直线的参数方程

直线的参数方程
直线的参数方程

课题:直线的参数方程

【学习目标】

1.通过实例了解直线的参数方程的建立过程,并会与普通方程进行互化.

2.掌握参数方程的不同表示形式,理解其中有几何意义的参数的含义.

3.能够运用参数方程探究直线与圆锥曲线的位置关系,解答距离和弦长问题,运用运动变化的观点看待问题.根据实例说明某些直线用参数方程表示比用普通方程表示更方便,感受参数方程的优越性.

【重点难点预测】

重点:直线的参数方程.

难点:直线的参数方程与普通方程互化

【学法指导】

小组合作、讨论交流

【导学流程】 一、创设情境

直线l 过点(2,3),倾斜角为60°的直线方程有哪些不同的表达形式?

二、课前预习导学

问题1:上述问题中的直线可以用 写方程,也可以由参数方程写出. 过点P(x 0,y 0),倾斜角为α的直线l 的参数方程为 (t 为参数).

问题2:上述直线l 的参数方程中参数t 的几何意义

直线l 的参数方程中参数t 的几何意义:参数t 的绝对值等于直线上动点P 到定点P 0(x 0,y 0)的距离,即|t |=|P 0P|.

问题3:直线l 的参数方程形式一定吗?还可以写成什么形式?

直线的参数方程形式不是唯一的,直线的参数方程可以写成 ,这里的

,a b R ∈,其中当221a b +=时, t 有明确的几何意义,它表示|P 0P|.此时,我们可以认为cos ,sin a b αα==(α为倾斜角);当221a b +=时, t 没有明确的几何意义.

问题4:如何用直线l 的参数方程求弦长和求弦的中点坐标?

一般是先设出直线l 的参数方程为00,sin x x tcos y y t α

α=+??=+?(t 为参数),代入圆锥曲线的方程,得到关于t

的二次方程,由判别式Δ和韦达定理得到t 1+t 2, t 1t 2的值,再由弦长公式 计算.用弦的中点坐标计算时,先计算 ,再代入直线的参数方程得到中点坐标.

三、基础学法交流

1.下列可以作为直线2x-y+1=0的参数方程的是( ).

A. 13x t y t =+??=+? ( t 为参数)

B. 152x t y t =-??

=-?( t 为参数) C. 132x t y t =-??=-?

( t 为参数)

D. 25x y ?=+????=+??

( t 为参数) 2.直线231x t

y t

=+??=-+?(t 为参数)上对应t =0, t =1两点间的距离是( ).

A.1

C.10

3.设直线的参数方程为123x t

y t =-+??=-?

(t 为参数),则点(3,6)到直线的距离是 .

4.求直线l

:23x y ?=--??=+??(t 为参数)与抛物线C: 2

2x s y s =??=?(s 为参数)的交点坐标.

四、展示提升:

直线的参数方程

例一、直线1sin 302cos 60o

o

x t y t ?=--?=+?

(t 为参数)的倾斜角为( ). A.30° B.45° C.120°

D.135°

利用参数的几何意义求距离

例二、在直角坐标系xOy 中,直线l

的参数方程为32x y ?=????=??(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C

的方程为

ρθ=.

(1)求圆C 的直角坐标方程;

(2)设圆C 与直线l 交于点A 、B,若点P 的坐标为(3,

求|PA|+|PB|.

直线的参数方程在圆锥曲线中的应用

例三、求直线11x t y t

=-??=+?被椭圆2

214x y +=所截得的弦长.

【当堂检测】

1.若直线的参数方程为1223x t

y t

=+??=-?(t 为参数),则直线的斜率为( ).

A.

23

B.-23

C. 3

2

D.-

3

2

2.

直线23x y ?=-??=??(t 为参数)上与点P(-2,3)

( ).

A.(-4,5)

B.(-3,4)

C.(-3,4)或(-1,2)

D.(-4,5)或(0,1)

3.已知以极点为原点,极轴为x 轴的非负半轴建立极坐标系,曲线C 的极坐标方程为ρ=6sinθ,直

线l

的参数方程为1212x t y ?=??

