热量的计算方法,热量与内能的区别

热量的计算方法,热量与内能的区别
热量的计算方法,热量与内能的区别

一、什么是热量?

在系统与外界之间,或系统的不同部分之间转移的无规则热运动能量叫做热量。常用Q表示。这种传热过程大多是与系统和外界之间,或系统的不同部分之间温度的不同相联系的。

热量是大家应该注意与内能区分的一个概念,在一定情况下可以认为热量是系统与外界交换内能的净值。比如,系统的温度比外界的温度高并与外界有热接触,系统内各个分子的热运动能量通过频繁的碰撞传递给外界,但同时外界分子的热运动能量同样也可以通过碰撞转移给系统,由于温度不同,系统转移给外界与外界转移给系统的热运动能量是不同的,这个差值就成为热量。

大学物理规定,系统从外界吸收热量,Q取正;系统对外界放出热量,Q取负。有特别规定的情况除外。

二、热量的计算方法

一个系统在变化过程中的热量可以有三种计算方法。一是使用热力学第一定律来计算(见热力学第一定律的应用知识点);二是使用比热来计算;三是使用摩尔热容来计算(见摩尔热容知识点)。

中学学过物质的比热c定义为:单位质量的物体温度每升高或降低一度所吸收或放出的热量。按它的定义很容易得到热量的计算公式:

式中m为气体质量,ΔT为过程的温度差。T1和T2分别是过程的初状态和末状态的温度。

按比热计算热量时应该注意,热量多少是与过程有关的。不同的过程虽然温度差相同,热量是完全可能不同的。这体现在比热c对不同过程取值不同。在很多过程中,c还与温度有关,这时上面计算热量的公式应该改为积分。

温度、热量、内能区别与联系

温度、热量、内能区别与联系 当学生学习完温度、热量、内能和比热容这几个物理量。当遇到相关的问题时,有很多同学对它们的区别和联系就模糊不清了,不能正确的理解解决问题。为了能让同学们便于理解和很好的运用,我把它们的区别和联系分析总结如下: 一、它们之间的区别 1、.内能是物体内所有分子做无规则运动的动能和分子势能的总和。所有物质都是由分子构成的,并且在任何温度,任何状态下,构成物质的分子都在做无规则的运动,且分子间都存在着相互作用的引力和斥力。所以物质在任何温度,任何情况都有内能。所以,内能只能说有,不能说无。 2、温度表示物体的冷热程度的物理量。从分子动理论来看,是分子热运动激烈程度的标志,分子热运动越激烈,温度越高;反之温度就越低。由于构成物质的分子在任何情况下都在不停的做无规则的热运动,只是激烈程度的差异。所以,物体的温度是任何时候都有的,只是高低的不同,没有无温度的物体存在。 3、热量是在热传递过程中,物体吸收或放出热的多少,内能的变化量。热量跟热传递紧密相连,离开了热传递就无热量可言。对热量只能说“吸收多少”或“放出多少”,不能在热量名词前加“有”或“没有”“含有”。 4、比热容又称比热容量,是单位质量物质的热容量,既是单位质量物体改变单位温度时吸收或释放的热量(内能)。既单位质量的某种物质温度升高或降低一摄氏度所吸收或放出热量的多少叫做这种物质的比热容。 物理意义是它物质的一种特性,不随外界条件的改变而改变,只与物质的种类和物质的状态有关,可以用它来鉴别物质。不同物质的比热容不同,同种物质在同种状态下比热容是相同的。比热容跟物体的质量,温度变化量无关,但物质的状态变化时比热容将随之改变。它表示物质间容纳热量的能力的差异。 二、四者之间的关系 1、内能和温度的关系。物体内能的变化,不一定引起温度的变化。这是由于物体内能变化的同时,有可能发生物态变化。物体在发生物态变化时内能变化了,温度有时变化有时却不变化。 如晶体的熔化和凝固过程,还有液体沸腾过程(即水烧开过后,继续加热,水的温度不变,内能增加),内能虽然发生了变化,但温度却保持不变。温度的高低,标志着物体内部分子运动速度的快慢。因此,物体的温度升高,其内部分子无规则运动的速度增大,分子的动能增大,因此内能也增大,反之,温度降低,物体内能减小。因此,物体温度的变化,一定会引起内能的变化。但温度不是内能变化的唯一标志,做功也可以改变物体的内能。

