are the exposure time using the?lters centred at8.59and11.25μm respectively.Stars with names beginning with WMIF in column3are taken from the sample of Whitelock et al.(1999).

Sgr dSph

Sgr0118405750?2734227184057.5?273422.790.1690.62HD119193

Sgr021*******?3307166IRAS18384?3310184143.50?330716.6180.32181.24HD169916

Sgr0318443095?3037098IRAS18413?3040184430.96?303709.8180.32181.24HD169916

Sgr0418450563?2915574184505.64?291557.490.1690.62HD169916

Sgr0518463228?2953484184632.3?295348.4180.3259.1HD169916

Sgr0618463912?3045527WMIF-C02184639.12?304552.71081.921449.92HD169916

Sgr0718465160?2845489IRAS18436?2849184651.6?284548.990.1690.62HD181109

Sgr0818511108?3121563185111.08?312156.3360.64362.48HD169916

Sgr0918514105?3003377185141.05?300337.790.1690.62HD177716

Sgr1018524416?3121150185244.16?312115.090.1690.62HD169916

Sgr1118525030?2956317WMIF-C04185250.7?295630.6540.96634.34HD181109

Sgr1218534097?2934228185340.98?293422.990.1690.62HD169916

Sgr1318542429?3025105WMIF-C06185424.29?302510.6721.28226.55HD177716

Sgr1418532937?2938241WMIF-C05185329.38?293824.21803.2HD169916

Sgr1518584385?2956551IRAS18555?3001185843.85?295655.190.1690.62HD181109

Sgr1619000215?3035347IRAS18568?3039190002.15?303534.790.1690.62HD181109

Sgr1719015287?3032391WMIF-C15190152.88?303239.2270.48362.48HD169926

Sgr1819043562?3112564IRAS19013?3117190435.62?311256.490.1690.62HD181109

Sgr1919044898?3110540WMIF-C17190448.98?311054.0360.64362.48HD169916

Sgr2019065718?3412371190657.18?341237.1450.80724.96HD181109

Sgr2119093902?2956561WMIF-C18190939.03?295656.1721.28634.340HD169916

Sgr2219103987?3228373IRAS19074?3233191039.87?322837.390.1690.62HD177716

Sgr2319125006?3051228191250.06?305122.890.1690.62HD177716

Sgr2419165541?3248289191655.41?324828.9180.32453.1HD181109

Sgr2519232461?3400149WMIF-C22192324.61?340015.01803.2HD169916

Sgr2619234548?3431150WMIF-C23192324.48?343115.01803.2HD169916

Sgr2719313851?3002305WMIF-C25193138.5?300230.51803.2HD177716

Sgr2819425082?3334333WMIF-C26194250.83?333433.3721.28HD177716

Sgr2919485065?3058317194850.65?305831.990.1690.62HD181109

Halo

Halo120202766?1449272IRAS20176-1458202027.66?144927.190.1690.62HD177716

6Eric Lagadec et al.

Table2.Sgr dSph and Fornax photometry.For stars with names beginning with WMIF(Whitelock et al.1999))in column3of Table1,the JHK photometry comes from unpublished data taken at SAAO on the1.9m telescope(SAAO in last column),and,where multiple observations are available,refers to the mean magnitude.For all other stars(2MASS in last column),the JHK s is taken from2MASS.All JHK s magnitudes are given on the2MASS photometric system.PAH1and PAH2represent our VISIR observations at8.59and11.25μm respectively.Zero-points are taken to be53.7(8.59μm),31.5(11.59μm)and 28.3Jy(IRAS).

Sgr D

Sgr0112.47910.7749.308 5.48±0.03 5.11±0.03?4.662MASS

Sgr0211.5779.9718.575 4.96±0.02 4.24±0.03?5.29 3.902MASS

Sgr0313.23611.1839.612 6.03±0.04 5.62±0.06?4.67 5.502MASS

Sgr0412.25010.7089.4387.38±0.127.08±0.24?4.332MASS

Sgr0513.02711.3199.866 6.73±0.05 6.41±0.16?4.092MASS

Sgr0611.48110.3159.6048.80±0.087.75±0.09?3.99SAAO

Sgr0713.06011.1239.599 5.86±0.04 5.18±0.05?4.56 4.842MASS

Sgr0813.06211.52810.3208.29±0.147.76±0.22?3.422MASS

Sgr0912.09010.5709.4207.00±0.09 6.63±0.15?4.292MASS

Sgr1012.04510.3679.048 6.37±0.04 6.13±0.10?4.812MASS

Sgr1111.21910.0589.4488.29±0.117.71±0.13?4.16SAAO

Sgr1213.25811.59910.182 6.78±0.07 6.84±0.20?3.732MASS

Sgr1311.42410.2989.7248.78±0.08?3.91SAAO

Sgr1411.44510.4149.9049.42±0.11?3.80SAAO

Sgr1513.36311.3319.701 6.01±0.04 5.41±0.06?4.61 5.282MASS

Sgr1614.64412.55510.685 5.70±0.03 5.32±0.07?3.87 5.552MASS

Sgr1711.87410.5119.5267.87±0.06?4.08SAAO

Sgr1814.22711.95610.168 5.37±0.03 4.80±0.04?4.46 4.632MASS

Sgr1912.60311.0789.9677.59±0.087.05±0.11?3.73SAAO

Sgr2013.11211.53310.2897.65±0.07 6.35±0.07?3.482MASS

Sgr2110.8629.7519.0997.67±0.077.87±0.14?4.52SAAO

Sgr2211.9579.9918.349 4.29±0.01 3.36±0.01?5.92 3.032MASS

Sgr2312.74311.0849.736 6.76±0.07 5.75±0.06?4.132MASS

Sgr2412.11810.6439.5137.65±0.11 6.98±0.09?4.172MASS

Sgr2511.20910.2359.7938.00±0.04?3.98SAAO

Sgr2611.30310.3599.8828.82±0.09?3.89SAAO

Sgr2712.34711.19210.4739.05±0.13?3.12SAAO

Sgr2811.42410.4019.9618.42±0.18?3.78SAAO

Sgr2913.59911.74110.209 6.48±0.07 6.38±0.12?3.902MASS

Halo

Halo111.85010.1438.707 5.50±0.03 4.74±0.04N/A 4.502MASS

Mass-losing AGB stars in Sgr and Fornax

7

SiC feature

Figure4.Spitzer spectrum of the C-rich SMC AGB star IRAS00554(La-

gadec et al.2007),superimposed with the VISIR PAH1and PAH2?lters.

4.1.2Application

The K s?[9]and K s?[11]colours thus lead immediately to an

estimation of the dust mass-loss rates in Sgr dSph and Fornax.

In this work,we assume that all the AGB stars observed are

C-rich.This is likely given the low metallicities of Sgr dSph and

Fornax,although we cannot rule out that a few stars in our sam-

ple might be O-rich.However,the relation between K s?[9]or

K s?[11]and mass-loss rates are similar for C-rich and O-rich

stars.We should keep in mind that the methods used to determine

mass-loss rates in the Galaxy and the Magellanic Clouds are not

direct measurements.The mass-loss rates in the Galaxy were cal-

culated using the Jura(1987)formalism,which allows one to esti-

mate the mass-loss rates for carbon stars using the observed IRAS

60μm emission and measured expansion velocities.The mass-loss

rates in the Magellanic Clouds have been determined using a ra-

diative transfer model to?t mid-infrared spectra and near-infrared

photometry,assuming a constant out?ow velocity of10km.s?1.

These are the probably the most reliable estimates available.The

[9]and[11]magnitudes are calculated from our VISIR

observa-

tions and the derived dust mass-loss rates are listed in Table3.

4.2Method2:radiative transfer models

To provide an alternative estimate for the mass-loss rates for these

AGB stars,we also computed a grid of dust radiative transfer mod-

els using the DUSTY1D code(Ivezi′c et al.1999).For each model,

the density distribution of a radiation-driven wind was assumed,

ρ~r?1.8(Elitzur&Ivezi′c2001).For this choice,the DUSTY

models compute the wind structure by solving the hydrodynamical

equations as a set,coupled to the radiative transfer.

We assumed that the central star emits like a blackbody with

T=2800K,a typical temperature for an AGB star.Previous papers

have shown that in low metallicity galaxies,most of the mass-

losing AGB stars are carbon-rich(e.g.van Loon et al.1999a,Mat-

suura et al.(2002,2005)).The dust in the stars we observed is

Figure6.Spectral energy distribution of DUSTY models pf carbon dust

with different optical depths(respectively0.01,0.3,1.,10.and31.at1μm),

superimposed with the2MASS K s and VISIR PAH1and PAH2?lters.

therefore likely to be carbonaceous and this is what we assume.