??=+??(t 为参数),直线l 被曲线C 截得的线段长度为 .

4.在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标

方程是ρ=4cosθ,直线l

的参数方程是3212x y t ?=-+???

?=??(t 为参数). (1)过极点作直线l 的垂线,垂足为点P,求点P 的极坐标; (2)若点M,N 分别为曲线C 和直线l 上的动点,求|MN|的最小值.

【达标测评】

1、直线过点(3,-5),倾斜角为2

3

π,求直线的参数方程.

2、在平面直角坐标系xOy中,已知直线l

的参数方程为

1

2

x

y

?

=-

??

?

?=

??

(t为参数),直线l与抛物线

y2=4x相交于A,B两点,求线段AB的长.

3、已知在直角坐标系xOy中,曲线C的参数方程为

14

,

24sin

x cos

y

θ

θ

=+

?

?

=+

?

(θ为参数),直线l经过定

点P(3,5),倾斜角为

3

π.

(1)写出直线l的参数方程和曲线C的标准方程;

(2)设直线l与曲线C相交于A、B两点,求|PA|·|PB|的值.

4、已知在平面直角坐标系xOy中.以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的

极坐标为)

6

π,曲线C

的极坐标方程为2sin1

ρθ

+=.

(1)写出点P的直角坐标及曲线C的普通方程;

(2)若Q为曲线C上的动点,求PQ中点M到直线l:

32

2

x t

y t

=+

?

?

=-+

?

(t为参数)的距离的最小值.

【知识清单】

【自主反思】

高三数学一轮复习 专题 直线的参数方程导学案

第三课时 直线的参数方程 一、教学目标: 知识与技能:了解直线参数方程的条件及参数的意义 过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二重难点:教学重点:曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程 (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 圆222r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆22020)\()(r y y x x =+-参数方程为:???+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆参数方程. 3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程? (二)、讲解新课: 1、问题的提出:一条直线L 的倾斜角是0 30 ,并且经过点P (2,3),如何描述直线L 上任意点的位置呢? 如果已知直线L 经过两个 定点Q (1,1),P (4,3), 那么又如何描述直线L 上任意点的 位置呢? 2、教师引导学生推导直线的参数方程: (1)过定点),(00y x P 倾斜角为α的直线的 参数方程

?? ?+=+=α α sin cos 00t y y t x x (t 为参数) 【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t 的几何意义是指从点P 到点M 的位移,可以用有向线段PM 数量来表示。带符号. (2)、经过两个定点Q 1 1 ( ,)y x ,P 2 2 (,)y x (其中12x x ≠)的直线的参数方程为 12112 1(1){ x X y y x y λλ λλλλ++++= =≠-为参数,。其中点M(X,Y)为直线上的任意一点。这里 参数λ的几何意义与参数方程(1)中的t 显然不同,它所反映的是动点M 分有向线段QP 的 数量比QM MP 。当o λ >时,M 为内分点;当o λ<且1λ≠-时,M 为外分点;当o λ=时, 点M 与Q 重合。 例题演练: 例1、 已知直线l :10x y +-=与抛物线2 y x =相交于A,B 两点,求线段AB 的长和点 M (1,2)-到A,B 两点的距离之积。 例2、 经过点M(2,1)作直线l ,交椭圆 22 1164 x y +=于A,B 两点,如果点M 恰好为线段AB 的中点,求直线l 的方程。

直线参数方程t的几何意义44095

1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=α αsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k = 的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P 同时改变符号 P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α α sin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t| ①当t>0时,点P 在点P 0的上方; x y ,) x

