全球半导体技术发展路线图

全球半导体技术发展路线图
全球半导体技术发展路线图

全球半导体技术发展路线图

一、半导体产业生态环境

半导体产业诞生于上世纪70年代,当时主要受两大因素驱动:一是为计算机行业提供更符合成本效益的存储器;二是为满足企业开发具备特定功能的新产品而快速生产的专用集成电路。

到了80年代,系统规范牢牢地掌握在系统集成商手中。存储器件每3年更新一次半导体技术,并随即被逻辑器件制造商采用。

在90年代,逻辑器件集成电路制造商加速引进新技术,以每2年一代的速度更新,紧跟在内存厂商之后。技术进步和产品性能增强之间不寻常的强相关性,使得相当一部分系统性能和利润的控制权转至集成电路(IC)制造商中。他们利用这种力量的新平衡,使整个半导体行业收入在此期间年均增速达到17%。

21世纪的前十年,半导体行业全新的生态环境已经形成:

一是每2年更新一代的半导体技术,导致集成电路和数以百万计的晶体管得以高效率、低成本地生产,从而在一个芯片上或同一封装中,可以以较低的成本整合极为复杂的系统。此外,封装技术的进步使得我们可以在同一封装中放置多个芯片。这类器件被定义为系统级芯片(system on chip,SOC)和系统级封装(system in package, SIP)。

二是集成电路晶圆代工商能够重新以非常有吸引力的成本提供“新一代专用集成电路”,这催生出一个非常有利可图的行业——集成电路设计。

三是集成电路高端设备的进步带动了相邻技术领域的发展,大大降低了平板显示器、微机电系统传感器、无线电设备和无源器件等设备的成本。在此条件下,系统集成商再次控制了系统设计和产品集成。

四是互联网应用和移动智能终端的崛起,带动了光纤电缆的广泛部署和多种无线技术的发展,实现前所未有的全球移动互联。这个生态系统创造了“物联网”这一新兴的市场,而创新的产品制造商、电信公司、数据和信息分销商以及内容提供商正在争夺该市场的主导权。

半导体是上述所有应用的基石,所有的创新离不开半导体产业的支持。

二、全球半导体技术发展路线

上世纪60年代后期,硅栅自对准工艺的发明奠定了半导体规格的根基。摩尔1965年提出的晶体管每两年一次的更新换代的“摩尔定律”,以及丹纳德1975年提出的“丹纳德定律”,促进了半导体产业的成长,一直到21世纪初,这是传统几何尺寸的按比例缩小(Classical Geometrically Driven Scaling)时代。进入等效按比例缩小(Equivalent Scaling)时代的基础是应变硅、高介电金属闸极、多栅晶体管、化合物半导体等技术,这些技术的实现支持了过去十年半导体产业的发展,并将持续支持未来产业的发展。

(一)器件

信息处理技术正在推动半导体产业进入更宽广的应用领域,器件成本和性能将继续与互补金属氧化物半导体(Complementary Metal-Oxide-Semiconductor Transistor, CMOS)的维度和功能扩展密切相关。

应变硅、高介电金属闸极、多栅晶体管现已广泛应用于集成电路的制造,进一步提升器件性能的重点将在III-V族元素材料和锗。与硅器件相比,这些材料将使器件具有更高的迁移率。为了利用完善的硅平台的优势,预计新的高迁移率材料将在硅基质上外延附生。

2D Scaling最终将在2013国际半导体技术路线图(ITRS)期间达到其基本限制,无论是逻辑器件还是存储器件正在探索如何使用垂直维度(3D)。3D设备架构和低功率器件的结合将开启“3D 能耗规模化(Power Scaling)”时代,单位面积上晶体管数量的增加将最终通过多层堆叠晶体管来实现。

遗憾的是,互连方面没有新的突破,因为尚无可行的材料具有比铜更低的电阻率。然而,处理碳纳米管、石墨烯组合物等无边包裹材料(edgeless wrapped materials)方面的进展为“弹道导体”(ballistic conductor)的发展提供基础保障,这可能将在未来十年内出现。

多芯片的三维封装对于减少互联电阻提供了可能的途径,主要是通过增加导线截面(垂直)和减少每个互连路径的长度。

然而,CMOS或目前正在研究的等效装置(equivalent device)的横向维度扩展最终将达到极限。未来半导体产品新机会在于:一是通过新技术的异构集成,扩展CMOS平台的功能;二是开发支持新一代信息处理范式的设备。

(二)系统集成

系统集成已从以数据运算、个人电脑为中心的模式转变为高度多样化的移动通信模式。集成电路设计正从以性能驱动为目标向以低耗驱动为目标转变,使得多种技术在有限空间内(如GPS、电话、平板电脑、手机等)可以异构集成,从而彻底改变了半导体产业。简言之,过去,性能是独一无二的目标;而今,最小化功耗的目标引领集成电路设计。

系统级芯片和系统级封装的产品已成为半导体产业的主要驱动力。过去的几年,智能手机和平板电脑的产量已经超过微处理器的产量。异构集成的基础依赖于“延伸摩尔”(More Moore, MM)设备与“超越摩尔”(More than Moore,MtM)元素的集成。

举例来说,目前,微机电系统(MEMS)设备被集成到汽车、视频投影仪、平板电脑、智能手机和游戏平台等各种类型系统中。一般情况下,MEMS设备为系统添加了有用的功能,增强系统的核心功能。例如,智能手机上的MEMS加速度计可检测手机的垂直方向,并旋转图像显示在屏幕上。通过MEMS引入的附加功能改善了用户界面,但手机没有它仍然可以运行。相比之下,如果没有MEMS设备,基于数字光投影技术(digital light projector, DLP)的录像机和喷墨打印机将无法正常工作。多模传感技术也已成为移动设备的组成部分,成为物联网的关键推动力量。

数字型数据(digital data)和连接技术的迅速进步为医疗服务带来变革。硅、微机电系统和光学传感技术正在使这一革命成为可能。

移动手机已经可以提供大量的健康信息。加速度计可以跟踪运动和睡眠,当用户触摸手机时,内置光传感器可以感知心脏速率。在手机的摄像头可以被用于不同的目的,比如检查食品的卡路里含量,或基于人脸表情识别自己的情绪。广泛的手机应用已经发展到能够分析这些数据,并用易于理解和操作的方式反馈给消费者。

综观未来7-15年(到2020年以后)设备和系统的发展,基于全新原理的设备将支持全新的架构。例如,自旋波设备(spin wave device, SWD)是一种磁逻辑器件,利用集体旋转振荡(自旋波)进行信息传输和处理。自旋波设备将输入电压信号转换成的自旋波,计算自旋波,将自旋波输出转换成电压信号。在一个单核心结构中,对多重频率的大规模并行数据处理能通过开辟每个频率为不同的信息通道,以非常低的功率来进行。此外,一些新设备推动新架构的创造。例如,存储级存储器(storage-class memory,SCM)是一种结合固态存储器(高性能和鲁棒性)、归档功能和常规硬盘磁存储的低成本优点的设备。这样一个设备需要一个非易失性存储器(nonvolatile memory,NVM)技术,能以一个非常低的成本制造每比特储存空间。

(三)制造

受维度扩展的驱动,集成电路制造的精度将在未来15年内达到几纳米级别。运用任何技术测量晶片上的物理特性已经变得越来越困难,通过关联工艺参数和设备参数将基本实现这个任务。通过控制设备稳定性和工艺重现性,对特征尺寸等过程参数的精确控制已经能够完成。

晶圆厂正在持续地受数据驱动,数据量、通信速度、数据质量、可用性等方面的要求被理解和量化。晶圆片由300毫米向450毫米转型面临挑战。应着眼于对300毫米和450毫米共性技术的开发,450毫米技术的晶圆厂将因适用300毫米晶圆片的改进技术而受益。

系统级芯片和系统级封装集成将持续升温。集成度的提高推动测试解决方案的重新整合,以保持测试成本和产品质量规格。优化的测试解决方案可能需要访问和测试嵌入式模块和内核。提供用于多芯片封装的高品质晶粒的已知好芯片(KGD)技术也变得非常重要,并成为测试技术和成本折中的重要部分。