Speci?cally,we assume that the dust grains are spherical and com-

posed of a mixture of amorphous carbon(95%)and SiC(5%),with

a grain size of0.1μm.The optical properties of these grains are cal-

culated using Hanner(1988)and P′e gouri′e(1988)respectively.We

assumed that the dust temperature at the inner boundary is1000K.

The shell thickness(i.e.the ratio between the outer an inner radius)

is set to104.

The optical depth of the envelope is proportional to the dust

mass-loss rate.We can thus associate a mass-loss rate with a model

of a given optical depth.The output of these DUSTY models con-

tains values of the total mass-loss rate(dust+gas)and of the shell

expansion velocity.As stated above,we prefer to discuss dust

mass-loss rates.We convert the total mass-loss rates to dust-mass

loss rates by dividing by the gas-to-dust mass ratio.We,however,

have to keep in mind that the expansion velocity also depends on

the dust-to-gas ratio,rendering the total mass-loss rate less than

straightforward to measure.

We thus calculated a benchmark of DUSTY models with these

input parameters and different optical depths.The outputs of these

models are spectra which we convolved with the2MASS K s and

VISIR PAH1and PAH2?lters(Fig.6)to determine the K s?[9]

and K s?[12]colours associated with the different models.

Using these models,we?nd these relations between colours

and dust mass-loss rates:

log(˙M dust)=?8.14×((K s?[9])?0.97)?0.06×0.75log(L/104)(6)

log(˙M dust)=?8.28×((K s?[11])?0.98)?0.07×0.75log(L/104)(7)

where L is the luminosity of the star in units of solar luminosity.

The measured colours then directly give us an estimation of the

mass-loss rates using relation(6)and(7).The resulting values are

listed Table3.

4.3Comparison

Both methods should only be used for the colour range for which

they are de?ned.This is especially true for blue stars,where the

8Eric Lagadec et

al.

Figure 5.Dust mass-loss rates of C-rich AGB stars as a function of K ?[9](left)and K ?[11](right)colours of stars from the sample in Whitelock et al.(2006)(Galaxy,black squares),Lagadec et al.(2007)(SMC,open squares)and Zijlstra et al.(2006)(LMC,crosses).

mass-loss rates do not go to zero for photospheric colours (as it is a logarithmic equation).We choose to set mass-loss rates for stars with K s ?[9]<0.8to zero.This affects the three bluest stars:Sgr06,Sgr13and Sgr14.

Variability introduces an uncertainty.For the stars with WMIF names,the K -band magnitudes are averaged over the variability.For the others,they are single-epoch values which may differ from the mean:the amplitude at K is typically 0.1mag for blue stars and can be up to 1mag or possibly more for red stars.Finally,the VISIR photometry may also be affected by stellar variability.Indeed little is known about the variability in the mid-infrared of carbon AGB stars.Observations of a sample of 23C-rich AGB stars (Le Bertre 1992)have shown that the amplitude of variation of the observed stars from 1to 20μm seems to decrease with wavelength.Both effects (near-infrared and mid-infrared variability)will affect all four methods in the same way.

The different methods also show internal differences.

Fig.7shows the comparison.The left panels compare mass-loss rates derived from the colours (method 1)with those from the models (method 2).A systematic offset can be seen,with the DUSTY mod-els giving a higher mass-loss rate by up to a factor of 1.5.The right panels compare the mass-loss rates derived from the two different ?lters used,where the agreement is good.There is a small offset seen in the model results,where the mass-loss rates derived us-ing [11]are a little higher than those derived from [9].The offset amounts to about 10per cent.This may be due to a contribution from SiC at 11μm.

The ?rst aim of our DUSTY model was to check the valid-ity of our mass-loss rates determination method based on infrared colours.The fact that both methods give very similar results thus indicates that this method is a good estimator of AGB stars dust-mass loss rates.

5DISCUSSION 5.1

Mass-loss rates

The ?rst main result of this study is that most of the observed stars in Sgr dSph (29stars)and Fornax (2stars)are red in K s ?[9],in-dicating the presence of a dusty envelope and dusty mass loss.The

Figure 8.Total (gas+dust)mass-loss rate as a function of the absolute bolo-metric magnitude.

dust mass-loss rates are in the range 5×10?10to 3×10?8M ⊙yr ?1for the AGB stars in Sgr dSph and around 5×10?9M ⊙yr ?1for those in Fornax.A number of Sgr dSph stars have K s ?[9]<1,and these are probably photospheric colours.

Our observations indicate that even at very low metallici-ties ([Fe /H ]~-0.9,see Section 2.2),as found in the Fornax dwarf spheroidal galaxy,dusty mass-loss occurs.

The mass-loss rates we have derived are dust mass-loss rates.To give constraints to stellar evolution codes,one needs to know the total (gas+dust)mass-loss rate.For that we need to know the dust-to-gas mass ratio ψ,which is not well known even for Galactic AGB stars.For example,for IRC +10216,the best studied AGB star,values in the range 170-700are found in the literature (Mensh’chikov et al.2001).It is obviously dif?cult to determine

Mass-losing AGB stars in Sgr and Fornax 9

-9.5

-9-8.5-8-7.5

-9.5

-9-8.5-8

-7.5Figure https://www.360docs.net/doc/6e8477613.html,parison between the different determinations of the dust mass-loss rate.The left panels plot the rates determined from the colour method (method 1)against those from the DUSTY models (method 2),for the two VISIR ?lters.The right panels compare the rates derived from the two different ?lters,for each of the methods.Squares are Sgr dSph stars,triangles Fornax and the star symbol is the Galactic halo star.

this ratio in other galaxies.van Loon (2006)argue that the ratio scales linearly with the metallicity.This can be simply understood by the fact that at low metallicity,fewer seeds for dust formation are available and thus dust formation is less ef?cient.They there-fore assume that:ψ=ψ⊙10?[Fe /H]

(8)

,where ψ⊙=0.005(van Loon et al.2005).

If we assume [Fe /H ]=?0.55for Sgr dSph (Dudziak et al.2000),then for the AGB stars in this galaxy,ψ~1.4×10?3.Assuming [Fe /H ]=?0.9for Fornax leads to an estimate of the dust-to-gas mass ratio ψ~6.3×10?4.This will provide total mass-loss rates of 700and 1600times,respectively,higher than the dust mass-loss rates in Sgr dSph and Fornax.Note,however,that these are upper limits,as the dust expansion velocity is probably smaller in these galaxies,as well as the drift velocity,but no obser-vations have yet been made that measure the expansion velocities of carbon star at low metallicities.

The assumption of a linear relation between dust production and metallicity can be questioned.For carbon stars,the two main dust components are amorphous carbon dust (soot)and silicon car-bide.The abundance of the latter is limited by Si which is not pro-duced in AGB stars.However,amorphous carbon depends only on the carbon abundance,which is strongly enriched via third dredge-up.The amount of carbon dust may still depend on the number of available seeds (e.g.TiC)which can introduce a metallicity depen-dence,but it is less likely to be a linear one.

10Eric Lagadec et al.

Table3.Mass-loss rates determined from our VISIR observations.˙M1and˙M2are the dust mass-loss rates(in M⊙yr?1)derived from method1,using the [9]and[11]colours respectively.˙M3and˙M4are the dust mass-loss rates(in M⊙yr?1)derived from method2,using the[9]and[11]colours respectively.

Sgr dSph

Fornax

Halo

5.2Evolution

For a better understanding of the evolution of these AGB stars,it is interesting to compare the measured mass-loss rates with the rate at which mass is consumed by nuclear burning˙M nuc.Most of the energy in AGB stars comes from CNO burning in the H burning shell.This reaction releases~6.1×1018erg g?1.˙M nuc is proportional to the luminosity,L.Fig.8shows the measured mass-loss rates as a function of the luminosity.Over-plotted are the˙M nuc vs L relation and the classical single-scattering limit ˙M

classic

=L(v exp c)?1∝L0.75vs L.This diagram clearly in-dicates that all the measured mass-loss rates are below the classical single-scattering limit.Thus no multiple scattering of photons by dust in the envelope is needed to explain the observed mass-loss rates as can be necessary for the very high mass-loss rates mea-sured for some Galactic AGB stars.Note though,that extremely high mass-loss rates are rare even in the Galaxy where they are thought to represent the brief end of the most massive AGB stars.It is hardly surprising that nothing similar has been found within our incomplete sample of stars in small galaxies which are not gener-ally believed to have an intermediate mass population.

The measured mass-loss rates are all above the˙M nuc line. This has important consequences for the evolution of these stars. Their evolution will terminate when the mantle becomes depleted by mass-loss long before the nuclear burning core can grow signif-icantly.Similar conclusions were reached about AGB stars in the LMC(van Loon et al.1999b).This is independent on the value of ψwe assume as the measured mass-loss rates are more than one order of magnitude higher than the nuclear burning rates.