《直线的参数方程》教学案1

2.5《直线的参数方程》教学案 一、教学目标: 知识与技能:了解直线参数方程的条件及参数的意义 过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识. 二重难点: 教学重点:曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法: 启发、诱导发现教学. 四、教学过程 (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程. 圆222r y x =+参数方程?? ?==θ θ sin cos r y r x (θ为参数) (2)圆2 2 02 0r y y x x =+-)-()(参数方程为:???+=+=θ θ sin cos r y y r x x 00 (θ 为参数) 2.写出椭圆参数方程. 3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程? (二)、讲解新课: 1、问题的提出:一条直线L 的倾斜角是 30 ,并且经过点P(2,3),如何描述直 线L 上任意点的位置呢? 如果已知直线L 经过两个 定点Q(1,1),P(4,3), 那么又如何描述直线L 上任意点的 位置呢? 2、教师引导学生推导直线的参数方程: (1)过定点),(00y x P 倾斜角为α的直线的 参数方程 ???+=+=αα sin cos t y y t x x 00 (t 为参数【辨析直线的参数方程】:设M(x ,y)从点P 到点M 的位移,可以用有向线段PM (2)、经过两个定点Q 11(,)y x ,P 22(,)y x (其中12≠)的直线的参数方程为

直线参数方程-知识讲解

直线的参数方程 【学习目标】 1.能选择适当的参数写出直线的参数方程. 2. 会运用直线的参数方程解决有关问题。 【要点梳理】 要点一、直线的参数方程的标准形式 1. 直线参数方程的标准形式: 经过定点000(,)M x y ,倾斜角为α的直线l 的参数方程为: 00cos sin x x t y y t αα=+??=+? (t 为参数); 我们把这一形式称为直线参数方程的标准形式。 2. 参数t 的几何意义: 参数t 表示直线l 上以定点0M 为起点,任意一点M(x,y)为终点的有向线段的长度再加上表示方向的正 负号,也即0||||M M t = ,||t 表示直线上任一点M 到定点0M 的距离。 当点M 在0M 上方时,0t >; 当点M 在0M 下方时,0t <; 当点M 与0M 重合时,0t =; 要点注释:若直线l 的倾角0α=时,直线l 的参数方程为? ??=+=00y y t x x . 要点二、直线的参数方程的一般形式 过定点P 0(x 0,y 0)斜率k=tg α=a b 的直线的参数方程是 ???+=+=bt y y at x x 00(t 为参数) 在一般式中,参数t 不具备标准式中t 的几何意义。若a 2+b 2=1,则为标准式,此时,|t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |. 要点三、化直线参数方程的一般式为标准式 一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,. ? ??+=+=bt y y at x x 00 (t 为参数), 斜率为a b tg k ==α (1) 当2 2b a +=1时,则t 的几何意义是有向线段M M 0的数量. (2) 当22b a +≠1时,则t 不具有上述的几何意义 .

15 直线的参数方程(1)(教师版)

15. 直线的参数方程(1) 主备: 审核: 学习目标:1.了解直线参数方程的条件及参数的意义; 2. 能根据直线的几何条件,写出直线的参数方程. 学习重点:直线参数方程的简单应用. 学习难点:直线参数方程中参数意义的理解. 学习过程: 一、课前准备: 阅读教材3536P P -的内容,了解直线参数方程的推导过程,并思考以下问题: 1.将参数方程122x t y t =-??=+? (t 为参数)化为普通方程是250x y +-=. 2.在平面直角坐标系中,确定一条直线的几何条件是什么? 答:一个定点和倾斜角可惟一确定一条直线,方程为0 0tan ()y y x x α-=-. 3. 你认为用哪个几何条件来建立参数方程比较好? 答:当一条直线确定了之后,唯一变化的就是直线上的点,因此,可以以某一个定点为参照,定点到动点的向量作为参数. 二、新课导学: (一)新知: 直线参数方程的推导过程: 设e 是与直线l 平行且方向向上(l 的倾斜角不为0)或向右(l 的倾斜角为0)的单位方向.设直线l 的倾斜角为α,定点为0M 和动点M 的坐标分别为00(,)x y 、(,)x y . 思考以下问题: (1)如何利用倾斜角α写出直线l 的单位向量e ? 答: (cos ,sin )e αα= (2)如何用e 和0M 的坐标表示直线l 任意一点M 的坐标? 答:因为00000(,)(,)(,)M M x y x y x x y y =-=-- 又0//M M e ,所以存在唯一实数t R ∈,使得0M M te = , 所以00(,,)(cos ,sin )x x y y t αα--=, 所以00cos sin x x t y y t αα=+??=+? (t 为参数). 这就是经过点000(,)M x y 且倾斜角为α的直线的参数方程. (3) 参数t 的几何意义是什么? 答:t 表示参数t 对应的点M 到定点0M 的距离;当0M M 与e 同向时,t 取正数,当0M M 与e 反向时,t 取负数,当0M 与M 重合时,0t =. (4)练习:①直线003sin20cos20 x t y t ?=+?=?(t 为参数)的倾斜角为70 ; ②直线10x y +-= 的一个参数方程是2()1x t y ?=????=??为参数. (二)典型例题: 【例1】直线l :30x y --=与抛物线24y x =交于两点A 、B ,求线段AB 的长和点