三、重大挑战

(一)短期挑战(现在到2020年):性能提升

1、逻辑器件

平面型互补金属氧化物半导体(CMOS)的传统扩展路径将面临性能和功耗方面的严峻挑战。

尽管有高介电金属闸极(high-k/metalgate,HKMG)的引入,等效栅氧化层厚度(equivalent gate oxide thickness,E OT)的减少在短期内仍具有挑战性。高介电材料集成,同时限制由于带隙变窄导致的栅极隧穿电流增加,也将面临挑战。完整的栅极堆叠材料系统需要优化,以获取最佳的器件特性(功率和性能)和降低成本。

新器件结构,如多栅金属氧化物半导体场效应晶体管(MOSFETs)和超薄全耗尽型绝缘层上硅(FD-SOI)将出现,一个极具挑战性的问题是这些超薄金属氧化物半导体场效应晶体管(MOSFETs)的厚度控制。解决这些问题应与电路设计和系统架构的改进并行进行。

一些高迁移率材料,如锗和III-V族元素已被认为是对CMOS逻辑应用中硅通道的升级或替换。具有低体陷阱和低电能漏损,非钉扎费米能级(unpinned Fermi level)、低欧姆接触电阻的高介电金属栅极介质是面临的主要挑战。

2、存储器件

动态随机存取存储器(DRAM)的挑战在于,在特征尺寸减少、高介电介质应用、低漏电存取器件设计,以及用于位线和字线的低电阻率材料条件下,具有合适的存储电容。为了增加位元密度和降低生产成本,4F型单元的驱动器需要高纵横比和非平面晶体管结构。

闪存已成为关键尺寸缩放、材料和加工(光刻、腐蚀等)技术等前端工艺(Front E nd Of Line, FE OL)技术的新驱动力。短期内,闪存密度的持续发展依赖于隧道氧化层(Tunnel Oxide)的厚度变薄以及电介质集成度。

为了保证电荷维持和耐久的要求,引进高介电材料将是必要的。超过256 GB的3-D NAND闪存维持性价比的同时保证多层单元(Multi Level Cell, MLC)和一定的可靠性能,仍然是一个艰巨的挑战。新的挑战还包括新内存类型制造的演进,以及新的存储器概念,比如磁性随机存取存储器(MRAM)、相变存储器(P CM)、电阻式随机存取存储器(ReRAM)和铁电式随机存取存储器(FeRAM)。

3、高性能、低成本的射频和模拟/混合信号解决方案

推动无线收发器集成电路和毫米波应用中采用CMOS技术(高介电介质和应变工程)可能需要保持器件失配和1/f 噪声在可接受范围的技术。其他挑战还有整合更便宜且高密度集成的无源组件,集成有效硅和片外无源网络工艺的MEMS,基于低成本非硅(氮化镓)器件的开发。

随着芯片复杂性和操作频率的增加而电源电压的降低,芯片上数字和模拟区域的信号隔离变得越来越重要。降噪可能需要更多创新,例如通过技术设计,解决每厘米千欧姆级别的高电阻率基底的电源供应和连接地线问题。

许多材料导向和结构的变化,例如数字路线图中多栅和绝缘体硅薄膜(silicon on insulator, SOI)衰减,或者转而改变射频和模拟器件的行为。在优化射频、高频和AMS性能,以及供应电压的稳步下降等方面存在着复杂的权衡,为集成电路设计带来巨大的挑战。

4、32,22纳米半间距及更低

光刻正变得非常昂贵和最具挑战性的技术。对22纳米半间距光刻而言,采用间隔件光刻或多个模式的193纳米浸入式光刻机,将被应用于克服单一模式的限制,但具有非常大的掩模误差增强因子(mask error enhancement factor, MEEF)、晶片线边缘粗糙度(line edge roughness, LE R)、设计规则限制和更高的成本。波长为13.5纳米深紫外光刻(E xtreme-UV lithography, E UVL)是行业官方推动摩尔定律的期望。

深紫外光刻的挑战是:缺乏高功率源、高速光刻胶、无缺陷而高平整度的掩模带来的延时。进一步的挑战包括提高深紫外系统的数值孔径到超过0.35,以及提高增加成像系统反射镜数量的可能性。

多电子束无掩模光刻技术(Multiple-e-beam maskless lithography)具备绕过掩模难题,去除设计规则的限制,并提供制造灵活性的潜力。在显示高分辨率影像和CD控制方面已经取得了进展。制造工具的时机掌握、成本、瑕疵、准确套印、光刻胶是其他有待进一步发展的领域。

直接自组装(Direct Sel f-Assembly,DSA)技术有新的进展,但瑕疵和定位精度亟待改善。

其他挑战包括:微影蚀刻法(lithography and etching)中发光电阻器(LE R)的栅极长度CD控制和抑制,对新栅极材料、非平面晶体管结构、光刻胶的发光电阻器以及深紫外光刻的测量。

5、引入新材料

由于低介电材料(包括多孔材料和空气间隙)必须具有足够的机械强度以经受切割、封装和组装,考虑到蚀刻和化学机械抛光(chemico-mechanical polishing, CMP)工艺,低介电材料的介电损害减少变得更加重要。金属方面,超薄、共形低电阻率势垒金属需要与铜集成,以实现低电阻率和高可靠性。

6、电源管理

大多数应用阶段,电源管理是时下的首要问题。因为每一代晶体管数量会成倍增加,然而封装芯片中,具有成本效益的散热性能仍几乎保持不变。为了维持系统活跃和降低漏电功耗,相应电路技术的实现将扩展到对系统设计的要求、计算机辅助设计工具(computer aided design, CAD)的改进、漏电功耗降低和新器件架构性能要求的层面。

(二)短期挑战(现在到2020年):成本效益

1、光刻

虽然波长为13.5纳米的深紫外光刻是行业官方的目标,但是深紫外光刻必须达到很高的源功率才能在10纳米及以上水平的技术中具有成本竞争力。如果多电子束无掩模光刻技术可以保持每通曝光、工艺成本和与基于掩模曝光工具相似的踪迹,它可能是最经济的选择。工艺中引入更少的掩模数量后,193纳米浸入式光刻机的数位储存器架构(DSA)变得广受欢迎。

2、前端工艺

我们需要实现低寄生效应、继续缩小栅极间距、下一代基板的面积调整(调整为450毫米晶片),并采用突破性技术以应对光刻的挑战。

3、工厂集成

面临的挑战主要包括:一是应对快速变化的、复杂的业务需求;二是管理工厂不断增加的复杂性;三是边际效益下降的同时实现经济增长目标;四是满足工厂和设备可靠性、功能、效率和成本的要求;五是跨边界交叉利用工厂集成技术,如300毫米和450毫米搭配,以实现规模经济;六是解决迁移到450毫米晶圆上的独特挑战。

4、满足市场不断变化的成本要求

组装和包装的挑战包括三维集成芯片堆叠(测试:存取、成本和已知良好芯片,三维封装和包装,测试访问单个晶圆或芯片)。

5、环境、安全、健康

环境安全和健康领域面临的挑战是:化学品和原材料的管理与效率;工艺和设备管理;设施技术要求;产品管理;报废产品的再利用/再回收/再生产。

6、测量

工厂级别和公司层面的测量集成:测量方面应慎重选择,抽样必须经过统计优化,以满足基于拥有者成本的工艺控制(cost of o wnership, CoO)。

(三)长期挑战(2021到2028年):性能提升

1、非典型互补金属氧化物半导体通道材料的实现

为高度微缩的金属氧化物半导体场效应晶体管(MOSFETs)提供足够的驱动电流,具备增强热速度和在源端注入的准弹道操作似乎是必要的。因此,高速传输通道材料,如III-V族化合物或硅基质上的锗元素窄通道,甚至半导体纳米线、碳纳米管、石墨烯或其它材料都将有待开发。非典型互补金属氧化物半导体(CMOS)器件需要物理上或功能上地集成在一个CMOS平台上。这种集成要求外来半导体在硅基底上外延生长,这富有挑战性。理想的材料或器件性能必须在通过高温和腐蚀性化学加工后仍能维持。在技术开发的早期,可靠性问题就应被确立并解决。