热量计算公式

热量计算公式-CAL-FENGHAI.-(YICAI)-Company One1

热量计算公式 一、将1吨冷水从15℃加热到55℃所需要的热量计算公式:Q=1000公斤×(55℃-15℃)×1千卡/公斤℃=40000千卡二.各供热水器能耗费用明细(每吨热水能耗费用) 1、电热水器 A.电热水器的电热转换率为95%,每度电产生的最大热量是Q=860千卡/度×95%=817千卡/度 吨热水的耗电量为 40000千卡÷817千卡/度 =度 C.民用电价为元/度,则 每吨热水费用:元/度×度=元 2、液化石油气 A.液化石油气的热转换率为80%,每公斤最大热量是 Q=12000千卡/公斤×80%=9600千卡/公斤 吨热水的耗液化气量为 40000千卡÷8400千卡/公斤=公斤 C.瓶装液化石油气的价格为元/公斤,则 每吨热水费用:公斤×元/公斤=元 公斤液化石油气相当于立方汽化石油气 管道液化石油气的价格为元/立方,则 每吨热水费用:公斤×立方/公斤×元/立方=元

3、天然气 A.天然气的热转换率为70%,每立方天然气的最大热量是 Q=8500千卡/立方×70%=5950千卡/立方 吨热水的耗液化气量为 40000千卡÷5950千卡/立方=立方 C.民用天然气的价格为元/立方,则 每吨热水费用:立方×元/立方=元 4 、柴油 A.柴油的热转换率为70%,每公斤柴油产生的最大热量是10200千卡/公斤 Q=10200千卡/公斤×70%=7140千卡/公斤 吨热水所耗的柴油量为 40000千卡÷7140千卡/公斤=公斤 #柴油为元/公斤,则 每吨热水费用:公斤×元/公斤=元 5、太阳能热水器 A.按长江流域全年平均120天无日照(阴天、下雨),需电加热补充,则 每吨热水费用:( 度×120天)÷365天=度×元/度=元 6、空气能热水器 A.空气热能热水器全年平均热效率是电热水器的3倍,每度电产生的热量为

温度、热量及内能之间的区别和联系

温度、热量及内能之间的区别和联系诀窍:三角图上一肯定,只有温变内能变; 浅释: 如图所示,是温度、热量和内能的关系图,界 定词“一定”、“不一定”很明显,无论温度、热量 和内能三者之一如何变化,其他量只有一个是肯定 的——“一定”——物体的温度升高(降低),内 能总是一定增加(减少);其余的无论怎样变化, 全部都是界定词“不一定”。 详解: 温度、热量和内能之间既有区别,又有联系,既是初中学生学习热学的重点和难点之一,又是中考命题的热点之一。学生要能够在各类考试中得心应手、运用自如,不仅要正确理解和掌握温度、热量和内能的含义,还应该具备必要的方法和技巧。 温度是表示物体的冷热程度(宏观认识),是物体分子无规则运动剧烈程度的标志(微观认识)。温度只能说成:“是多少”、“达到多少”,而不能说成:“有”、“没有”、“含有”。一个物体温度升高,内能一定增加,但不一定是吸收了热量,还有做功,因为改变物体内能的方法有做功和热传递(吸热或放热)两种,如钻木取火,摩擦生热等。 热量是一个过程量,是物体之间在热传递(吸热或放热)过程中内能改变的多少。热量只能说成:“吸收多少”、“放出多少”,而不能说成:“有”、“没有”、“含有”。一个物体吸收了热量,温度不一定升高,如晶体熔化,水沸腾、蒸发;内能也不一定增加,比如吸收的热量全都用于对外做功,内能可能不变,也可能减少(特别是后者最容易出错)。 内能是一个状态量,是物体内部所有分子无规则运动的动能和分子间相互作用的势能的总和。内能只能说成:“有”,而不能说成:“无”;内能可用:“大”、“小”来比较,而不能说成“高”、“低”。一个物体内能增加,温度不一定升高,如晶体熔化、水沸腾,同样也不一定是吸收了热量。 因此必须注意:内能改变时,要考虑到温度不变的情况,即:在熔化、在凝固、在沸腾过程中的物体的内能虽然在改变,但温度却没有变化。也就是说,在没有发生物态变化时, 物体吸收(放出)热量,内能增大(减小),温度升高(降低);在发生物态变化时,物体吸 第 1 页共3 页