直线的参数方程练习题有答案

直线的参数方程 1.设直线l 过点A (2,-4),倾斜角为5 6π,则直线l 的参数方程是____________. 解析:直线l 的参数方程为? ?? x =2+t cos 5 6 π, y =-4+t sin 5 6 π (t 为参数), 即???x =2-32t y =-4+1 2t ,(t 为参数). 答案:???x =2-32t y =-4+1 2t ,(t 为参数) 2.设直线l 过点(1,-1),倾斜角为5π 6 ,则直线l 的参数方程为____________. 解析:直线l 的参数方程为??? x =1+t cos 5π 6 y =-1+t sin 5π 6,(t 为参数), 即???x =1-32t y =-1+1 2t ,(t 为参数) 答案:???x =1-32t y =-1+1 2t ,(t 为参数) 3.已知直线l 经过点P (1,1),倾斜角α=π 6 . 写出直线l 的参数方程; 解:①直线l 的参数方程为?????x =1+3 2t y =1+12t ,(t 是参数). 4.已知直线l 经过点P ????12,1,倾斜角α=π 6 , 写出直线l 的参数方程. [解] (1)直线l 的参数方程为???x =12+t cos π 6 y =1+t sin π6,(t 为参数),即???x =12+3 2 t y =1+1 2t ,(t 为参 数).2分 5.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,则直线l 的参数方程为____________. 解析:∵直线的斜率为-1, ∴直线的倾斜角α=135°. ∴cos α=- 22,sin α=2 2 . ∴直线l 的参数方程为???x =2-22t y =-1+2 2t ,(t 为参数). 答案:???x =2-22t y =-1+2 2 t ,(t 为参数) 6.已知直线l :???x =-3+32t y =2+1 2t ,(t 为参数) , 求直线l 的倾斜角; 解:(1)由于直线l :? ??x =-3+t cos π 6 , y =2+t sin π 6 (t 为参数)表示过点M 0(-3,2)且斜率

《直线的参数方程(第1课时)》教学设计

第二讲参数方程 2.3直线的参数方程(第一课时)(谷杨华) 一、教学目标 (一)核心素养 通过这节课学习,了解直线参数方程的推导过程、掌握参数的几何意义,体会参数方程的优越性,在逻辑推理、数学抽象中感受参数方程的特点. (二)学习目标 1.利用向量,推导直线的参数方程,体会直线的普通方程与参数方程的联系. 2.掌握并理解直线参数方程中参数的几何意义. 3.能初步利用直线参数方程解决一些几何问题,体会参数方程的优越性. (三)学习重点 1.直线参数方程的推导. 2.直线参数方程中参数的几何意义. 3.直线参数方程中参数的几何意义的初步应用. (四)学习难点 1.对直线参数方程的几何意义的理解. 2.对直线参数方程中参数的几何意义的初步应用.