2、识别、选择和新存储结构的实现

线材致密、快速和低工作电压的非易失性存储器(NVM)将变得非常理想,最终密度的提升可能需要三维体系结构,如在可接受的生产率和性能条件下,对单片集成电路进行垂直堆叠单元排列。对动态随机储存器(DRAM)的微缩难度预计将增大,尤其是要求缩减电介质等效氧化物厚度(equivalent oxide thickness, EOT)和实现非常低的漏损电流和能耗。所有的非易失性存储器(NVM)现存形式面临基于材料特性的限制,成功与否将取决于能否寻找和开发替代材料或者开发替代的新技术。

3、正在从典型规格通过非常规方法向等效微缩和功能多样性转变

线材边缘粗糙度,槽深和剖面,通过时侧壁粗糙度,蚀刻偏差,清洗引起的变薄,化学机械抛光(C MP)作用,多孔低电介质与侧壁孔洞的交叉,势垒粗糙度,铜表面粗糙度都会对铜线中电子散射产生不利影响,导致电阻率增加。结合新材料的多层堆叠,特征尺寸减小和模式相关工艺,替代存储器件的使用,光学和射频互连,仍将迎来挑战。蚀刻、清洗、装填高纵横比的结构,尤其是低介电金属双镶嵌结构和纳米级尺寸的动态随机存取存储器方面也将存在巨大的挑战。

用来制造新结构的材料和工艺融合形成了集成的复杂性,堆叠层数的提高加剧了形变场效应,新颖或有效器件可以被重组到互连线路中。三维芯片堆叠,以提供更好的功能多样性绕过传统的互连构架的缺陷。符合成本目标的、工程可制造的解决方案是一个关键的挑战。

4、深紫外光刻技术

由于深紫外光刻(EUVL)仍然是22纳米和16纳米半间距的最佳方案,将其扩展到更高的分辨率将成为一个重要的长期挑战。就当前所知,电流波长为大于等于0.5的数值孔径(NA)设计,将需要一个八镜面无遮拦或六镜面中心遮拦的设计。

八镜面设计将会有更多的反射损失,因为增加的镜面需要更高能的电源以达到同等晶圆的通量。在六镜面设计中镜面夹角较小,因而需要一个更小的字段尺寸和可能更长的轨道长度。数值孔径的增加,将对两种设计带来焦点深度的巨大挑战。此外,为了克服掩模上的阴影和其他三维效应,吸收体材料、吸收体厚度以及多层堆叠必须进行优化。

另一种解决途径是将深紫外光刻的波长降低到6纳米的水平。在短期内,这种途径将从能源可用性到掩模的基础结构和光刻胶性能方面继承深紫外光刻当前所有的挑战。多模式的深紫外光刻也将是一种选择,这将带来更大的工艺难度和拥有者的使用成本。

(四)长期挑战(2021到2028年):成本效益

符合灵活性、可扩展性和具有成本效益尖端工厂的扩展性要求。为了保持生产盈利,需要具备在多变的市场需求下,在可控范围内投入生产的能力和利用诸如制造外包的任务共享机会的能力。提高客户对高质量产品(包括制造外包)的质量认知仍是一个挑战。

可扩展性是指满足大型300毫米工厂需求[40K-50K WSPM]的同时保证建筑、产品、配套器件、生产信息和控制系统在技术代际间重复利用。成本控制和任务共享方案在产业基础设施建设的行业标准化活动中被高度期待,如数据标准化和可视化方法。

表1 2013 ITRS技术趋势目标汇总表

译自:2014年4月【美国】《International technolog y road map for semiconductors》编译:工业和信息化部国际经济技术合作中心王超张强

3--半导体光刻技术及设备的发展趋势

半导体光刻技术及设备的发展趋势 姚达1,刘欣2,岳世忠3 (11中国电子科技集团公司第四十七研究所,沈阳110032;21中国人民解放军91550部队,辽宁大连116000;31北京大学软件与微电子学研究院,北京100871) 摘要:随着芯片集成度的不断提高、器件尺寸的不断缩小,光刻技术和光刻设备发生着显著变化。通过对目前国内外光刻设备生产厂商对下一代光刻技术的开发及目前已经应用到先进生产线上的光刻技术及设备进行了对比研究,对光刻技术和光刻设备的发展趋势进行了介绍,并对我国今后半导体光刻技术及设备的发展提出了合理化建议。 关键词:光刻;光刻机;分辨率;掩模;焦深;曝光 中图分类号:T N30517 文献标识码:A 文章编号:10032353X(2008)0320193204 Trends of Lithography Technology&Equipments for Semiconductor F abrication Y ao Da1,Liu X in2,Y ue Shizhong3 (11The47th Research Institute,CETC,Shenyang110032,China;21Unit91550,P LA,Dalian116000,China; 31School o f So ftware and Microelectronics,Peking Univer sity,Beijing100871,China) Abstract:Lithography technology and equipments are in a significant im provement with high chip integration and the device size scaling down.The development trends of lithography and equipments for semiconductor fabrication are discussed through the current requirements for next generation lithography technology of lithography equipment manu factμrers domestic and abroad,and by com paring the lithography technology and equipments applied to advanced production line,and reas onable proposal development trend is given. K ey w ords:lithography;mask aligner;res olution;mask;depth of focus(DOF);exposure EEACC:2550G 0 引言 光刻技术从诞生以来,在半导体加工制造行业中,作为图形转移技术而广为应用。随着芯片集成度的不断提高、器件尺寸的不断缩小以及器件功能的不断提高,作为半导体加工技术中最为关键的光刻技术和光刻工艺设备,必将发生显著的变化。光刻工艺中通常所使用的光源是由水银蒸汽发射的紫外光,波长为366、405、436nm[1]。目前为了提高曝光分辨率,降低所使用的曝光光源也是光刻技术和设备发展的一个趋势。光刻机的主要构成包括曝光光源、光学系统、电系统、机械系统和控制系统组成。其中光学系统是光刻机的核心。光刻机的曝光方式一般根据掩模版和晶圆的距离大致分为三种方式:接触式、接近式和投影式[2]。 1 推动光刻技术和设备发展的动力经济利益是Si片直径由200mm向300mm转移的主要因素。300mm的Si片出片率是200mm的215倍。300mm工厂的投资为15~30亿美元,其中约75%的资金用于设备投资,因此用户要求设备能向下延伸3~4代。300mm片径是从180nm技术节点 趋势与展望 Outlook and Future