初中物理内能热量与热值相关知识点总结

初中物理内能热量与热值相关知识点总结 1、内能:在物理学中,把物体内所有的分子动能与分子势能的总和叫做物体的内能。一切物体在任何情况下都具有内能。内能的单位是焦(J)。 2、影响内能大小的因素之一是:温度,温度越高,分子无规则运动越剧烈,分子动能越大,物体的内能也越多。这说明,同一物体的内能是随温度的变化而变化的。 3、改变物体内能的方法是:①做功;②热传递这两种方式对于改变物体的内能是等效的。 4、对物体做功,物体的内能增大,温度升高;物体对外做功,自身内能减小,温度降低 5、热传递发生的条件是:两个物体有温度差;热传递的方式有:传导、对流和辐射;发生热传递时,热量(内能)从高温物体传向低温物体,高温物体放出热量,低温物体吸收热量,直到温度相同时,热传递才停止。 6、热量:在物理学中,把在热传递过程中物体内能改变的多少叫做热量。物体吸收热量,内能增加;放出热量,内能减少。 7、热量用字母Q表示,单位是焦(J)。一根火柴完全燃烧放出的热量约为1000J。 8、实验表明:对同种物质的物体,它吸收或放出的热量跟物体的质量大小、温度的变化多少成正比。

9、热值:把1kg某种燃料在完全燃烧时所放出的热量叫做这种燃料的热值。 10、热值是燃料的一种属性,与质量、是否完全燃烧等没有关系,只与燃料的种类有关,不同燃料的热值一般不同。 11、燃料完全燃烧放出热量的计算公式:Q=qm或Q=qV 12、Q表示热量,单位是焦(J),q表示热值,单位是焦/千克(J/kg)或焦/米3(J/m3);m表示质量,单位是千克(kg);V表示体积,单位是米3(m3) 13、氢气的热值很大,为q氢= 1、4108J/m3,表示的物理意义是:1m3的氢气在完全燃烧时所放出的热量为 1、4108J。 14、提高炉子效率的方法:①改善燃烧条件,使燃料尽可能充分燃烧;②尽可能减少各种热量损失 15、比热容:单位质量的某种物质,温度升高(或降低)1℃所吸收(或放出)的热量,叫这种物质的比热容。 16、比热容是物质的一种属性,与物质的质量、体积等无关,只与物质的种类有关。不同物质的比热容一般不同,同种物质的比热容与物质的状态有关。 17、比热容用字母c表示,单位是:焦/(千克?℃),符号是:J/(kg?℃) 18、水的比热容很大,为c水=

初三内能热量温度三者关系

内能、温度、热量 一、回顾知识点 1.什么是内能? 2.影响内能的因素是什么? 3.改变内能的因素是什么?试举例说明? 二、内能、温度和热量的含义(先询问学生,再最终作讲解) 1.内能:内能是物体内部所有分子热运动的动能与分子势能的总合,一切物体无论温度高低,都有内能,它是一个状态量。一般用“具有、增加或减少”表示内能。 2.温度:温度是用来表示物体冷热程度的物理量,是整个物体分子平均动能的标志,是大量分子热运动的集中体现。它是一个状态量,用“高低”表示。 3.热量:热量是热传递过程中传递内能的多少,是内能变化的量度,是一个过程量,用“吸收”和“放出”表示。 三、三者之间的关系(试举例) 1.内能与温度 (1)物体温度的变化一定会引起内能的变化。因为物体温度变化,物体内部分子热运动的剧烈程度变化,分子动能变化,则内能变化。 (2)物体温度不变,其内能可能改变 冰熔化过程中,吸收热量,内能增大,但温度不变;水沸腾过程中,吸收了热量,内能发生了变化,但温度保持不变 (3)物体的内能不仅与温度有关,还与其他因素(质量和状态)有关,温度高的物体内能不一定大。 如:一杯50℃的水,其内能不一定比一桶10℃的水的内能大。 2.内能与热量 (1)物体吸收或放出热量,内能一定发生变化。 (2)内能变化不一定是热量变化,也有可能是做功引起的内能变化。 在热传递过程中,高温物体放出热量,内能减少,低温物体吸热,内能增加。在熔化与凝固的过程中,达到熔点后虽然温度不变,但是吸收热量,内能仍要增加。 3.热量与温度 (1)吸收或者放出热量,但不代表温度就会升高或者降低。 如:冰凝固过程中,放出热量,但温度不变;水沸腾过程中,吸收了热量,但温度保持不变。 (2)温度变化,不一定是热量也发生变化,因为温度变化内能就发生变化,而内能发生变化有两种形式,一是做功,二则是热传递(热量变化)。所以有可能是做功引起的温度变化。 四、总结 1.内能是描述物体内部所有分子热运动的动能与分子势能的总和;温度是物体冷热程度的物理量;热量是热传递过程中传递内能的多少,是内能变化的量度,是一个过程量,用“吸收”和“放出”表示。 2.内能、温度、热量三者之间有关联,但并不是绝对的。内能变化,可能温度会发生变化,也有可能热量发生变化;但温度的变化,内能一定发生变化;其次,热量变化,内能一定发生变化。但温度不一定发生变化。