二、教学设计 (一)课前设计 1.预习任务 读一读:阅读教材第35页至第36页,填空: 过定点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为)(sin cos 00为参数t t y y t x x ?? ?+=+=αα ,这种形式称为直线参数方程的标准形式. 其中参数t 的几何意义是:直线上的动点M 到定点M 0的距离等于参数t 绝对值,即|M 0M |=|t |. 若_0>t ,则0M M 的方向向上; 若_0

直线的参数方程

直线的参数方程 广东信宜中学 杨凡军 一、知识的引入: 我们前面已经学习了直线的普通方程,还有直线的极坐标方程,现在大家来考虑直线是否还有其他形式的方程吗? 二、练习 三、探究: (1)曲线的弦M 1M 2的长是多少? (2)线段M 1M 2的中点M 对应的参数t 的值是多少? 四、例题讲解: 例1、已知直线l :x + y -1=0与抛物线y = x 2 交于A, B 两点,求线段AB 的长和点M(-1,2)到A,B 两点的距离之积 思考:①例2的解法对一般圆锥曲线适用吗?②把“中点”改为“三等分点” 直线 l 的方程怎样求?③n 等分点呢 五、课堂训练: ① 已知直线l 过点P(3,2),且与x 轴和y 轴的正半 轴分别交于A,B 两点,求│PA │·│PB │的值 为最小时的直线l 的方程 ? ,0的几何意义吗参数你能得到由e t M M =t =的距离 到定点点对应的 表示参数即0M M t t 义 . ,,M ) ()(sin cos 2 1210 0t t ,M x f y t t y y t x x 对应的参数分别为两点交于与曲线为参数直线=???α+=α+=2 121t t M M -=22 1t t t += .,,,1416(2,1).22 2的方程求直线的中点为线段恰好 如果点两点于交椭圆作直线经过点例l AB M B A y x l M =+),MB 2AM :(=例如

解:设过点M 的参数方程为: 所以直线的普通方程为:x+y-5=0 ② 直线l 过P (2,1),倾斜角为θ,它和曲线C :4x 2+9y 2=36,交于A,B 两点,θ为何值时,|PA||PB|有最大值和最小 值?并求出相应的最值 六、直线参数方程(标准形式): (常解决问题类型) (1)利用参数求弦长 (2)利用参数求直线方程(即求斜率) 直线参数方程(一般形式): 一般形式与标准形式的互化: 七、例题与练习: 例3、当前台风中心P 在某海滨城市O 向东300km 处生成,并以40km/h 的速度向西偏北45°方向移动. 已知距台风中心250km 以内的地方都属于台风侵袭的范围, 那么经过多长时间后该城市开始受到台风侵袭?受到侵袭的时间有多久? 八、小结 九、作业布置 十、优点,不足及建议 这是卢耀才老师成功的一节课,虽然学生对直线的参数方程的知识感到有点难度,但是经过卢老师的详细分析,讲解细仔,让难点和重点突出,层层加深,突破难点,讲得通俗易懂,作到化难为易,非常成功。从教案的布置,知识点之间的联系和课堂气氛来看,都非常好,再加上学生的知识底子较好,达到因材施教,黑板书写条理清晰,把重点一一列出,难点反复练习,加深理解,对于容易出错的地方,肯定地提出并要学生记写和让学生做相应的一些练习。 参数方程是一个重点,直线的参数方程又是一大难点,它为我们学习过程中提供了另外的一种方法,在许多的情况下,使用参数方程去解决实际问题显得更加容易,所以让学生认真学习好参数方程。 { ) (sin 2cos 3为参数t t y t x α+=α+=)t (2 2 2223为参数??? ? ?+=-=t y t x 9 11 24110时有最小值 =,时有最大值=当πθθ)(sin cos 0 0是参数t t y y t x x ?? ?α +=α +=)(t 0 为参数? ??+=+=bt y y at x x |||,|.,,,(y x (2 10212 10 00 00P P P P t t t P P P t bt y y at x x P 求,数值为分别为参是直线上的点,对应的是参数))的直线参数方程为,过???+=+=||||2 20 t b a P P +=||||2 12 221t t b a P P -+={ .41035.式化为参数方程的标准形把直线的参数方程 练习:t y t x -=+=)(5 410)53(5为参数t t y t x '?????'+=' -+=