光刻技术及其应用的状况和未来发展

光刻技术及其应用的状况和未来发展 光刻技术及其应用的状况和未来发展1 引言 光刻技术作为半导体及其相关产业发展和进步的关键技术之一,一方面在过去的几十年中发挥了重大作用;另一方面,随着光刻技术在应用中技术问题的增多、用户对应用本身需求的提高和光刻技术进步滞后于其他技术的进步凸显等等,寻找解决技术障碍的新方案、寻找COO更加低的技术和找到下一俩代可行的技术路径,去支持产业的进步也显得非常紧迫,备受人们的关注。就像ITRS对未来技术路径的修订一样,上世纪基本上3~5年修正一次,而进入本世纪后,基本上每年都有修正和新的版本出现,这充分说明了光刻技术的重要性和对产业进步的影响。如图1所示,是基于2005年ITRS对未来几种可能光刻技术方案的预测。也正是基于这一点,新一轮技术和市场的竞争正在如火如荼的展开,大量的研发和开发资金投入到了这场竞赛中。因此,正确把握光刻技术发展的主流十分重要,不仅可以节省时间和金钱,同时可以缩短和用户使用之间的周期、缩短开发投入的回报时间,因为光刻技术开发的投入比较庞大。 2 光刻技术的纷争及其应用状况 众说周知,电子产业发展的主流和不可阻挡的趋势是"轻、薄、短、小",这给光刻技术提出的技术方向是不断提高其分辨率,即提高可以完成转印图形或者加工图形的最小间距或者宽度,以满足产业发展的需求;另一方面,光刻工艺在整个工艺过程中的多次性使得光刻技术的稳定性、可靠性和工艺成品率对产品的质量、良率和成本有着重要的影响,这也要求光刻技术在满足技术需求的前提下,具有较低的COO和COC。因此,光刻技术的纷争主要是厂家可以提供给用户什么样分辨率和产能的设备及其相关的技术。 以Photons为光源的光刻技术 2.1 以Photons为光源的光刻技术 在光刻技术的研究和开发中,以光子为基础的光刻技术种类很多,但产业化前景较好的主要是紫外(UV)光刻技术、深紫外(DUV)光刻技术、极紫外(EUV)光刻技术和X射线(X-ray)光刻技术。不但取得了很大成就,而且是目前产业中使用最多的技术,特别是前两种技术,在半导体工业的进步中,起到了重要作用。 紫外光刻技术是以高压和超高压汞(Hg)或者汞-氙(Hg-Xe)弧灯在近紫外(350~450nm)的3条光强很强的光谱(g、h、i线)线,特别是波长为365nm的i线为光源,配合使用像离轴照明技术(OAI)、移相掩模技术(PSM)、光学接近矫正技术(OPC)等等,可为0.35~0.25μm的大生产提供成熟的技术支持和设备保障,在目前任何一家FAB中,此类设备和技术会占整个光刻技术至少50%的份额;同时,还覆盖了低端和特殊领域对光刻技术的要求。光学系统的结构方面,有全反射式(Catoptrics)投影光学系统、折反射式(Catadioptrics)系统和折射式(Dioptrics)系统等,如图2所示。主要供应商是众所周知的ASML、NIKON、CANON、ULTRATECH 和SUSS MICROTECH等等。系统的类型方面,ASML以提供前工程的l:4步进扫描系统为主,分辨率覆盖0.5~0.25μm:NIKON以提供前工程的1:5步进重复系统和LCD的1:1步进重复系统为主,分辨率覆盖0.8~0.35μm和2~0.8μm;CANON以提供前工程的1:4步进重复系统和LCD的1:1步进重复系统为主,分辨率也覆盖0.8~0.35μm和1~0.8μm;ULTRATECH以提供低端前工程的1:5步进重复系统和特殊用途(先进封装/MEMS/,薄膜磁头等等)的1:1步进重复系统为主;而SUSS MICTOTECH以提供低端前工程的l:1接触/接近式系统和特殊用途(先进封装/MEMS/HDI等等)的1:1接触/接近式系为主。另外,在这个领域的系统供应商还有USHlO、TAMARACK和EV Group等。 深紫外技术

国际半导体技术发展路线图

国际半导体技术发展路线图 为了回答如何保持半导体产业按照摩尔定律继续发展的问题,国际上主要的半导体协会共同组织制定了国际半导体技术发展路线图 ITRS《International technology roadmap for semiconductors》它为半导体产业界提供了被工业界广泛认同的;对未来十年内研发需求的最佳预测以及可能的解决方案,它对整个半导体茶叶需要开发什么样的技术起到了一个导向作用。 国际半导体技术发展路线图 一、半导体产业生态环境 半导体产业诞生于上世纪70年代,当时主要受两大因素驱动:一是为计算机行业提供更符合成本效益的存储器;二是为满足企业开发具备特定功能的新产品而快速生产的专用集成电路。 到了80年代,系统规范牢牢地掌握在系统集成商手中。存储器件每3年更新一次半导体技术,并随即被逻辑器件制造商采用。 在90年代,逻辑器件集成电路制造商加速引进新技术,以每2年一代的速度更新,紧跟在内存厂商之后。技术进步和产品性能增强之间不寻常的强相关性,使得相当一部分系统性能和利润的控制权转至集成

电路(IC)制造商中。他们利用这种力量的新平衡,使整个半导体行业收入在此期间年均增速达到17%。 21世纪的前十年,半导体行业全新的生态环境已经形成: 一是每2年更新一代的半导体技术,导致集成电路和数以百万计的晶体管得以高效率、低成本地生产,从而在一个芯片上或同一封装中,可以以较低的成本整合极为复杂的系统。此外,封装技术的进步使得我们可以在同一封装中放置多个芯片。这类器件被定义为系统级芯片(system on chip,SOC)和系统级封装(system in package, SIP)。 二是集成电路晶圆代工商能够重新以非常有吸引力的成本提供“新一代专用集成电路”,这催生出一个非常有利可图的行业——集成电路设计。 三是集成电路高端设备的进步带动了相邻技术领域的发展,大大降低了平板显示器、微机电系统传感器、无线电设备和无源器件等设备的成本。在此条件下,系统集成商再次控制了系统设计和产品集成。 四是互联网应用和移动智能终端的崛起,带动了光纤电缆的广泛部署和多种无线技术的发展,实现前所未有的全球移动互联。这个生态系统创造了“物联网”这一新兴的市场,而创新的产品制造商、电信公司、数据和信息分销商以及内容提供商正在争夺该市场的主导权。

光刻技术新进展

光刻技术新进展 刘泽文李志坚 一、引言 目前,集成电路已经从60年代的每个芯片上仅几十个器件发展到现在的每个芯片上可包含约10亿个器件,其增长过程遵从一个我们称之为摩尔定律的规律,即集成度每3年提高4倍。这一增长速度不仅导致了半导体市场在过去30年中以平均每年约15%的速度增长,而且对现代经济、国防和社会也产生了巨大的影响。集成电路之所以能飞速发展,光刻技术的支持起到了极为关键的作用。因为它直接决定了单个器件的物理尺寸。每个新一代集成电路的出现,总是以光刻所获得的线宽为主要技术标志。光刻技术的不断发展从三个方面为集成电路技术的进步提供了保证:其一是大面积均匀曝光,在同一块硅片上同时作出大量器件和芯片,保证了批量化的生产水平;其二是图形线宽不断缩小,使用权集成度不断提高,生产成本持续下降;其三,由于线宽的缩小,器件的运行速度越来越快,使用权集成电路的性能不断提高。随着集成度的提高,光刻技术所面临的困难也越来越多。 二、当前光刻技术的主要研究领域及进展 1999年初,0.18微米工艺的深紫外线(DUV)光刻机已相继投放市场,用于 1G位DRAM生产。根据当前的技术发展情况,光学光刻用于2003年前后的0.13微米将没有问题。而在2006年用到的0.1微米特征线宽则有可能是光学光刻的一个技术极限,被称为0.1微米难关。如何在光源、材料、物理方法等方面取得突破,攻克这一难关并为0.07,0.05微米工艺开辟道路是光刻技术和相应基础研究领域的共同课题。

在0.1微米之后用于替代光学光刻的所谓下一代光刻技术(NGL)主要有极紫外、X射线、电子束的离子束光刻。由于光学光刻的不断突破,它们一直处于"候选者"的地位,并形成竞争态势。这些技术能否在生产中取得应用,取决于它们的技术成熟程度、设备成本、生产效率等。下面我们就各种光刻技术进展情况作进一步介绍。 1.光学光刻 光学光刻是通过光学系统以投影方法将掩模上的大规模集成电路器件的结 构图形"刻"在涂有光刻胶的硅片上,限制光刻所能获得的最小特征尺寸直接与光刻系统所能获得的分辨率直接相关,而减小光源的波长是提高分辨率的最有效途径。因此,开发新型短波长光源光刻机一直是国际上的研究热点。目前,商品化光刻机的光源波长已经从过去的汞灯光源紫外光波段进入到深紫外波段(DUV),如用于0.25微米技术的KrF准分子激光(波长为248纳米)和用于0.18微米技术的ArF准分子激光(波长为193纳米)。 除此之外,利用光的干涉特性,采用各种波前技术优化工艺参数也是提高光刻分辨率的重要手段。这些技术是运用电磁理论结合光刻实际对曝光成像进行深入的分析所取得的突破。其中有移相掩膜、离轴照明技术、邻近效应校正等。运用这些技术,可在目前的技术水平上获得更高分辨率的光刻图形。如1999年初Canon公司推出的FPA-1000ASI扫描步进机,该机的光源为193纳米ArF,通过采用波前技术,可在300毫米硅片上实现0.13微米光刻线宽。 光刻技术包括光刻机、掩模、光刻胶等一系列技术,涉及光、机、电、物理、化学、材料等多个研究领域。目前科学家正在探索更短波长的F2激光(波长为157纳米)光刻技术。由于大量的光吸收,获得用于光刻系统的新型光学及掩模衬底材料是该波段技术的主要困 难。