The mass-loss rate versus bolometric luminosity diagram shows that most of the stars fall within the range4×10?7<˙M<6×10?6and?3.4

bol

Mass-losing AGB stars in Sgr and Fornax

11

considerations following Gail &Sedlmayr (1987),that dust-driven winds below a few 10?6M ⊙yr ?1with luminosities around a few 103L ⊙should not exist.Our observations thus disagree with those predictions.

5.3Comparison with mass-losing AGB stars in other galaxies To compare the mass-loss rates we measured in Fornax and Sgr dSph with mass-loss rates from AGB stars in the Magellanic Clouds (MCs)(thus in more metal-rich galaxies),we used the mass-loss rates derived by Groenewegen et al.(2007)for AGB stars in the MCs.To obtain an unbiased estimation of the bolo-metric magnitudes in these four galaxies,we determined it for the MCs sample in the same way

we did for Fornax en Sgr dSph (using the JHK magnitudes and relation 1).The resulting relation between mass-loss rates and bolometric magnitude for these four galaxies is shown in Fig.9.

The ?rst conclusion is that Fornax AGB stars,thus stars with very low metallicities,have quite small dust mass-loss rates for their luminosities.The smallest mass-loss rates are observed for less luminous,more metal-rich AGB stars in Sgr dSph and the SMC,but it is likely that Fornax has lower mass-loss rate AGB stars too weak to be detected.

For stars in the LMC the mass-loss rates are already high for a bolometric magnitude around ?4and then constant or even slightly decreasing.Note that two stars are outliers with M bol around ?5.5and log(dust mass-loss rates)around ?9and ?8.5.For stars in the SMC,the dust mass-loss rates increase steadily from M bol ~–4.5to ~–5.For M bol ~–5,the observed mass-loss rates are of the same order of magnitude in the LMC and SMC.Stars in Sgr dSph show a similar behaviour,but the mass-loss rates begin to increase at M bol ~–4.The fact that the mass-loss rates are high for lower lu-minosity in the LMC than in the other galaxies could be explained by the higher metallicity of the LMC with respect to the three other galaxies.It has been shown that at lower metallicity,stars become carbon-rich earlier on the AGB (e.g.,Lagadec et al.2007).So AGB stars become C-rich later in the LMC.The superwind might thus begin when the stars become carbon rich in the LMC,while the stars might be C-rich well before the onset of the superwind in the lower metallicity galaxies.The two Sgr dSph stars with the high-est mass-loss rates and M bol ~–4(Sgr16and Sgr18)would thus be stars where the superwind phase necessary to explain the densities seen in typical planetary nebulae (Renzini 1981)has already begun.

If we compare the dust mass-loss rates for a given luminosity,then metallicity effects seem to appear.Indeed,for a given bolomet-ric magnitude fainter than –4.5,stars in the Sgr dSph and the SMC seem to have a smaller mass-loss rate than stars in the LMC.This could be due to the fact that Sgr dSph and the SMC have a smaller metallicity than the LMC and that at low luminosity less dust is formed in these galaxies than in the LMC,leading to a lower radi-ation pressure on dust grains and thus smaller mass-loss rates.Ob-servations of a bigger sample of AGB stars in different galaxies are however needed to con?rm this.Indeed our MCs sample has been selected from the MSX catalogue (Egan et al.2001)and is thus limited to stars brighter than 45mJy in the MSX A band (8.3μm),preventing us to study the very early AGB.In Fornax we observed the brightest MIR stars while Sgr dSph stars were selected from NIR colors and sample the full AGB.Observations of fainter MCs stars in the MIR would enable us to study stars with fainter bolo-metric magnitude (with -4

Figure 9.Dust mass-loss rates as a function of bolometric magnitude for stars in Sgr dSph (triangles),Fornax (stars),LMC (circles)and SMC (Squares).

6CONCLUSIONS

We have presented a study of mass-loss from AGB stars in the Sagittarius and Fornax dwarf spheroidal galaxies using mid-infrared photometry obtained with VISIR (VLT,ESO).

We have shown that the well known relation between K ?[12]colours and mass-loss rates among Galactic stars is also valid for AGB stars in lower metallicity galaxies.We used this relation and radiative transfer models to estimate dust mass-loss rates for 15stars in Sgr dSph and 2stars in Fornax.

Our study showed that some AGB stars in the Sgr dSph and Fornax galaxies are losing mass.The estimated dust mass-loss rates are in the range 5×10?10to 3×10?8M ⊙yr ?1for the stars in Sgr dSph and around 5×10?9M ⊙yr ?1for those in Fornax.The values obtained with the two different methods are of the same order of magnitude.These mass-loss rates are higher than the nuclear burn-ing rates,so these stars will terminate their AGB evolution by the depletion of their stellar mantles,before their cores can grow sig-ni?cantly.

Using previous work to get an estimation of the dust-to-gas mass ratio for the stars observed we found that most of them had very low mass-loss rates for their luminosity.This is in contradic-tion with theoretical predictions (see e.g Gail &Sedlmayr 1987).

ACKNOWLEDGMENTS

E.L.acknowledges support from a PPARC rolling grant.We thank the referee,Joris Blommaert,for his useful comments that helped improving the quality of the paper.

REFERENCES

Bellazzini,M.,Ferraro,F.R.,Pancino,E.2001.ApJ,556,635Bellazzini,M.,Correnti,M.,Ferraro,F.R.,Monaco,L.,&Mon-tegriffo,P.2006,A&A,446,L1Bersier,D.2000,ApJ,543,L23

12Eric Lagadec et al.

Bonifacio,P.,Sbordone,L.,Marconi,G.,Pasquini,L.,Hill,V. 2004.A&A,414,503

Bowen,G.H.,&Willson,L.A.1991,ApJ,375,L53 Carpenter,J.M.2001,AJ,121,2851

Cutri,R.M.,et al.2003,The IRSA2MASS All-Sky Point Source Catalog,IPAC/CIT(2MASS)

de Laverny,P.,Abia,C.,Dom′?nguez,I.,Plez,B.,Straniero,O., Wahlin,R.,Eriksson,K.,J?rgensen,U.G.2006.A&A,446,1107 Dudziak,G.,P′e quignot,D.,Zijlstra,A.A.,&Walsh,J.R.2000, A&A,363,717

Egan,M.P.,Van Dyk,S.D.,&Price,S.D.2001,AJ,122,1844 Gail,H.-P.,&Sedlmayr,E.1987,A&A,177,186 Groenewegen,M.A.T.,et al.2007,MNRAS,376,313 Hanner,M.1988,Infrared Observations of Comets Halley and Wilson and Properties of the Grains,22

H¨o fner,S.,Jorgensen,U.G.,Loidl,R.,Åer,B.1998, A&A,340,497

Ivezic,Z.,Nenkova,M.,&Elitzur,M.,User manual for DUSTY, University of Kentucky internal report

Jackson,D.C.,Skillman,E.D.,Gehrz,R.D.,Polomski,E.,& Woodward,C.E.2007,ApJ,656,818

Jura,M.1987,ApJ,313,743

Lagadec,E.,et al.2007,MNRAS,376,1270

Lagage,P.O.,et al.2004,The Messenger,117,12

Law,D.R.,Johnston,K.V.,Majewski,S.R.2005.ApJ,619,807 Layden,A.C.,&Sarajedini,A.2000,AJ,119,1760

Le Bertre,T.1992,A&AS,94,377

Loup,C.,Forveille,T.,Omont,A.,&Paul,J.F.1993,A&AS,99, 291

Le Bertre,T.1997,A&A,324,1059

Maeder,A.1992,A&A,264,105

Majewski,S.R.,Skrutskie,M.F.,Weinberg,M.D.,&Ostheimer, J.C.2003,ApJ,599,1082

Mateo,M.,Kubiak,M.,Szymanski,M.,Kaluzny,J.,Krzeminski, W.,&Udalski,A.1995,AJ,110,1141

Matsuura,M.,et al.2007,MNRAS,in press,astro-ph0709.3199 Matsuura,M.,et al.2005,A&A,434,691

Matsuura,M.,Zijlstra,A.A.,van Loon,J.T.,Yamamura,I., Markwick,A.J.,Woods,P.M.,&Waters,L.B.F.M.2002,ApJL, 580,L133

Mauron,N.,Azzopardi,M.,Gigoyan,K.,&Kendall,T.R.2004, A&A,418,77

Men’shchikov,A.B.,Balega,Y.,Bl¨o cker,T.,Osterbart,R.,& Weigelt,G.2001,A&A,368,497