直线的参数方程教案

直线的参数方程 教学目标: 1. 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用. 2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想. 3. 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度. 教学重点:联系数轴、向量等知识,写出直线的参数方程. 教学难点:通过向量法,建立参数t(数轴上的点坐标)与点在直角坐标系中的坐标,x y之间的联系. 教学方式:启发、探究、交流与讨论. 教学手段:多媒体课件. 教学过程: 一、回忆旧知,做好铺垫 教师提出问题: 1.曲线参数方程的概念及圆与椭圆的参数方程. 2.直线的方向向量的概念. 0 / 13

3.在平面直角坐标系中,确定一条直线的几何条件是什么? 4.已知一条直线的倾斜角和所过的一个定点,请写出直线的方程. 5.如何建立直线的参数方程? 这些问题先由学生思考,回答,教师补充完善,问题5不急于让学生回答,先引起学生的思考. 【设计意图】通过回忆所学知识,为学生推导直线的参数方程做好准备. 二、直线参数方程探究 1.回顾数轴,引出向量 数轴是怎样建立的?数轴上点的坐标的几何意义是什么? 教师提问后,让学生思考并回答问题. 教师引导学生明确:如果数轴原点为O ,数1所对应的点为A ,数轴上点M 的坐标为t ,那么: ①OA 为数轴的单位方向向量,OA 方向与数轴的正方向一致,且OM tOA =;②当OM 与OA 方向一致时(即OM 的方向与数轴正方向一致时),0t >; 当OM 与OA 方向相反时(即OM 的方向与数轴正方向相反时),0t <; 当M 与O 重合时,0t =; ③||OM t =.教师用几何画板软件演示上述过程.

直线的参数方程及其应用举例

直线的参数方程及应用 问题1:(直线由点与方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)就是直线l 上任意一点,(方向为直线L 的正方向)过点P 作y 轴的平行线,P 0作x 轴的平行线,两条直线相交于Q 点、 1)当P P 0与直线l 同方向或P 0与P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α αsin cos 00t y y t x x 就是所求的直线l 的参数方程 ∵P 0P =t,t 为参数,t 的几何意义就是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线l ?+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 对应关系? 我们把直线l 瞧作就是实数轴, 以直线l 向上的方向为正方向,以定点P 0 为原点,以原坐标系的单位长为单位长, 这样参数t 便与这条实数轴上的点P 一一对应关系、 问题3:P 1、P 2为直线l 则P 1P 2=?,∣P 1P 2∣=? P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣ x x

直线参数方程t的几何意义 (1)

利用直线参数方程t 的几何意义 1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ? ??+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ? ??+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点, (规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即? ??+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ①当t>0时,点P 在点P 0的上方; ②当t =0时,点P 与点P 0重合; ③当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线?+=00y t x x

直线的参数方程及其应用举例

直线的参数方程及应用 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α αsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线?+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系? 我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系. 问题3:P 1、P 2为直线l 则P 1P 2=?,∣P 1P 2∣=? P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣ x x

直线参数方程t的几何意义

利用直线参数方程t 的几何意义 1、 直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=α αsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、 直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ? ??+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α αsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ①当t>0时,点P 在点P 0的上方; ②当t =0时,点P 与点P 0重合; x

直线的参数方程及其应用(不错哦,放心用)

直线的参数方程及应用 目标点击: 1.掌握直线参数方程的标准形式和一般形式,理解参数的几何意义; 2.熟悉直线的参数方程与普通方程之间的互化; 3.利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题; 基础知识点击: 1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ? ??+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α x

直线的参数方程及其应用1

直线的参数方程及应用 基础知识: 1、 直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ? ??+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t P 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3= 22 1t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、 直线参数方程的一般式: 过点P 0(00,y x ),斜率为a b k = 的直线的参数方程是 ? ??+=+=bt y y at x x 00 (t 为参数) 直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 的参数方程. 设点P(y x ,)是直线l 上任意一点,(规定向上的方向为直线L 的正方向)过点P 作y 轴的平行线,过P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 则P 0Q =P 0Pcos α y ,)

Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P 同时改变符号 P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y - =t sin α 即? ??+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线l 的参数方程为?? =00y y ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 , 则P 1P 2=?,∣P 1P 2∣=? P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣ 问题3:若P 0为直线l 上两点P 1、P 2的中点,P 1、P 2 参数分别为t 1、t 2 ,则t 1、t 2之间有何关系? 根据直线l 参数方程t 的几何意义, x x x y ,)

直线的参数方程及应用

直线的参数方程及应用 基础知识点击: 1、 直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、 直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l ? ??+=+=αα s i n c o s 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:0y )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线?+=00y t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是一一对应关系. 问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1 则P 1P 2=?,∣P 1P 2∣=? P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1, ∣P 1P 2∣=∣ t 2-t 1∣ 问题4: 一般地,若P 1、P 2、P 3是直线l 上的点, 所对应的参数分别为t 1、t 2、t 3, P 3为P 1、P 2的中点 则t 3=2 21t t + 基础知识点拨: 1、参数方程与普通方程的互化 例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义. 点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义. 例2:化直线2l 的参数方程? ??+=+-= t 313y t x (t 为参数)为普通方程,并求倾斜角, 说明∣t ∣的几何意义. 点拨:注意在例1、例2中,参数t 的几何意义是不同的,直线1l 的参数方程 你会区分直线参数方程的标准形式? 例3:已知直线l 过点M 0(1,3),倾斜角为 3 π ,判断方程??? ? ???+=+=t y t x 2332 1 1(t 为参数)和方 程? ??+=+= t 331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出 方程中的参数t 是否具有标准形式中参数t 的几何意义. 点拨:直线的参数方程不唯一,对于给定的参数方程能辨别其标准形式,会利用参数t 的几何意义解决有关问题. x y ,) x x

极坐标与参数方程专题(1)——直线参数t几何意义的应用

极坐标与参数方程专题(1)——直线参数t几何意义的应用1.(2018?银川三模)在平面直角坐标系xoy中,以O为极点,x轴非负半轴为极轴建立极坐标系,已 知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为:(t为参数),两曲线相交 于M,N两点. (Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程; (Ⅱ)若P(﹣2,﹣4),求|PM|+|PN|的值. 解:(Ⅰ)根据x=ρcosθ、y=ρsinθ,求得曲线C的直角坐标方程为y2=4x, 用代入法消去参数求得直线l的普通方程x﹣y﹣2=0. (Ⅱ)直线l的参数方程为:(t为参数), 代入y2=4x,得到,设M,N对应的参数分别为t1,t2, 则t1+t2=12,t1?t2=48,∴|PM|+|PN|=|t1+t2|=. 2.(2018?乐山二模)已知圆C的极坐标方程为ρ=2cosθ,直线l的参数方程为(t为参数), 点A的极坐标为(,),设直线l与圆C交于点P、Q两点. (1)写出圆C的直角坐标方程;(2)求|AP|?|AQ|的值. 解:(1)圆C的极坐标方程为ρ=2cosθ 即ρ2=2ρcosθ,即(x﹣1)2+y2=1,表示以C(1,0)为圆心、半径等于1的圆. (2)∵点A的直角坐标为(,),∴点A在直线(t为参数)上. 把直线的参数方程代入曲线C的方程可得t2+t﹣=0. 由韦达定理可得t1?t2=﹣<0,根据参数的几何意义可得|AP|?|AQ|=|t1?t2|=.