技术路线图

技术路线图——自主创新的基础和加速器 一、技术路线图的缘起 技术路线图最早出现在美国汽车行业,汽车企业为降低成本要求供应商提供他们产品的技术路线图。20世纪70年代后期和80年代早期,摩托罗拉和康宁公司先后采用了绘制技术路线图的管理方法。摩托罗拉主要用于技术进化和技术定位,康宁公司主要用于公司的和商业单位战略。 技术路线图真正的奠基人是摩托罗拉公司当时的CEO—Robert Galvin。当时,Robert Galvin在全公司范围内发动了一场绘制技术路线图的行动,主要目的是鼓励业务经理适当地关注技术未来并为他们提供一个预测未来过程的工具。这个工具为设计和研发工程师与做市场调研和营销的同事之间提供了交流的渠道,建立了各部门之间识别重要技术、传达重要技术的机制,使得技术为未来的产品开发和应用服务。 摩托罗拉的经验引起了全球企业高层管理者的注意。20世纪90年代后,企业对于技术路线图的兴趣空前高涨,技术路线图被迅速应用到各个领域,而技术路线图作为一种工具和方法也在不断发展、完善。目前,技术路线图已经是公认的技术经营和研究开发管理的基本工具之一。 那么,什么是技术路线图呢? 二、技术路线图的内涵与特征 技术路线图是指应用简洁的图形、表格、文字等形式描述技术变化的步骤或技术相关环节之间的逻辑关系。它能够帮助使用者明确该领域的发展方向和实现目标所需的关键技术,理清产品和技术之间的关系。它包括最终的结果和制定的过程。技术路线图具有高度概括、高度综合和前瞻性的基本特征。 三、技术路线图的作用 技术路线图的作用在于为技术开发战略研讨和政策优先顺序研讨提供知识、信息基础和对话框架,提供决策依据,提高决策效率。技术路线图已经成为企业、产业乃至国家制定技术创新规划,提高自主创新能力的重要工具和基础。 根据日本产业经济研究所(.jp)的调查,美国的一个大型半导体制造设备制造商独自绘制了技术路线图,每3周更新一次,在观察本领域世界先进技术动态的同时,确认自己技术的位置,决定下一步的战术和战略。半导体行业的摩尔法则“每18个月半导体集成度将提高两倍”就是基于半导体技术路线图的一个表述。摩尔法则的意义不只是描述了一种现象,在半导体开发技术的精细化、高度化的过程中,对关联企业明示了应该开发的具体技术和达成期限,使其向此集中。摩尔是英特尔公司的创始人之一,英特尔公司握有自己绘制的半导体开发技术路线图,随时察看技术发展动态,预测技术创新点,督促关联企业的开发竞争。有10%的英国企业已经引入技术路线图(Phael, Shehabudeen& Assaku,2002)。在企业,技术路线图至少有市场营销工具、研发管理工具、投资决策工具、决策的知识背景准备这样几个功能。 在产业技术路线图发展过程中,有以民间为主导的路线图和以政府为主导的路线图。民间主导的路线图大多是技术发展指南,趋势记录;政府主导的路线图大多是资源配置方案、行动计划。 各方不惜花费大量资金和时间制定技术路线图,根本原因在于其对技术、产业和组织发展的巨大作用,虽然不同类型的技术路线图有着相对不同的作用,但还是可以找到一些具有共性的作用。 目前,所有的公司都面临激烈的市场变化。所有的产品、服务和业务都需要依赖与迅速变化的技术。产品变得更加复杂,而消费者的需求也变得更加苛刻。产品的生命周期变得越

中国至2050年科技发展路线图

中国至2050年科技发展路线图 ——《创新2050:科学技术与中国的未来》中国科学院战略研究系列报告摘登 空间科技 空间科技领域是我国国家发展的重要战略领域。该领域中一个与人类社会发展密切相关的重要部分,就是对地观测及其应用。空间技术是实现空间科学和应用目标的重要技术支撑平台,并和空间科学与应用相互促进、共同发展。 在21世纪前半叶,中国的发展面临着如何履行大国责任、为人类的科学发展与文明进步作出重大贡献的问题,面临着如何牵引带动我国高技术领域的跨越式发展、实现科技领先,如何保护人类生存环境,以及如何提高人类生活质量、实现社会可持续发展等诸多重大问题。空间科学、技术和应用的发展将为上述影响到国家发展和现代化进程的重大问题提供大量的、有效的和不可替代的科学和技术解决方案。 本路线图主要针对我国“到21世纪中叶基本实现现代化、达到中等发达国家水平”的国家目标,分析了我国未来发展可能面临的主要问题,以及空间科技在国家战略发展中的重要作用,并在分析国际主要空间国家发展战略和空间科技领域前沿发展趋势的基础上,结合我国本领域的研究基础和现状,重点针对空间科学、对地观测及数字地球和相关空间技术,提出了我国至2050年空间科技领域的发展愿景、目标和发展路线图。 我国至2050年空间科技领域的发展愿景为: 以国家需求和科学技术关键问题为牵引,全面加强空间科学、空间技术、空间应用在国家发展中的重要地位,到2050年,使其在国家战略发展中承担和发挥应有的和突出的重要作用,为国家面临的重大问题提供大量的、有效的和不可替代的解决方案。 至2050年空间科技领域的发展战略目标如下: 战略目标1(空间科学发展战略目标):开展针对重大科学问题的前沿探索与研究,在黑洞、暗物质、暗能量和引力波的直接探测、太阳系的起源和演化、太阳活动对地球环境的影响,及其预报和地外生命探索等方面,取得原创性的突破进展,全面提升我国空间科学的研究水平,用重大科学成果提升中华民族在人类文明发展和科学文化上的贡献度。 通过战略目标1开展空间科学研究,在解答以下科学问题上取得重要进展: 1.宇宙是如何起源和演化的? 2.生命是如何起源和演化的,生命(包括人类)在地外空间的生存表现和能力是怎样的? 3.太阳和太阳系是如何影响地球和人类社会生存与发展的? 4.是否存在超越现有基本物理理论的新物理规律?

光刻技术及其应用的现状及展望

光刻技术及其应用的现状与展望

1 引言 光刻技术作为半导体及其相关产业发展和进步的关键技术之一,一方面在过去的几十年中发挥了重大作用;另一方面,随着光刻技术在应用术问题的增多、用户对应用本身需求的提高和光刻技术进步滞后于其他技术的进步凸显等等,寻找解决技术障碍的新方案、寻找COO更加低的技术和找到下一俩代可行的技术路径,去支持产业的进步也显得非常紧迫,备受人们的关注。就像ITRS对未来技术路径的修订一样,上世纪基本上3~5年修正一次,而进入本世纪后,基本上每年都有修正和新的版本出现,这充分说明了光刻技术的重要性和对产业进步的影响。2005年ITRS对未来几种可能光刻技术方案进行预测。也正是基于这一点,新一轮技术和市场的竞争正在如火如荼的展开,大量的研发和开发资金投入到了这场竞赛中。因此,正确把握光刻技术发展的主流十分重要,不仅可以节省时间和金钱,同时可以缩短和用户使用之间的周期、缩短开发投入的回报时间,因为光刻技术开发的投入比较庞大。 2 光刻技术的现状及其应用状况

众说周知,电子产业发展的主流和不可阻挡的趋势是“轻、薄、短、小”,这给光刻技术提出的技术方向是不断提高其分辨率,即提高可以完成转印图形或者加工图形的最小间距或者宽度,以满足产业发展的需求;另一方面,光刻工艺在整个工艺过程中的多次性使得光刻技术的稳定性、可靠性和工艺成品率对产品的质量、良率和成本有着重要的影响,这也要求光刻技术在满足技术需求的前提下,具有较低的COO和COC。因此,光刻技术的纷争主要是厂家可以提供给用户什么样分辨率和产能的设备及其相关的技术。 2.1 以Photons为光源的光刻技术 在光刻技术的研究和开发中,以光子为基础的光刻技术种类很多,但产业化前景较好的主要是紫外(UV)光刻技术、深紫外(DUV)光刻技术、极紫外(EUV)光刻技术和X射线(X-ray)光刻技术。不但取得了很大成就,而且是目前产业中使用最多的技术,特别是前两种技术,在半导体工业的进步中,起到了重要作用。 紫外光刻技术是以高压和超高压汞(Hg)或者汞-氙(Hg-Xe)弧灯在近紫外(350~450nm)的3条光强很强的光谱(g、h、i线)线,特别是波长为365nm的i线为光源,配合使用像离轴照明技术(OAI)、移相掩模技术(PSM)、光学接近矫正技术(OPC)等等,可为0.35~0.25μm的大生产提供成熟的技术支持和设备保障,在目前任何一家FAB中,此类设备和技术会占整个光刻技术至少50%的份额;同时,还覆盖了低端和特殊领域对光刻技术的要求。光学系统的结构方面,有全反射式(Catoptrics)投影光学系统、折反射式(Catadioptrics)系统和折射式(Dioptrics)系统等。主要供应商是众所周知的ASML、NIKON、CANON、ULTRATECH和SUSS MICROTECH等等。系统的类型方面,ASML以提供前工