P′e gouri′e,B.1988,A&A,194,335

Pont,F.,Zinn,R.,Gallart,C.,Hardy,E.,Winnick,R.2004,AJ, 127,840

Renzini,A.1981,Astrophysics and Space Science Library,89, 319

Rieke,G.H.,&Lebofsky,M.J.1985,ApJ,288,618 Saviane,I.,Held,E.V.,Bertelli,G.2000.A&A,355,56

van Loon,J.T.,Zijlstra,A.A.,&Groenewegen,M.A.T.1999a, A&A,346,805

van Loon,J.T.,Groenewegen,M.A.T.,de Koter,A.,Trams, N.R.,Waters,L.B.F.M.,Zijlstra,A.A.,Whitelock,P.A.,& Loup,C.1999b,A&A,351,559

van Loon,J.T.2000,A&A,354,125

van Loon,J.T.,Marshall,J.R.,&Zijlstra,A.A.2005,A&A,442, 597

van Loon,J.T.2006,arXiv:astro-ph/0612374

Venn,K.A.1999,ApJ,518,405Whitelock,P.A.,Irwin,M.,Catchpole,R.M.1996,New Ast.,1, 57

Whitelock,P.,Menzies,J.,Feast,M.,Marang,F.,Carter,B., Roberts,G.,Catchpole,R.,&Chapman,J.1994,MNRAS,267, 711

Whitelock,P.,Menzies,J.,Irwin,M.,&Feast,M.1999,IAU Symposium,192,136

Whitelock,P.A.,Feast,M.W.,Marang,F.,&Groenewegen, M.A.T.2006,MNRAS,369,751

Zijlstra,A.A.2004,MNRAS,348,L23

Zijlstra,A.A.,et al.2006b,MNRAS,370,1961

Zijlstra,A.A.,Gesicki,K.,Walsh,J.R.,P′e quignot,D.,van Hoof, P.A.M.,Minniti,D.2006a,MNRAS,369,875

万科物业与中海物业的分析比较

万科物业与中海物业的分析比较 在物业管理行业激烈的市场竞争中,万科和中海物业管理脱颖而出。其中万科以观念超前、服务精品见长,中海以管理优势和市场规模领先,形成了自身的特色和优势,对提高企业经济效益和开拓市场起到了重要的推动作用。两者都有各自的管理模式,为自己的企业赢得品牌。本文通过万科和中海物业管理模式的比较分析,试图总结出中国物业管理发展的规律性东西,用以指导物业管理的进一步发展。 前言 综观物业管理在深圳20年的发展,有这样几个重要的转折点: 从第一家物业公司成立,到公房改制扩大物业管理的覆盖面,物业管理走向千家万户的普通居民为第一转折点; 以莲花二村"一体化"管理为标志,确立深圳物业管理模式为第二个转折点; 鹿丹村物业管理公开招投标,拉开了市场竞争的序幕为第三个转折点。 作为全国物业管理发源地的深圳,物业管理能取得全国瞩目的成绩,与深圳的经济发展水平、市场经济的成熟程度等各方面因素有着密切的关系。尤为重要的是政府主管部门的积极引导、努力探索对深圳物业管理行业的发展直接起着重要的推动作用。 随着社会的发展,业主的服务需求不断增长,物业管理服务事项和内容由简单基本的房屋维修、清洁卫生、园林绿化、安全护卫等,再拓展到机电维护、环境设计、企业策划、家政服务、社区文化、商业代理等,力求满足业主从办公、学习、安全、环境到居家生活、邻里交往、文体活动等系列需求。 一些有品牌的公司潜心揣摩,结合不同的物业硬件和业主需求,提出并实践了一些新概念、新做法,形成自己鲜明的、独特的个性特色,突出企业形象和显示管理实力的同时,也为整个行业的发展提供了可供借鉴的经验;如万科物业从早期提出的"酒店式管理"到近期的"无人化管理"、"个性化管理"和"管理报告制度";中海物业管理倡导的"一拖N模式"、"氛围管理";深业物业实施的"精品战略";金地物业实行的"产学联手";"保姆计划"、"四点半学校"等均取得了良好的市场效益。 这里不能不提及贯穿全市物业管理企业发展历程,使物业管理意识深入民心的一项重要工作内容--社区文化。莲花物业在莲花二村率先倡导社区文化活动和万厦物业在莲花北村通过社区文化活动的开展建立起"全国城市文明第一村"的社会效益,在市场上均得到了良好的品牌效应。事实证明,多样化、多层次的社区文化活动是最能体现物业管理人文精神和关怀的有效手段,因为它较好地调整了业主与企业之间、业主与业主之间的关系,同时将物业管理工作通过社区活动去宣传,更容易得到业主的接受和认同。 1996年以来,万科、中海、中航、国贸、金地、莲花等物业管理公司,在全国物业管理行业率先通过了ISO9002国际标准质量认下,使物业管理的技术标准和质量规范管理纳入了国际轨道,对物业管理操作经营中的每个岗位、每个人员、每一个环节都有严格科学的管理规范和检验标准。到目前为止,100多家物业管

中海物业管理方案——管理

中海物业管理方案-管理 第一部分 中海物业简介 深圳市中海物业管理有限公司(以下简称“中海物业”)为中国海外集团旗下,专门从事物业管理业务、具有独立法人资格的企业。公司在香港中海物业管理公司的基础上,于1991年在深圳注册成立,为建设部首批甲级资质物业管理企业。自成立以来,严格遵循“业主至上、服务第一”的工作宗旨,大力倡导“严格苛求、自觉奉献”的工作精神。在掌握并导入香港先进物业管理模式的基础上,融汇世界各国先进物业管理经验,结合中国大陆的实际国情,探索出具有中国特色的中海物业管理模式。公司以此模式为手段开展科学管理和优质服务,全心全力为业主及物业使用人提供一个安全、清洁、优美、舒适、方便的生活及工作环境。 多年来,中海物业以优质的服务质量和先进的管理技术不仅得到广大业主的信任,而且赢得了良好的社会声誉,先后获得国家建设部、广东省、深圳市各级政府部门授予的各种奖牌、奖旗100余面。中央电视台、深圳各大报刊以及香港《文汇报》、《大公报》、《商报》、《星岛日报》,国内的《人民日报》、《经济日报》、《工人日报》、《法制日报》等新闻媒体对中海物业管理经营情况的报道多达700余次,慕名前来公司参观考察的国内外各界人士已逾两万人次。 随着中海物业在行业内地位的日益显著和中海物业管理模式的日益完善,并应国内广大地产消费者和房地产界对先进物管模式的迫切需求,中海物业管理模式除在香港、深圳、北京、广州、上海几大城市取得骄人的成绩外,更已输出至长春、沈阳、青岛、烟台、杭州、南京、天津、重庆、珠海、贵阳、武汉、昆明、长沙、石家庄、郑州、东莞……等30多个全国各大城市。正在管理的写字楼、商场、商住区、别墅区等高档物业120余处,管理面积逾二千

中海物业管理有限公司

中海物业管理有限公司 案例:中海广场 中海广场位于北京CBD核心地段,南面鸟瞰长安街,东侧毗邻国贸中心,占据国贸商务圈显要位置,由世界500强成员企业——中海地产根据国际甲级写字楼标准倾力打造。 中海物业管理有限公司是中国现有三代物业管理模式及“中海物业”、“中海·深蓝”服务品牌的创造者和中国现代物业管理事业的开拓者。在中国海外集团公司30年的仆仆风尘中,中海物业得到了良好的孕育和萌生。 1986年,在香港注册成立的中海物业,全盘引进英国物业管理模式,有机地融入以和谐为主题的中国文化传统,使东方人文精华与西方服务礼仪互为补充,相得益彰地提炼出适合中国国情需要的现代物业管理新概念,锻造出具有中国特色的“中海物业”服务品牌。 辛勤耕耘,厚积薄发 1991年,中海物业由香港挺进内地,从深圳起跑,相继在广州、上海北京、成都、长春、南京、西安、苏州、中山、宁波等地,开办了19家分公司和8家专业化物业服务公司。这些专业涵盖了楼宇自动化、物业机电维修、电梯安装保养、环境工程施工、园林景观 设计、建筑装修工程、酒店经营管理及物业管理教育等。迄今,北起哈尔滨、南至三亚,东 濒青岛、西逾兰州,华夏大地的60多个中心城市都飘扬着中海物业的旗帜。 2006年4月,中海物业率先跨出国门,为越南胡志明市高端项目提供高品质的物 业服务,开创了国内物业管理国际化输出之先河。中海物业致力于管理信息化、服务人性化、技术智能化、企业规范化的研究与探索,开企业风气之先。其所构筑的优秀文化基因,以及