内能的改变热量的计算

教学过程 1、内能:物体内部所有分子做无规则运动的动能和分子势能的总和,叫做物体的内能。 2、物体在任何情况下都有内能:既然物体内部分子永不停息地运动着和分子之 间存在着相互作用,那么内能是无条件的存在着。无论是高温的铁水,还是寒冷的冰块。 3、影响物体内能大小的因素:①温度:在物体的质量,材料、状态相同时,温 度越高物体内能越大。②质量:在物体的温度、材料、状态相同时,物体的质量越大,物体的内能越大。③材料:在温度、质量和状态相同时,物体的材料不同,物体的内能可能不同。④存在状态:在物体的温度、材料质量相同时,物体存在的状态不同时,物体的内能也可能不同。 4、内能与机械能不同: 机械能是宏观的,是物体作为一个整体运动所具有的能量,它的大小与机械运动有关 内能是微观的,是物体内部所有分子做无规则运动的能的总和。内能大小与分子做无规则运动快慢及分子作用有关。这种无规则运动是分子在物体内的

运动,而不是物体的整体运动。 5、热运动:物体内部大量分子的无规则运动叫做热运动。温度越高扩散越快。温度越高,分子无规则运动的速度越大。 二、典型例题讲解: 例1 压缩固体和液体很困难说明分子间() A.分子之间存在着斥力 B.分子之间存在着引力 C.分子不停滴在做无规则的运动 D.固体、液体分子之间没有空隙 解固体、液体难压缩的原因,是受压后分子间的距离,就要小于0.1nm,这时分子间斥力大于引力,斥力起主要作用,并且斥力会随着分子间Array 距离的进一步减小而迅速增大,所以很难被压缩。 答选A 例2分子间有引力,为什么不能将打碎的玻璃吸引在一起? 小结:分子间的作用力和分子间的距离有关,当分子间的距离大于分子直径的10倍时,分子间的作用力就变得十分微弱,可以忽略了 解答两块玻璃碎片拼合在一起,不可能相距很近,它们之间的距离很难达到如此小的距离范围,分子间的引力十分微弱,所以不能吸引在—起. 例3 下列事例中,不能说明分子做无规则运动的是() A.炒菜时,我们闻到香味 B.在阴凉的地方晾衣服,衣服变干了 C.腌咸蛋时,时间久了,蛋变咸了 D.扫地时,灰尘在空中飞舞 分析本题实例是人们感受到的事实,能否说明分子的运动,除了分析题目中的主题是否是运动的分子外,还应掌握分子的运动是不受任何外力影响而进行的,这是判断的关键.解炒菜时闻到香味,是扩散现象,说明分子在运动.湿衣服晾干是蒸发,而蒸发的实质是在液体表面总有一些速度较大的分子能克服周围分子的引力而跑到液体外面去,成为气体分子.腌咸蛋时,盐水中的盐分子运动进入到蛋中使蛋变咸,说明分子在运动,而灰尘飞扬是细小尘粒的运动,不是分子运动. 答选D 例4关于物体的内能,下列说法正确的是() A.物体运动得越快,内能越大 B.物体举得越高,内能越大 C.物体运动得越快,举得越高,内能越大 D.物体温度越高,内能越大 解在分析物体内能大小时,应注意物体的内能与三个因素有关,即物体的质量、温度、状态,与物体的运动速度和举起的高度无关,物体的速度和举起的高度影响的是机械能,而机械能与内能是两种不同形式的能.对于同一物体,温度越高,内能越大. 答选D 例5关于内能、温度和热量的下列说法中,正确的是() A.高温物体具有的一定比低温物体具有的内能多