智能制造技术路线图

智能制造技术路线图 摘要: 新一代信息通信技术产业、高档数控机床和机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农业装备、新材料、生物医药及高性能医疗器械十大重点领域进入《技术路线图》,意味着互联网和传统工业的融合将是发展的制高点,智能制造将是中国制造未来的主攻方向。 日前,国家制造强国建设战略咨询委员会在京正式发布《〈中国制造2025〉重 点领域技术路线图(2015版)》。新一代信息通信技术产业、高档数控机床和 机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农业装备、新材料、生物医药及高性能医疗器械十大重点领域进入《技术路线图》。 引领发展方向 2010年以来我国制造业增加值连续五年超过美国成为制造大国,一些优势领域 已达到或接近世界先进水平。然而,我国制造业大而不强,创新能力、整体素质和竞争力与发达国家相比仍有明显差距。加快实现从制造大国向制造强国的转变,已成为新时期我国经济社会发展的重大战略任务。 为了推进这一历史性的转变,国务院组织编制并于今年5月19日正式发布《中国制造2025》,对我国制造业转型升级和跨越发展做了整体部署,提出了我国 制造业由大变强“三步走”战略目标,明确了建设制造强国的战略任务和重点,是我国实施制造强国战略的第一个十年行动纲领。 制造业覆盖面很广,为了确保我国十年后能够迈入制造强国行列,必须坚持整 体推进、重点突破的发展原则。受国家制造强国建设战略咨询委员会委托,中国工程院围绕《中国制造2025》确定的新一代信息通信技术产业、高档数控机床 和机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农业装备、新材料、生物医药及高性能医疗器械等十大重点领域未来十年的发展趋势、发展重点和目标等进行了研究,提出了十大

从光刻技术看cpu工艺尺寸发展

从光刻技术看工艺尺寸的发展 广西桂林 541000 摘要:当前半导体器件加工水平已经进入22 nm工艺制程,业界各大厂商都在探索更小的工艺技术特征尺寸,下一代半导体器件加工水平将是16nm或者14nm。根据摩尔定律,14nm 工艺技术应将在2015前后大规模投入量产。目前的光刻技术遇到瓶颈,掩膜、光刻胶、光源、浸入液及镜头等都遇到技术节等。本文主要介绍当今半导体器件的工艺技术与下一代工艺技术的制造技术及其难点。对各种加工工艺进行比较,并展望下一代半导体器件的加工工艺。 关键词:光刻技术,EUV,掩膜,光刻胶,光刻机 1 引言 决定CPU的工艺尺寸因素从大方向看有两个:一是,CPU的材料;二是,加工工艺。本文只探讨加CPU的加工工艺对其工艺尺寸发展的限制因素,而其中的主要技术是:光刻技术。首先,CPU的工艺尺寸指的是CPU中各个晶体管之间互联导线的宽度。传统的光刻技术是通过曝光的方法将掩膜上设计的CPU图像转移到涂覆于硅晶片表面的光刻胶上,然后通过显影、刻蚀等工艺将图形转移到硅片上。故光刻技术直接决定了集成电路的特征尺寸,是集成电路最关键的工艺,也决定了电路集成规模的大小。 人们不断减小曝光波长,增大投影物镜的数值孔径,并采用分辨率增强技术降低光刻工艺因子K1。光刻机的曝光波长[1]已经从436 nm(g 线),365 nm(i 线),248 nm(KrF), 193nm(ArF)减小到目前的13.5nm极紫外光刻(EUVL)。光刻机先后经历了从接触式光刻机、接近式光刻机、全硅片扫描投影式光刻机、分步重复投影式光刻机到目前普遍采用的步进扫描投影式光刻机的发展历程,解决了数值孔径增大带来的视场变小的问题[2]。由于高端芯片尺寸的增大要求增大硅片的尺寸,同时为了提高产率,避免频繁更换硅片,光刻机使用的硅片直径也从150 mm,200 mm 增大到目前的300 mm。450mm硅片正在研制中。估计将会在2015年与14nm 的集成电路同时量产。, 2 特征尺寸的发展现状 目前最新的CPU的光刻机是荷兰ASML公司的TWINSCAN NXE:3300B。该TWINSCAN NXE平台是业界首个极紫外光刻(EUVL)生产平台[2]。该光刻系统采用锡等离子源产生的13.5 nm的EUV光,配备了从德国卡尔蔡司SMT透镜组件,数值孔径(NA)为0.33,最大的26毫米33毫米的曝光场。曝光分辨率小于18nm,是目前业界的最高水平。ASMLNXE:3300B系统已经斩获了11个订单,还有7个也保证采纳。该系统已经做到单次曝光13nm,并且有能力达到9nm,为半导体工艺进军个位数纳米时代打下了基础。还有英特尔正在使用的自己封闭的整套的产业链生产的22nm的一些列X86的CPU,英特尔的技术一直都很神秘,因为该公司具有从圆晶到封装整套产业链,外界对其生产工艺没有太多了解。据推测,英特尔公司生产22nm芯片所使用的光刻技术的光波波长应是193nm,使用193nm浸液光刻技术加上两次图形曝光技术已经可以实现22nm工艺技术的量产。英特尔自信2013年的研发水平能14nm节点,这可能是导致与台积电有20 年合作历史的FPGA 大厂Altera 转向与英特尔合作,双方签订14 纳米代工合作协议,这引起业界重大反响。 全球最大芯片代工——台积电在光刻技术上稍落后于英特尔,台积电在今年(2013)已经实现20nm工艺的量产,而在14nm工艺节点上将落后于英特尔,估计到2016年台积电才能导

光刻机的技术原理和发展趋势

光刻机的技术原理和发展趋势 王平0930******* 摘要: 本文首先简要介绍了光刻技术的基本原理。现代科技瞬息万变,传统的光刻技术已经无法满足集成电路生产的要求。本文又介绍了提高光刻机性能的关键技术和下一代光刻技术的研究进展情况。 关键字:光刻;原理;提高性能;浸没式光刻;下一代光刻 引言: 光刻工艺直接决定了大规模集成电路的特征尺寸,是大规模集成电路制造的关键工艺。作为光刻工艺中最重要设备之一,光刻机一次次革命性的突破,使大模集成电路制造技术飞速向前发展。因此,了解光刻技术的基本原理,了解提高光刻机性能的关键技术以及了解下一代光刻技术的发展情况是十分重要的。本文就以上几点进行了简要的介绍。 光刻技术的基本原理: 光刻工艺通过曝光的方法将掩模上的图形转移到涂覆于硅片表面的光刻胶上,然后通过显影、刻蚀等工艺将图形转移到硅片上。 1、涂胶 要制备光刻图形,首先就得在芯片表面制备一层均匀的光刻胶。截止至2000年5月23日,已经申请的涂胶方面的美国专利就达118项。在涂胶之前,对芯片表面进行清洗和干燥是必不可少的。目前涂胶的主要方法有:甩胶、喷胶和气相沉积,但应用最广泛的还是甩胶。甩胶是利用芯片的高速旋转,将多余的胶甩出去,而在芯片上留下一层均匀的胶层,通常这种方法可以获得优于+2%的均匀性(边缘除外)。胶层的厚度由下式决定: 式中:F T为胶层厚度,ω为角速度,η为平衡时的粘度,ρ为胶的密度,t为时间。由该式可见,胶层厚度和转速、时间、胶的特性都有关系,此外旋转时产生的气流也会有一定的影响。甩胶的主要缺陷有:气泡、彗星(胶层上存在的一些颗粒)、条纹、边缘效应等,其中边缘效应对于小片和不规则片尤为明显。