海纳百川的兼容能力,为内地物业管理行业奠定了发展的基石;给改革开放中蓬勃进取的神州,带来了现代人居服务的春风。 桃李不言,下自成蹊 鲜红的COB标志,是中海物业铸就的一方民族之印、中国之印,将它盖上城市的高 楼大厦时,深邃宽广的海文化,以其博爱和包容,凝聚起广大民众的心.中海物业已累计管理5000多万平米的各类写字楼、商场、住宅区、别墅等高档物业和工厂、学校、场馆等公共 物业,并以其完整的体系、完善的组织、完备的手段,实现完美的服务。 成为建成国家优秀示范小区最多、通过ISO9000、ISO14000、OHSAS18000体系最早、 获得国家部委和各省市荣誉最丰、接待或指导国内外参观者最广的物业管理企业。中央电视台、《人民日报》、《经济日报》、《工人日报》、《法制日报》等新闻媒体,北京、上海、 广州、成都深圳等地方性报刊,以及香港、澳门各大传媒一直关注着中海物业的成长和进 步,相关报道不胜枚举。在国内各大门户网站的行业专栏中,中海物业受到广大业主、用户、合作商、发展商和政府管理部门的好评和肯定,成为国内少有的最受客户欢迎、最具影响 力、信誉度最高的集群式大型物业管理企业。 超前启动--建设期物业全面介入服务 多年的从业经验,使我们最贴近业主的需求;集专业化运作之优势,中海物业将从规划设计、材料和设备选型、施工管理、销售等多角度,为合作方提供最符合现实使用情况和最 贴近业主实际需求的专业建议。 项目规划阶段物业管理介入工作 提供项目规划顾问建议

中海物业全套工作流程图

目录管理工作流程图 1.文件控制流程图 2.记录控制流程图 3.人员和培训管理流程图 4.采购管理流程图 5.物业服务管理流程图 6.顾客满意管理流程图 7.不合格品(服务)管理流程图 8.业主投诉处理流程图 安保工作流程图 1.安保管理流程图 2.物业管理部工作流程图 3.安保主管工作流程图 4.班长日检查工作流程图 5.样板房安保员岗位工作流程图 6.侧门岗安保员工作流程图 7.巡楼安保员操作流程图 8.业主搬迁操作流程图 9.外来人员出入管理流程图 10.消防应急方案出来流程图 11.突发事件处理流程图 12.安保工作重大事项处置流程图 13.电梯困人处理流程图 意外停电处理流程图 意外停水处理流程图

意外停气处理流程图 14.管理处火灾处理流程图 15.车库(场)岗位工作流程图 16.车库(场)收缴费管理流程图 17.车库(场)异常情况处置流程图 18.车辆冲卡处理流程图 19.可疑车辆出场处置流程图 清洁绿化工作流程图 1.清洁管理流程图 2.清洁不合格处理流程图 3.绿化管理流程图 4.绿化不合格处理流程图 5.清洁绿化主管检查流程图工程工作管理流程图 1.基础设施和工作环境管理流程图 2.机电设备管理流程图 3.业主报修接待处理流程图 4.消防报警信号处理流程图 5.电梯故障处理流程图 6.恒压变频生活供水系统操作流程图 7.低压变配电设备维修保养流程图 8.新接楼宇入伙管理流程图 9.业主入伙手续办理流程图 10.房屋装修管理流程图 11.物业接管验收流程图 12.业主看房收楼流程图

编号: ZH/NJ 05 版号/状态: C/0 发放号:中海物业管理有限公司 南京公司 工作流程图 编制:物业管理部日期:2005年9月日 审核:质量管理部日期:2005年9月日 批准:日期: 文件受控章 责任部门:物业管理部声明:未经许可,不得翻印。

(万科企业管理)万科与中海物业管理的模式比较

万科与中海物业管理的模式比较 前言 综观物业管理在深圳20年的发展,有这样几个重要的转折点:从第一家物业公司成立,到公房改制扩大物业管理的覆盖面,物业管理走向千家万户的普通居民为第一转折点;以莲花二村"一体化"管理为标志,确立深圳物业管理模式为第二个转折点;鹿丹村物业管理公开招投标,拉开了市场竞争的序幕为第三个转折点。作为全国物业管理发源地的深圳,物业管理能取得全国瞩目的成绩,与深圳的经济发展水平、市场经济的成熟程度等各方面因素有着密切的关系。尤为重要的是政府主管部门的积极引导、努力探索对深圳物业管理行业的发展直接起着重要的推动作用。 随着社会的发展,业主的服务需求不断增长,物业管理服务事项和内容由简单基本的房屋维修、清洁卫生、园林绿化、安全护卫等,在展到机电维护、环境设计、企业策划、家政服务、社区文化、商业代理等,力求满足业主从办公、学习、安全、环境到居家生活、邻里交往、文体活动等系列需求。一些有品牌的公司潜心揣摩,结合不同的物业硬件和业主需求,提出并实践了一些新概念、新做法,形成自己鲜明的、独特的个性特色,突出企业形象和显示管理实力的同时,也为整个行业的发展提供了可供借鉴的经验;如万科物业从早期提出的"酒店式管理"到近期的"无人化管理"、"个性化管理"和"管理报告制度";中海物业管理倡导的"一拖N模式"、"氛围管理";深业物业实施的"精品战略";金地物业实行的"产学联手";"保姆计划"、"四点半学校"等均取得了良好的市场效益。这里不能不提及贯穿全市物业管理企业发展历程,使物业管理意识深入民心的一项重要工作内容--社区文化。莲花物业在莲花二村率先倡导社区文化活动和万厦物业在莲花北村通过社区文化活动的开展建立起"全国城市文明第一村"的社会效益,在市场上均得到了良好的品牌效应。事实证明,多样化、多层次的社区文化活动是最能体现物业管理人文精神和关怀的有效手段,因为它较好地调整了业主与企业之间、业主与业主之间的关系,同时将物业管理工作通过社区活动去宣传,更容易得到业主的接受和认同。 1996年以来,万科、中海、中航、国贸、金地、莲花等物业管理公司,在全国物业管理行业率先通过了ISO9002国际标准质量认下,使物业管理的技术标准和质量规范管理纳入了国际轨道,对物业管理操作经营中的每个岗位、每个人员、每一个环节都有严格科学的管理规范和检验标准。到目前为止,100多家物业管理企业通过了ISO9002质量认证,其数量和比例居全国同行业之首。其中高新技术产业园区物业管理公司是全世界首家获得ISO9002、ISO14001及SA8000三个标准国际认证的物业管理公司。通过规范化管理的推广,深圳市相当数量的物业管理企业及其所管理的物业管理企业及其所管理的物业水平已接近或达到国际水准。 本文将就万科、中海两家物业管理公司的物业管理模式进行分析、探讨中国高水平物业管理的发展特色,以摸索出有利于中国物业管理进一步发展的东西。 一、万科物业管理的特点 1、万科物业管理公司的概况 万科物业管理有限公司成立于一九九二年初,为万科企业股份有限公司全资附属机构。公司现有总资产3000万元,各类专业服务人员3000余人,管理面积300余万平方米。公司现已发展为国内最具规模及极负盛誉的物业管理机构之一,专业提供全方位的物业管理服务、工程完善配套服务、房屋租售及绿化工程服务。通过十多年的物业管理研究与实践,公司在市场上取得了骄人的业绩,在物业管理行业奠定了坚实的地位,成为国家建设部首批认定的物业管理一级资质企业、深圳市物业管理甲级

《中海地产企业发展战略研究》

中海地产企业发展战略研究 1中海地产发展概况 ............................................. 1.1中海地产企业简介....................................... 1.2 中海地产的企业背景和历程 ............ 错误!未定义书签。 2 中海地产企业战略............................................. 2.1中海地产业务布局战略................................... 2.2 中海地产战略目标....................................... 2.3 中海战略模式的转变 .................................... 2.4 中海地产产品战略....................................... 2.5 战略执行要点........................................... 3 中海地产企业文化............................................. 3.1企业文化观点........................................... 3.2 中海地产企业愿景....................................... 3.3中海地产核心价值观..................................... 3.4 中海地产形象文化....................................... 3.5 中海地产制度文化....................................... 4 管控模式 (38) 4.1企业管控体系与组织架构.................................