3.(2018?西宁模拟)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为ρcosθ+ρsinθ﹣=0,C的极坐标方程为ρ=4sin(θ﹣). (I)求直线l和C的普通方程; (II)直线l与C有两个公共点A、B,定点P(2,﹣),求||PA|﹣|PB||的值. 解:(I)直线l的极坐标方程为ρcosθ+ρsinθ﹣=0,所以:直线l的普通方程为:,因为圆C的极坐标方程为为ρ=4sin(θ﹣),所以圆C的普通方程:. (II)直线l:的参数方程为:(t为参数), 代入圆C2的普通方程:消去x、y整理得:t2﹣9t+17=0,t1+t2=9,t1t2=17, 则:||PA|﹣|PB||=,=. 4.(2018?内江三模)在直角坐标系xOy中,直线l过点P(1,﹣2),倾斜角为.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ,直线l与曲线C交于A,B 两点. (Ⅰ)求直线l的参数方程(设参数为t)和曲线C的普通方程;(Ⅱ)求的值. 解:(Ⅰ)∵直线l过点P(1,﹣2),倾斜角为. ∴直线l以t为参数的参数方程为,(t为参数)…(3分) ∵曲线C的极坐标方程为ρ=4cosθ.∴曲线C的普通方程为(x﹣2)2+y2=4.…(5分) (Ⅱ)将直线l的参数方程,(t为参数)代入曲线C的普通方程(x﹣2)2+y2=4,得,…(6分)设A,B两点对应的参数为t1,t2, ∵点P在曲线C的左下方,∴|PA|=t1,|PB|=t2,…(8分) ∴===3.…(10分)

直线的参数方程,圆锥曲线的参数方程及其应用等-高中数学

直线的参数方程,圆锥曲线的参数方程及其应用 一. 教学内容: 直线的参数方程,圆锥曲线的参数方程及其应用,极坐标系,曲线的极坐标方程及其应用。 [基本知识点] (1)直线的参数方程 <1>标准形式: <2>一般形式 (2)参数t 的几何意义及其应用 标准形式: <1>直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长|AB|=|t 1-t 2| <2>定点M 0是弦M 1、M 2的中点?t 1+t 2=0 <3>设弦M 1,M 2中点为M ;则点M 相应的参数 (3)圆锥曲线的参数方程 <1> <2> 角)。 :),y ,x (M 000准形式为的直线的参数方程的标且倾角为过点α)t (sin t y y cos t x x 00为参数???+=+=αα)1b a 't ('bt y y 'at x x 2200≠+???+=+=为参数且)y ,x (M t ,)t (sin t y y cos t x x 00000的几何意义是表示定点中为参数???+=+=αα的数量的有向线段到直线上动点M M y)(x,M 0:t,M M 0故即=2t t t 2 1M +=)(sin r y cos r x r y x 222为参数的参数方程为圆ααα???===+轴正方向的旋转角的几何意义动半径对于 其中x α其几何意义为离心为参数的参数方程为椭圆,(sin b y cos a x 1b y a x 2222 ααα???===+

<3> <4>抛物线y 2=2px 的参数方程为 (4)极坐标系的基本概念。 在平面内任取一个定点O ,叫做极点,引一条射线O x ,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向),对于平面内任一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角度,ρ叫做M 的极径,θ叫做点M 的极角,有序数对(ρ,θ)就叫做点M 的极坐标系,这样建立的坐标叫做极坐标系。 (5)极坐标与直角坐标的互化 <1>互化条件: 极点与直角坐标系原点重合; 极轴与直角坐标系O x 轴重合; 两坐标系中的长度单位统一。 <2>互化公式 (6)曲线的极坐标方程 <1>定义:在极坐标系中,曲线可以用含有ρ、θ这两个变数的方程来表示,这种方程叫做曲线的极坐标方程。 <2>直线与圆的极坐标方程。 过极点的直线方程θ=θ0(ρ∈R ) 过点A (a,0),倾角为α的直线方程 以极点为圆心,半径为r 的圆的方程ρ=r 圆心在C (a,0),半径为a 的圆的方程ρ=2acos θ 圆心在(ρ0,θ0),半径为r 的圆的方程 【例题选讲】 例1 ,M 是AB 的中点,求|MF|。 )(btg y asec x 为参数双曲线的参数方程为ααα???==)(t pt 2y pt 2x 2 为参数?????==?????≠==+???==)0x (x y tg y x )2(sin y cos x )1(222θρθρθραθαρsin )sin(a =-220002r )cos(2=+--ρθθρρρ两点与双曲线交于的直线作倾角为的右焦点过双曲线B ,A l 45F 116y 9x 2 2 =-

相关文档
最新文档