技术路线图(Technology Roadmap)

技术路线图(Technology Roadmap) 什么是技术路线图 技术路线图是指应用简洁的图形、表格、文字等形式描述技术变化的步骤或技术相关环节之间的逻辑关系。它能够帮助使用者明确该领域的发展方向和实现目标所需的关键技术,理清产品和技术之间的关系。它包括最终的结果和制定的过程。技术路线图具有高度概括、高度综合和前瞻性的基本特征。 技术路线图是一种结构化的规划方法,我们可以从三个方面归纳:它作为一个过程,可以综合各种利益相关者的观点,并将其统一到预期目标上来。同时,作为一种产品,纵向上它有力地将目标、资源及市场有机结合起来,并明确它们之间的关系和属性,横向上它可以将过去、现在和未来统一起来,既描述现状,又预测未来;作为一种方法,它可以广泛应用于技术规划管理、行业未来预测、国家宏观管理等方面。 技术路线图的缘起 技术路线图最早出现在美国汽车行业,汽车企业为降低成本要求供应商提供他们产品的技术路线图。20世纪70年代后期和80年代早期,摩托罗拉和康宁公司先后采用了绘制技术路线图的管理方法对产品开发任务进行规划。摩托罗拉主要用于技术进化和技术定位,康宁公司主要用于公司的和商业单位战略。继摩托罗拉和康宁公司之后,许多国际大公司,如微软、三星、朗讯公司,洛克-马丁公司和飞利普公司等都广泛应用这项管理技术。2000年英国对制造业企业的一项调查显示,大约有10%的公司承认使用了技术路线图方法,而且其中80%以上用了不止一次(C.J.Farrukh, R.Phaal, 2001)[1]。不仅如此,许多国家政府、产业团体和科研单位也开始利用这种方法来对其所属部门的技术进行规划和管理。 技术路线图真正的奠基人是摩托罗拉公司当时的CEO—Robert Galvin。当时,Robert Galvin在全公司范围内发动了一场绘制技术路线图的行动,主要目的是鼓励业务经理适当地关注技术未来并为他们提供一个预测未来过程的工具。这个工具为设计和研发工程师与做市场调研和营销的同事之间提供了交流的渠道,建立了各部门之间识别重要技术、传达重要技术的机制,使得技术为未来的产品开发和应用服务。 摩托罗拉的经验引起了全球企业高层管理者的注意。20世纪90年代后,企业对于技术路线图的兴趣空前高涨,技术路线图被迅速应用到各个领域,而技术路线图作为一种工具和方法也在不断发展、完善。目前,技术路线图已经是公认的技术经营和研究开发管理的基本工具之一。 [编辑]

中国未来科技发展路线图

一、摘要 1、空间科技 空间科技领域是我国国家发展的重要战略领域。该领域中一个与人类社会发展密切相关的重要部分,就是对地观测及其应用。空间技术是实现空间科学和应用目标的重要技术支撑平台,并和空间科学与应用相互促进、共同发展。 在21世纪前半叶,中国的发展面临着如何履行大国责任、为人类的科学发展与文明进步作出重大贡献的问题,面临着如何牵引带动我国高技术领域的跨越式发展、实现科技领先,如何保护人类生存环境,以及如何提高人类生活质量、实现社会可持续发展等诸多重大问题。空间科学、技术和应用的发展将为上述影响到国家发展和现代化进程的重大问题提供大量的、有效的和不可替代的科学和技术解决方案。 本路线图主要针对我国“到21世纪中叶基本实现现代化、达到中等发达国家水平”的国家目标,分析了我国未来发展可能面临的主要问题,以及空间科技在国家战略发展中的重要作用,并在分析国际主要空间国家发展战略和空间科技领域前沿发展趋势的基础上,结合我国本领域的研究基础和现状,重点针对空间科学、对地观测及数字地球和相关空间技术,提出了我国至2050年空间科技领域的发展愿景、目标和发展路线图。 我国至2050年空间科技领域的发展愿景为: 以国家需求和科学技术关键问题为牵引,全面加强空间科学、空间技术、空间应用在国家发展中的重要地位,到2050年,使其在国家战略发展中承担和发挥应有的和突出的重要作用,为国家面临的重大问题提供大量的、有效的和不可替代的解决方案。 至2050年空间科技领域的发展战略目标如下: 战略目标1(空间科学发展战略目标):开展针对重大科学问题的前沿探索与研究,在黑洞、暗物质、暗能量和引力波的直接探测、太阳系的起源和演化、太阳活动对地球环境的影响,及其预报和地外生命探索等方面,取得原创性的突破进展,全面提升我国空间科学的研究水平,用重大科学成果提升中华民族在人类文明发展和科学文化上的贡献度。 通过战略目标1开展空间科学研究,在解答以下科学问题上取得重要进展: 1.宇宙是如何起源和演化的? 2.生命是如何起源和演化的,生命(包括人类)在地外空间的生存表现和能力是怎样的? 3.太阳和太阳系是如何影响地球和人类社会生存与发展的? 4.是否存在超越现有基本物理理论的新物理规律?

从光刻技术看CPU工艺尺寸发展

从光刻技术看工艺尺寸的发展 广西桂林541000 摘要:当前半导体器件加工水平已经进入22 nm工艺制程,业界各大厂商都在探索更小的工艺技术特征尺寸,下一代半导体器件加工水平将是16nm或者14nm。根据摩尔定律,14nm 工艺技术应将在2015前后大规模投入量产。目前的光刻技术遇到瓶颈,掩膜、光刻胶、光源、浸入液及镜头等都遇到技术节等。本文主要介绍当今半导体器件的工艺技术与下一代工艺技术的制造技术及其难点。对各种加工工艺进行比较,并展望下一代半导体器件的加工工艺。 关键词:光刻技术,EUV,掩膜,光刻胶,光刻机 1 引言 决定CPU的工艺尺寸因素从大方向看有两个:一是,CPU的材料;二是,加工工艺。本文只探讨加CPU的加工工艺对其工艺尺寸发展的限制因素,而其中的主要技术是:光刻技术。首先,CPU的工艺尺寸指的是CPU中各个晶体管之间互联导线的宽度。传统的光刻技术是通过曝光的方法将掩膜上设计的CPU图像转移到涂覆于硅晶片表面的光刻胶上,然后通过显影、刻蚀等工艺将图形转移到硅片上。故光刻技术直接决定了集成电路的特征尺寸,是集成电路最关键的工艺,也决定了电路集成规模的大小。 人们不断减小曝光波长,增大投影物镜的数值孔径,并采用分辨率增强技术降低光刻工艺因子K1。光刻机的曝光波长[1]已经从436 nm(g 线),365 nm(i线),248 nm(KrF), 193nm(ArF)减小到目前的13.5nm极紫外光刻(EUVL)。光刻机先后经历了从接触式光刻机、接近式光刻机、全硅片扫描投影式光刻机、分步重复投影式光刻机到目前普遍采用的步进扫描投影式光刻机的发展历程,解决了数值孔径增大带来的视场变小的问题[2]。由于高端芯片尺寸的增大要求增大硅片的尺寸,同时为了提高产率,避免频繁更换硅片,光刻机使用的硅片直径也从150 mm,200 mm 增大到目前的300 mm。450mm硅片正在研制中。估计将会在2015年与14nm 的集成电路同时量产。, 2特征尺寸的发展现状 目前最新的CPU的光刻机是荷兰ASML公司的TWINSCAN NXE:3300B。该TWINSCAN NXE平台是业界首个极紫外光刻(EUVL)生产平台[2]。该光刻系统采用锡等离子源产生的13.5 nm的EUV光,配备了从德国卡尔蔡司SMT透镜组件,数值孔径(NA)为0.33,最大的26毫米33毫米的曝光场。曝光分辨率小于18nm,是目前业界的最高水平。ASMLNXE:3300B系统已经斩获了11个订单,还有7个也保证采纳。该系统已经做到单次曝光13nm,并且有能力达到9nm,为半