中海地产公司各部门职责

******** 管理制度 索引 1.目的:―――――――――――――――――――――――――――――――― 2.范围:―――――――――――――――――――――――――――――――― 3.参考资料:―――――――――――――――――――――――――――――――― 4.定义:―――――――――――――――――――――――――――――――― 5.公司各部门岗位职责:――――――――――――――――――――――――――― 5. 1. 行政部―――――――――――――――――――――――――――――― 5. 2. 人事部―――――――――――――――――――――――――――――― 5. 3. 财务部―――――――――――――――――――――――――――――― 5. 4. 地产部―――――――――――――――――――――――――――――― 5. 5. 工程部―――――――――――――――――――――――――――――― 5. 6. 合约部―――――――――――――――――――――――――――――― 5. 7. 营业部―――――――――――――――――――――――――――――― 5. 8. 物资部―――――――――――――――――――――――――――――― 5. 9. 机电部―――――――――――――――――――――――――――――― 5. 10. 地盘――――――――――――――――――――――――――――――- 6.行政管理:――――――――――――――――――――――――――― 6. 1. 公文管理―――――――――――――――――――――――――――――― 5. 2. 印鉴管理――――――――――――――――――――――――――――― 5. 3. 例会制度――――――――――――――――――――――――――――― 5. 4. 行政档案管理――――――――――――――――――――――――――― 5. 5. 固定资产管理―――――――――――――――――――――――――――― 5. 6. 通讯管理―――――――――――――――――――――――――――

物业管理顾问方案

第一部分 中海物业简介 市中海物业管理(以下简称“中海物业”)为中国海外集团旗下,专门从事物业管理业务、具有独立法人资格的企业。公司在中海物业管理公司的基础上,于1991年在注册成立,为建设部首批甲级资质物业管理企业。自成立以来,严格遵循“业主至上、服务第一”的工作宗旨,大力倡导“严格苛求、自觉奉献”的工作精神。在掌握并导入先进物业管理模式的基础上,融汇世界各国先进物业管理经验,结合中国大陆的实际国情,探索出具有中国特色的中海物业管理模式。公司以此模式为手段开展科学管理和优质服务,全心全力为业主及物业使用人提供一个安全、清洁、优美、舒适、方便的生活及工作环境。 多年来,中海物业以优质的服务质量和先进的管理技术不仅得到广大业主的信任,而且赢得了良好的社会声誉,先后获得国家建设部、省、市各级政府部门授予的各种奖牌、奖旗100余面。中央电视台、各大报刊以及《文汇报》、《大公报》、《商报》、《星岛日报》,国的《人民日报》、《经济日报》、《工人日报》、《法制日报》等新闻媒体对中海物业管理经营情况的报道多达700余次,慕名前来公司参观考察的国外各界人士已逾两万人次。 随着中海物业在行业地位的日益显著和中海物业管理模式的日益完善,并应国广产消费者和房地产界对先进物管模式的迫切需求,中海物业管理模式除在、、、、几大城市取得骄人的成绩外,更已输出至、、、、、、、、、、、、、、、……等30多个全国各大城市。正在管理的写字楼、商场、商住区、别墅区等高档物业120余处,管理面积逾二千多万平方米,成为物业管理行业的中国之最;已经建成国家优秀示小区(大厦)17个,占全国国优总数的3%强,雄居国同业国优拥

中海物业安全管理手册

编号:WI/B-01 版本:D 安全管理手册 编制: 社区环境管理部 日期: 2006年6月1日 审核: 质量管理部 日期:2006年7月1日 批准: 日期: 文件受控章 声明:安全管理手册未经许可,不得翻印。 责任部门:社区环境管理部

ZHPM安全管理手册D/0 1/6 序号编号标题版号/状态 01WI/B --- 001基础管理(社区环境管理部职责)D/0 02WI/B --- 002基础管理(社区环境管理部经理职责)D/0 03WI/B --- 003基础管理(社区环境管理部助理职责Ⅰ)D/0 04WI/B --- 004基础管理(社区环境管理部助理职责Ⅱ)D/0 05WI/B --- 005基础管理(社区环境管理部助理职责Ⅲ)D/0 06WI/B --- 006基础管理(管理处护卫主管职责)D/0 07WI/B --- 007基础管理(管理处护卫领队职责)D/0 08WI/B --- 008基础管理(管理处护卫领班职责)D/0 09WI/B --- 009基础管理(管理处护卫员职责)D/0 10WI/B --- 010基础管理(护卫员工作权限)D/0 11WI/B --- 011基础管理(护卫员禁止行为)D/1 12WI/B --- 012基础管理(护卫员职业道德规范)D/0 13WI/B --- 013基础管理(护卫员纪律)D/0 14WI/B --- 014礼仪规范(仪容仪表)D/0 15WI/B --- 015礼仪规范(言谈举止)D/0 16WI/B --- 016礼仪规范(接人待物)D/0 17WI/B --- 017礼仪规范(礼节礼貌)D/0 18WI/B --- 018管理规程(大堂岗管理规程)D/0 19WI/B --- 019管理规程(道口岗管理规程)D/0 20WI/B --- 020管理规程(车场岗管理规程)D/0

中海地产管理制度汇编(200)页

目 录 中海地产管理制度汇编 规划设计类 中海地产所辖公司开发项目一期交房配套设施配置标准 (3) 中海地产所辖公司开发项目配套设施配置最低参考标准 (4) 集团总部规划设计中心与所辖公司相关部门职责细分条例 (6) 《中海地产规划设计中心与所辖公司相关部门职责细分条例》 (10) 补充规定 (10) 关于所辖各公司选择室内设计单位的规定 (13) 工程管理类 (14) 建设工程施工质量控制管理办法(2010年版) (14) 建设工程施工进度控制办法(试行) (20) 建设工程安全文明施工监督控制办法 (21) (试行) (21) 施工质量与安全综合评比排序实施细则 (25) (2010年版) (25) 物管公司物业接管和维修控制办法 (28) 建设工程施工成本控制与管理办法(修订版) (33) 工程施工任务招投标实施细则 (41) 建设工程施工签证管理实施细则 (51) (修订版) (51) 工程承包商考评办法 (54) 工程施工成本控制管理考评实施细则 (56) (修订版) (56) 工程结算资料保管规定 (58) 附 表 目 录 (59) 工程物资采购类 (93) 工程物资采购管理制度 (93) 工程物资采购招标管理办法 (98) (试行) (98) 物资采购计划管理制度 (108) 工程物资出入库及票据管理办法 (110) 工程物资货款支付管理办法 (113)

目 录 附件1 北京市中海实业(集团)有限公司采购中心 (115) 定厂定价通知书 (115) 附件2 北京市中海实业(集团)有限公司采购中心 (116) 核价通知书 (116) 附件3 材料设备申购计划表 NO.0000 (117) 附件4 材料设备核价申请表 (114) 附件5 (116) 工程材料设备采购周期 (116) 营销管理类 (118) 第一部分 中海地产营销节点管理制度 (118) (附件1) 项目营销节点管理操作指引 (126) (附件2) 房地产项目定位管理制度 (130) 营销部工作评估、排序办法 (134) 第二部分中海地产客户服务管理制度 (148) 客户服务中心对客户服务分部工作的管理及考评办法 (148) 关于接管验收房屋过程中处理工程质量缺陷的处罚规定 (166) 第三部分 中海地产品牌管理制度 (170) (附件3) 广告公司甄选评分表 (187) (附件4) (188) 中海 项目营销周报(格式) (188) (附件5) (189) __项目 月份营销月报(格式) (189) (附件6) 2010年x月中海项目主要销售数据汇总表 (191) (附件7) (193) 中海 公司广告备案表 (193) (附件8) (195) 中海 公司活动备案表 (195) (附件9) (195) 中海地产 项目VI审批表 (195)

顾问服务方案

顾问服务方案的编写 一、物业管理顾问业绩 从2000年至今顾问项目已达106个(列表说明)。 二、顾问服务概述 1、发展商将开发项目物管工作全权委托给发展商即将成立/下属的物业管理公司(以下称“管理商”),管理商负责发展商开发项目物管工作的具体实施运作;同时,为保证开发项目有一个高起点的物业管理水平及服务质量,发展商拟聘请中海物业管理有限公司为本物业管理工作的顾问商,以便利用中海物业在人力资源、经验、管理经验、技术、模式、制度以及规范化的服务体系等诸多方面的优势为管理商提供物业管理顾问服务。 2、双方合作关系一旦确定,顾问商将会把发展商开发项目的物管工作列入中海物业相应的策划、考核、检查、评比序列中,由公司组建顾问团及委派驻场顾问,根据本项目物业的具体情况,负责跟踪其设计、施工、销售、竣工验收、入伙以及日后的物业管理工作,指导管理商制订本物业的全套管理方案、程序文件、管理制度、服务质量标准等,并督促其有效运行,按照双方约定的顾问服务内容为管理商提供全方位、全过程、专业化的顾问管理服务。 3、为保证管理目标的实现及更有力地推行中海物业管理模式,顾问商将于项目现场派驻一/二/三名物业管理资深人仕任驻场顾问,作为管理商核心管理的实体“核心”;并同时辅之以公司顾问团以及公司各专业部门、专业公司的技术支持,结合本物业物管工作的实际需要定期赴现场进行考察指导,根据项目现场发现的问题及时针对性地提出整改建议与整改措施。在公司顾问团与驻场顾问二者的共同努力下,将为管理商日后的物业管理工作打下良好的基础。 4、顾问商提供顾问管理服务的目的在于为管理商培养一支高水准、高质素的管理队伍,同时发展商可借助中海物业良好的品牌效应促进本物业的租售;在顾问期限内,顾问商允许发展商就本物业向外界使用“中海物业顾问管理”等文字进行宣传推广。 三、服务期限 顾问期限分为前期介入、实操指导和服务质量跟踪三个阶段。其中前期介

中海物业组织机构及人员配备、培训和管理

中海物业组织机构及人员配备、培训和管理遵循客户优先原则、有效性管理原则、安全第一的原则、成本控制的原则和持续改进的原则进行组织机构设置和人员配备。精英管理团队通过完善的培训体系和有效的管理机制为山东电视台的客户提供高品质的物业管理服务。 组织机构设置 山东电视台物业公司下设客户服务部、工程维修部、安全事务部、环境管理部四个专业职能部门,四个专业职能部门配备符合物业功能特点的专业管理服务人员,分别负责客户服务、设备管理、安全管理、环境管理等方面,向客户提供优质服务, 组织机构设置 (一)客户优先的原则 在山东电视台物业公司始终坚持“以人为本,以客为先”的管理理念,为客户提供安全、舒适、优质的物业管理服务,以满足和超越山东电视台业主和客户对物业管理服务不断增长的需求。 (二)有效性管理的原则 做正确的事比把事做正确更重要,在山东电视台实行计划目标考核管理体系,用高效的组织实现效率管理。 (三)安全第一的原则 安全是实现项目管理经营服务的前提,物业管理服务首先是为客户提供安全的生活工作环境。遵循安全第一的原则,以客户为中心,安全围绕每项工作的始终。 (四)成本控制的原则 不仅让业主和客户获得优质高效的服务,同时以有效的成本控制方式,在人力资源管理、品质管理、行政管理、财务管理等方面由公司进行统一的资源调配,节省山东电视台费用开支。

(五)持续改进的原则 持续有效地改进服务水平和服务标准,贯彻国际质量管理体系,是物业公司一贯遵循重要原则之一。 人员配备 基于山东电视台的功能分析和客户群体分析,在物业管理人员配备上将遵循以下原则: 物业管理是一个服务性行业,为业主和使用人提供一个安全舒适的生活和工作环境是我们物业管理人的职责。一支高素质的服务队伍必然是一个服务意识极强的组合。 着眼于管理现代化和组织科学化,为保障优质的物业管理服务,在组织上采用扁平架构,根据山东电视台功能需要和客户需求,在物业公司设四个部门,由总经理直接调配管理。这样既保证服务的高质量,又实现运行的高效率,来达到机构精简,人员精干,工作高效的目的。 各类人员的配备,均要求有较高的知识水平和专业技能。根据不同的岗位设置,配备相应文化水平和专业技能的人才,在此基础上,将通过不间断的物业管理专业知识培训,使员工处于不断完善和提高的最佳工作状态。 针对山东电视台的物业管理特点,将利用公司和外部的培训资源,通过入职培训、岗前培训和在职培训三级培训体系,开展不同方式的培训,提高各类人员的专业技能、职业道德意识、计算机应用知识和物业管理知识,使培训工作真正落到实处。 通过培训,提高员工的综合素质、业务技能和管理服务水平,培养一支作风优良、专业技术过硬的物业管理队伍,为山东电视台的业主和客户提供高效、优质、便利、安全的物业管理服务。 一、三级培训体系 (一)入职培训 1、企业培训:公司发展史、公司经营方针、公司理念、公司精神及管理目标等。 2、员工手册培训:员工守则、礼仪行为规范、职业道德教育等。 3、安全防范意识的培训,客户服务体系的培训,物业管理知识的培训。 4、军训与参观学习。

中海物业组织结构及职责

中海物业组织结构及职责 总经理 1、贯彻执行国家的方针、政策、法规和上级公司的有关决议。 2、负责协调公司领导班子成员分管的有关工作,确保年度各项指标的完成。 3、负责质量管理部、艺术团、直接领导工作。 4、组织编制公司的发展规划,提升企业管理,提高经济效益,增强企业的竞争实力。 5、主持制定公司中长期发展规划、年度目标、经营计划和其它各项企业计划。 6、主持一体,化管理体系的策划工作,制定并颁布公司的管理方针、目标、并对实现管理方针、目标负责。 7、确保在整个组织内提高满足顾客、员工、相关方要求的意识。 8、负责调整公司组织架构,确保部门职责、权限得到规定和沟通。 9、负责主持召开管理评审,保证一体化管理体系持续有效运行和持续改进。 10、主持重大质量、环境和职业健康安全事故的调查分析会。 11、负责审批重大环境因素、重大危险源 12、负责公司一体化管理体系目标、指标和管理方案的审核和审批。 13、负责为实施和改进一体化管理体系提供必要的人、财、物资源,确保一体化管理体系的持续有效运行。 14、召集和主持总经理办公会,负责向总经理办公会报告半年或年度经营计划,讨论后提交上级公司或董事会批准。 15、负责提出公司经营管理决策建议,组织讨论公司财务预决算,提交董事会批准。 16、负责公司重大经营合约的签署和员工薪金、奖金分配方案的审批。 17、负责公司非生产性支出的审批。 18、批准公司领导班子成员的公出和假期安排。 19、负责直管部门经理的各种假期的审批。 20、负责《质量简报》的审核发布,并对重大问题做出指示。 21、负责审核《季度投诉分析报告》,确定公布范围并做出相应指示。 22、负责评估《顾客满意度测评报告》,并做出相应的改进指示。 副总经理 1、在总经理的领导下,负责社区服务部、社区环境管理部、工程部、全委项目、专业公司的领导工作。 2、负责安委会、质量管理委员会日常工作,主持召开安全会议,关注并维护员工的合法权益。 3、协助总经理贯彻实施管理方针和目标,领导全体员工提高质量、环境和职业健康安全意识。 4、协助总经理检查督促各单位经济指标、管理目标及其它各项工作任务的完成情况。 5、负责组织调查研究,不断拓宽家园服务领域,增加服务项目,提高家园服务网经营管理效益。 6、主持合同评审,对与顾客有关的过程进行管理,确定公司不断满足顾客需求。 7、负责组织开展与发展商、业主委员会双向沟通联络。 8、负责专业公司的市场拓展的领导工作。 9、负责专业公司产品设计、设备改造策划、评审的领导工作。 10、指导和监督物业供方的考核、审批合格的物业供方。 11、负责供方的招标、评估、合约的签订。 12、依照授权负责物业服务合同的签订与评审管理工作。 总会计师 1、负责公司财务管理工作。监督公司遵守国家财经法令、纪律,以及董事会决议。 2、负责会计部、财务审计部、的直接领导工作。 3、负责公司采购的领导工作。

中海与万科物业管理的模式比较

中海与万科物业管理的模式比较 前言 综观物业管理在深圳20年的发展,有这样几个重要的转折点:从第一家物业公司成立,到公房改制扩大物业管理的覆盖面,物业管理走向千家万户的普通居民为第一转折点;以莲花二村"一体化"管理为标志,确立深圳物业管理模式为第二个转折点;鹿丹村物业管理公开招投标,拉开了市场竞争的序幕为第三个转折点。作为全国物业管理发源地的深圳,物业管理能取得全国瞩目的成绩,与深圳的经济发展水平、市场经济的成熟程度等各方面因素有着密切的关系。尤为重要的是政府主管部门的积极引导、努力探索对深圳物业管理行业的发展直接起着重要的推动作用。 随着社会的发展,业主的服务需求不断增长,物业管理服务事项和内容由简单基本的房屋维修、清洁卫生、园林绿化、安全护卫等,在展到机电维护、环境设计、企业策划、家政服务、社区文化、商业代理等,力求满足业主从办公、学习、安全、环境到居家生活、邻里交往、文体活动等系列需求。一些有品牌的公司潜心揣摩,结合不同的物业硬件和业主需求,提出并实践了一些新概念、新做法,形成自己鲜明的、独特的个性特色,突出企业形象和显示管理实力的同时,也为整个行业的发展提供了可供借鉴的经验;如万科物业从早期提出的"酒店式管理"到近期的"无人化管理"、"个性化管理"和"管理报告制度";中海物业管理倡导的"一拖N模式"、"氛围管理";深业物业实施的"精品战略";金地物业实行的"产学联手";"保姆计划"、"四点半学校"等均取得了良好的市