中国制造2025重点领域技术路线图

目录 一、新一代信息技术产业 (1) 1.1集成电路及专用设备 (1) 1.2信息通信设备 (6) 1.3 操作系统与工业软件 (16) 1.4 智能制造核心信息设备 (23) 二、高档数控机床和机器人 (28) 2.1 高档数控机床与基础制造装备 (28) 2.2机器人 (35) 三、航空航天装备 (42) 3.1 飞机 (42) 3.2 航空发动机 (49) 3.3 航空机载设备与系统 (57) 3.4航天装备 (65) 四.海洋工程装备及高技术船舶 (72) 4.1海洋工程装备及高技术船舶 (72) 五、先进轨道交通装备 (84) 5.1先进轨道交通装备 (84) 六、节能与新能源汽车 (92) 6.1 节能汽车 (92) 6.2 新能源汽车 (100)

6.3智能网联汽车 (108) 七、电力装备 (117) 7.1 发电装备 (117) 7.2输变电装备 (126) 八、农业装备 (134) 8.1 农业装备 (134) 九、新材料 (142) 9.1 先进基础材料 (142) 9.2 关键战略材料 (152) 9.3前沿新材料 (163) 十、生物医药及高性能医疗器械 (169) 10.1生物医药 (169) 10.2高性能医疗器械 (177)

一、新一代信息技术产业 1.1集成电路及专用设备 集成电路是指通过半导体工艺将大量电子元器件集成而成的具有特定功能的电路。本路线图主要包括集成电路设计、集成电路制造、集成电路测试封装、关键装备和材料等内容。 1.1.1需求 全球集成电路市场规模在2011至2015年间约为2920 – 3280亿美元,复合年均增长率为4%;2016 至2020年间约为3280 – 4000亿美元,复合年均增长率为4%;2021至2030年间约为4000 – 5375亿美元,复合年均增长率为3%。 中国集成电路市场规模在2011至2015年间约为840 – 1180亿美元,复合年均增长率为12%;2016 至2020年间约为1180 – 1734亿美元,复合年均增长率为8%;2021至2030年间约为1734 – 2445亿美元,复合年均增长率为3.5%。 中国集成电路市场在2015年将占到全球市场的36%,2020年上升至43.35%,而到2030年将占到46%,成为全球最大集成电路市场。 中国集成电路的本地产值在2015年预计达到483亿美元,满足国内41%的市场需求;2020年预计达到851亿美元,满足国内49%的市场需求;2030年预计达到1837亿美元,满足国内75%的市场需求。从上述数据可以看到,满足国内市场需求,提升集成电路产品自给率,同时满足国家安全需求、占领战略性产品市场,始终是集成电路产业发展的最大需求和动力。

产业技术路线图【模板】

国家空间基础设施产业技术路线图 本项研究是国家国防科技工业局“科工技[2013]1394号”关于技术基础“十二五”科工项目(第四批)立项的批复,项目名称:国家空间基础设施管理体系研究,项目编号:JSJC2013603C015。 引言 技术路线图(Technology Roadmapping,TRM)最早出现在美国汽车行业,其目的是降低成本,要求供应商提供他们产品技术路线图。20世纪70年代后期和80年代初期,摩托罗拉(Motorola)和康宁(Corning)公司先后采用了绘制技术路线图的管理方法,分别用于技术进化和技术定位及公司的商业战略。技术路线图的奠基人是摩托罗拉公司当时的CEO 罗伯特*加尔文(Robet Galvin),其为设计和研发工程师与从事市场调研和营销的同事之间提供交流的渠道。路线图的设计利益相关者的不同看法,并最终实现共识,在这种共识的情况下,可以使其更广泛的传播,作为持续行动的参考和依据1。 技术路线图最初是由摩托罗拉公司于20世纪70年代,为了改善技术和产品开发的一致性而发展起来的。自那时起,这种方法在世界各地被应用于公司、部门和国家的不同层面。路线图方法适用于各种不同的目标,如支持创新、战略和政策的发展和部署。解决五大问题: 1.如何更有效配置资源(中长期计划脱节) 2.如何更有效组织重大项目(项目关联性缺失) 3.如何更有效整合资源(有限资源的局限性) 4.如何更有效分工协作(部门条块分割) 5.如何更有效发挥市场导向作用(失常机制缺失) Branscomb提出“技术路线图是以科学知识和洞见为基础,关于技术前景的共识。” “绿色、智能、超常、融合、服务”五大趋势:《机械工程技术路线图》 技术路线图遵循科学性、前瞻性、创造性和引导性原则。技术路线图是一种业内广泛应用的独特方法,用于规划和交流技术开发项目、产品演化和市场目标之间的联系,其基本框架如下: 1罗伯特·哈尔,克莱尔·法鲁克,戴维·普罗伯特.苏竣等译.技术路线图-规划成功之路[M].北京:清华大学出版社,2009.

全球半导体技术发展路线图

全球半导体技术发展路线图 一、半导体产业生态环境 半导体产业诞生于上世纪70年代,当时主要受两大因素驱动:一是为计算机行业提供更符合成本效益的存储器;二是为满足企业开发具备特定功能的新产品而快速生产的专用集成电路。 到了80年代,系统规范牢牢地掌握在系统集成商手中。存储器件每3年更新一次半导体技术,并随即被逻辑器件制造商采用。 在90年代,逻辑器件集成电路制造商加速引进新技术,以每2年一代的速度更新,紧跟在内存厂商之后。技术进步和产品性能增强之间不寻常的强相关性,使得相当一部分系统性能和利润的控制权转至集成电路(IC)制造商中。他们利用这种力量的新平衡,使整个半导体行业收入在此期间年均增速达到17%。 21世纪的前十年,半导体行业全新的生态环境已经形成: 一是每2年更新一代的半导体技术,导致集成电路和数以百万计的晶体管得以高效率、低成本地生产,从而在一个芯片上或同一封装中,可以以较低的成本整合极为复杂的系统。此外,封装技术的进步使得我们可以在同一封装中放置多个芯片。这类器件被定义为系统级芯片(system on chip,SOC)和系统级封装(system in package, SIP)。 二是集成电路晶圆代工商能够重新以非常有吸引力的成本提供“新一代专用集成电路”,这催生出一个非常有利可图的行业——集成电路设计。 三是集成电路高端设备的进步带动了相邻技术领域的发展,大大降低了平板显示器、微机电系统传感器、无线电设备和无源器件等设备的成本。在此条件下,系统集成商再次控制了系统设计和产品集成。 四是互联网应用和移动智能终端的崛起,带动了光纤电缆的广泛部署和多种无线技术的发展,实现前所未有的全球移动互联。这个生态系统创造了“物联网”这一新兴的市场,而创新的产品制造商、电信公司、数据和信息分销商以及内容提供商正在争夺该市场的主导权。 半导体是上述所有应用的基石,所有的创新离不开半导体产业的支持。 二、全球半导体技术发展路线 上世纪60年代后期,硅栅自对准工艺的发明奠定了半导体规格的根基。摩尔1965年提出的晶体管每两年一次的更新换代的“摩尔定律”,以及丹纳德1975年提出的“丹纳德定律”,促进了半导体产业的成长,一直到21世纪初,这是传统几何尺寸的按比例缩小(Classical Geometrically Driven Scaling)时代。进入等效按比例缩小(Equivalent Scaling)时代的基础是应变硅、高介电金属闸极、多栅晶体管、化合物半导体等技术,这些技术的实现支持了过去十年半导体产业的发展,并将持续支持未来产业的发展。 (一)器件 信息处理技术正在推动半导体产业进入更宽广的应用领域,器件成本和性能将继续与互补金属氧化物半导体(Complementary Metal-Oxide-Semiconductor Transistor, CMOS)的维度和功能扩展密切相关。 应变硅、高介电金属闸极、多栅晶体管现已广泛应用于集成电路的制造,进一步提升器件性能的重点将在III-V族元素材料和锗。与硅器件相比,这些材料将使器件具有更高的迁移率。为了利用完善的硅平台的优势,预计新的高迁移率材料将在硅基质上外延附生。

相关文档
最新文档