场效益。这里不能不提及贯穿全市物业管理企业发展历程,使物业管理意识深入民心的一项重要工作内容--社区文化。莲花物业在莲花二村率先倡导社区文化活动和万厦物业在莲花北村通过社区文化活动的开展建立起"全国城市文明第一村"的社会效益,在市场上均得到了良好的品牌效应。事实证明,多样化、多层次的社区文化活动是最能体现物业管理人文精神和关怀的有效手段,因为它较好地调整了业主与企业之间、业主与业主之间的关系,同时将物业管理工作通过社区活动去宣传,更容易得到业主的接受和认同。 1996年以来,万科、中海、中航、国贸、金地、莲花等物业管理公司,在全国物业管理行业率先通过了ISO9002国际标准质量认下,使物业管理的技术标准和质量规范管理纳入了国际轨道,对物业管理操作经营中的每个岗位、每个人员、每一个环节都有严格科学的管理规范和检验标准。到目前为止,100多家物业管理企业通过了ISO9002质量认证,其数量和比例居全国同行业之首。其中高新技术产业园区物业管理公司是全世界首家获得ISO9002、ISO14001及SA8000三个标准国际认证的物业管理公司。通过规范化管理的推广,深圳市相当数量的物业管理企业及其所管理的物业管理企业及其所管理的物业水平已接近或达到国际水准。 本文将就万科、中海两家物业管理公司的物业管理模式进行分析、探讨中国高水平物业管理的发展特色,以摸索出有利于中国物业管理进一步发展的东西。 一、万科物业管理的特点

新八年级下册英语课文语法填空和短文改错

一、 HanselandGretel______(live)nearaforestwithhisfatherandstepmother.Oneyear,theweather______(be)sodry thatnofood_____(grow).Thewifetoldherhusbandthatunlesshe________(leave)hischildren______(die)inthe forest,thewholefamilywoulddie.Gretel_________(hear)thattheirstepmotherplanned________(kill)herandh erbrother.ButHanselhadaplan________(save)himselfandhissister.Hewenttogetsomewhitestonesbeforehew enttobedthatnight.Thenextday,thewife_________(send)thechildrentotheforest.Hansel___________(drop)t https://www.360docs.net/doc/6e8477613.html,terthatnight,they________(see)thestonesbecauseoftheshiningmoon.Thestones__ ace)forthisistheHimalayas.TheHimalayasrunalongthe______________(southwest)partofChina.Ofallthem ountains,Qomolangma________(rise)thehighestandis____________(famous).Itis8,844.43metershighands oisverydangerous________(climb).Thickcloudscoverthetopandsnow__________(fall)veryhard.Evenmore serious_______(difficulty)includefreezingweatherconditionsandheavystorms.Itisalsoveryhard_____(take) inairasyougetnearthetop. Thefirstpeople_____(reach)thetopwereTenzingNorgayandEdmundHillaryonMay29,1953.ThefirstChi neseteam__(do)soinI960,whilethefirstwoman_____(succeed)wasJunkoTabeifromJapanin1975. Whydosomanyclimbersrisktheir_____(life)?Oneofthemain_______(reason)isbecausepeoplewant______(c hallenge)themselvesinthefaceofdifficulties. Thespiritoftheseclimbers_____(show)usthatweshouldnevergiveup____(try)toachieveourdreams.Itals

中海物业设备管理手册52页

中海物业设备管理手册52页 WI/G01-目录ZHPM目录 C/03/3 编号标题页码版号/状态 WI/G01-001 工程部组织机构图1 C/0 WI/G01-002 工程部职责2 C/0 WI/G01-003 工程部经理职责1 C/0 WI/G01-004 工程部副经理职责1 C/0 WI/G01-005 工程部专业工程师职责3 C/0 WI/G01-006 工程部资料员职责1 C/0 WI/G01-007 小区机电主管职责1 C/0 WI/G01-008 设备保修期管理办法1 C/0 WI/G01-009 水电过户审批制度2 C/0 WI/G01-010 配电房管理制度1 C/0 WI/G01-011 发电机房管理制度1 C/0 WI/G01-012 水泵房管理制度1 C/0 WI/G01-013 空调制冷设备房管理制度1 C/0 WI/G01-014 中控室/消防中心管理制度1 C/0 WI/G01-015 计量器具定期检定制度1 C/0 WI/G01-016 计量器具的检定方法4 C/0 WI/G01-017 电气维修规定1 C/0 WI/G01-018 大厦临时用电管理规定1 C/0 WI/G01-019 用水、供水管理规定1 C/0 WI/G01-020 供方选择评定规定2 C/0 WI/G01-021 工程质量的验收规定1 C/0 WI/G01-022 设备管理规程14 C/0 WI/G01-023 设备维修保养管理流程1 C/0 WI/G01-024 公共设备大的故障维修程序1 C/0 WI/G01-025 设备更新、技术改造程序1 C/0 WI/G01-026 红旗设备检评2 C/0 WI/G01-027 公共机电设备维修保养合同9 C/0 编号标题页码版号/状态 MR-001G01 公共机电设备维修保养计划执行情况统计表1 C/0 MR-002G01 配电房、电表房电能表抄表

中海物业

中海地产物业策略是基于其企业文化的,其企业文化,具体体现在以下几个方面: (1)核心价值观:追求企业和员工的共同成长,实现企业与客户的和谐共荣。 (2)企业精神:严格苛求、自觉奉献; (3)经营理念:精诚服务、精彩生活; (4)品牌风格:高档物业特征,优质服务标志; (5)服务理念:管就高标准、干就创一流; (6)团队精神:“我的中海物业,中海物业的我”; (7)质量方针:为顾客提供一个安全、清洁、优美、舒适、方便的生活和工作环境。 基于以上企业文化,目前中海地产物业公司的物业策略为:不把任务外包出去,对售后服务有责任感,努力提高售后质量,为顾客买房提供良好的基础。除此之外,随着中海房产公司开发的项目越来越多,未来中海地产将不再接纳外部物管业务,集中精力服务于中海自己开发的物业。 由此可见,中海地产目前的物业策略有两个方面。一方面,中海地产承诺了坚持企业文化中的各种精神,把顾客的利益放在首位,并承诺不会外包任务,是体现其责任感的策略;另一方面,中海地产将逐渐走上自给自足的轨道,开发具有自身特色的物业,并只为中海服务,是一种封闭式策略。 对于策略的实施,中海地产主要包含如下内容:全面导入ISO9000国际质量管理体系,规范服务流程;全面导入ISO14001环境管理体系;全面推行氛围式管理,使小区呈现出悠闲居住环境与绿色人文环境完善结合的特色;专业化技术支持,中海下属的楼宇科技公司、电梯工程公司、专业化清洗公司将以专业化管理确保小区的公共设施设备得到良好的维修养护。 三、中海地产物业策略存在问题分析 “中海地产”的物业策略并非尽善尽美,而实施的过程也差强人意,从一些顾客的反馈中可以证实其策略及实施确实存在着一定的弊端,主要集中在以下几个方面。 首先,服务的态度不够端正,很多顾客反映,“中海地产”的物业人员未能及时对问题进行解决,经常拖时间,有的甚至不予理睬;在物业的网站上只回答无用问题,对求助和质疑却没有回应等等。其次,服务的质量不好。体现在物业有时维修质量不过关,仓库里小型电瓶车无人看管并表示丢失概不负责,以及水电费的缴纳全靠顾客自己而没有配合等。再次,服务的费用十分昂贵。物业公司没有按照物价局的规定收取费用,其高昂的费用与服务质量不成正比也使顾客觉得不公。

中国文化常识-中国传统艺术I 中国民乐与戏剧(英文讲授中国文化)Chinese Folk Music and Local Operas

Folk Music 中国民乐 Beijing Opera 京剧 Local Operas 地方戏 Outline ?China, a nation of long history with profound culture, ?inherited and developed a great variety of traditional art forms which suit both refined and popular tastes 雅俗共赏. ?From the melodious and pleasant folk music to the elaborate and touching local dramas, ?from the simple but elegant inkwash painting(水墨画) to the flexible and powerful calligraphy, ?one can always discern the light of sparkling wisdom. ?Traditional Chinese arts have tremendously impressed the world. ?Chinese folk music, with strong nationalistic features, is a treasure of Chinese culture. ?As early as the primitive times, Chinese people began to use musical instruments, ?which evolved today into four main types categorized by the way they are played 吹拉弹打.materials they are made of (丝竹管弦). stringed instrument 丝:弦乐器 wind instrument 竹:管乐器 ?吹:The first type is wind instrument 管乐器, as show in xiao (a vertical bamboo flute )箫,flute 笛子, suona horn 唢呐, etc. ?拉:The second type is string instrument 弦乐器, represented by urheen 二胡, jinghu 京胡(a two-string musical instrument similar to urheen ), banhu fiddle 板胡, etc.

相关文档
最新文档