温度内能热量的区别

温度是表示物体的冷热程度的物理量;内能是指物体内部所有分子动能和分子势能的总和,是能量的一种形式;热量是执传递过程中,传递内能的多少。 温度是一状态量,能说“高低”,但不能“传递”和“转移”,温度是分子热运动剧烈程度的标志,温度越高,分子无规则运动就越剧烈。 热量是一过程量,物体不具有热量,要用“吸收”、“放出”来表达,不能用“含有”、“具有”来表述;热量是物体内能改变的一种量度,物体吸收了热量,内能就增加,放出了热量,内能就减少;只有物体间存在温度差 ...,发生热传递,才有“热量”概念。 温度的变化可以改变物体的内能,放出或吸收热量的多少可以量度内能改变的多少。内能的改变有两种方式:做功和热传递,而热传递过程中传递内能的多少就是“热量”。 题目解释 1、物体吸收热量内能增加()热量是内能改变的一种量度 2、同一物体温度升高,内能增加()温度越高,分子动能越大,内能越大 3、同一物体内能增加,温度升高()晶体的熔化 4、同一物体吸收热量,温度一定升高()晶体熔化过程,吸收热量,温度不变 5、物体温度不变,一定没有吸收热量()晶体熔化过程,吸收热量,温度不变 6、物体温度不变,内能一定不变()晶体熔化过程,吸收热量,温度不变 7、物体温度升高,一定吸收热量()改变内能有两种方式:做功和热传递 8、0℃的冰块内能为0J ()任何物体都有内能 9、温度越高,分子内能越大()内能是物体的内能,分子没有内能 10、温度越高的物体,内能一定越大()温度、质量等因素都影响内能 11、内能较大的物体,温度一定较高()温度、质量等因素都影响内能 12、同一物体温度越高,所含热量越多()物体不含热量 13、内能越大的物体,所含热量越多()物体不含热量 14、热量由内能大的物体向内能少的物体传递()温度差是热传递的唯一条件 16、温度越高,分子热运动越剧烈()温度标志分子热运动的剧烈程度 16、物体内能越大,分子热运动越剧烈()温度才是标志分子热运动的剧烈程度 17、温度从高温的物体向低温的物体传递()温度是状态量,不能传递 18、对物体做功,物体温度一定升高()提起物体,对物体做功,温度不升高

运动消耗能量计算方法

运动消耗能量计算方法 二十多年前,国立台湾师范大学体育研究所的运动生理学实验室,即已利用Douglas 袋与Scholander 气体分析仪,进行人体运动前、运动中与运动后的摄氧量与二氧化碳产生量测量。其实,透过运动过程中的氧气消耗量与二氧化碳产生量推算,不仅可以评估运动过程的实际能量消耗,更可以用来评量运动时的脂肪与葡萄糖消耗比例。 首先,运动参与者必须先了解到,如果人体以葡萄糖做为能量来源时,每消 耗 1 公升的氧气会产生 1 公升的二氧化碳,也就是说,以葡萄糖为能量来源时的呼吸商(respiratory of quotient ,简称RQ体内局部组织的二氧化碳产生 量除以氧气摄取量)等于1 ;以脂肪为能量来源时的RQ约等于0.7 ;以蛋白质为能量来源时的RQ约等于0.8。不过,人体内的组织呼吸状况评量,有其执行上的困难存在,因此,透过人体参与运动时的肺部气体交换状况(呼吸交换率,respiratory exchange ratio ,简称RER肺部气体交换时的二氧化碳增加量 除以氧气消耗量)的测量,再加上蛋白质仅在激烈运动时,才有少量参与提供能量的现象; 运动生理学研究者可以依据肺部的气体交换,评量出运动过程的能量消耗特征。 一般来说,人体安静休息时的REF约0.82、在极低强度(散步、慢跑、轻松骑车)运动时的RER反而下降(约0.75至0.80之间)、接近最大运动时的RER 约等于1。也就是说,人体在低强度运动状态下,脂肪参与提供能量的比例较高,随着运动强度的增加,RER也随着上升,葡萄糖参与提供能量的比例也增加;在最大运动状态下,则几乎皆以葡萄糖提供能量。当RER等于0.85时,葡萄糖与 脂肪各提供一半的身体能量需求。除此之外,随着RER的上升,人体每消 耗1公升氧气所能产生的能量也随着增加;例如当RER等于0.8时,人体消耗每公升氧气能够产生4.801kcal的能量;当REF等于0.9时,人体消耗每公升氧气能够产生4.924kcal的能量;当RER等于1时,人体消耗每公升氧气则能够产生5.047kcal 的能量。尽管最低与最高能量产生的差异不及 1 %,但是,随 着运动强度增加,逐渐提高每公斤氧气的能量消耗趋向,却也是不争的事实。 以下的实例,可以让您更清楚运动时的能量消耗评量。「如果您昨天花了三十分钟骑脚踏车逛街,运动时的强度是5METs即5X 3.5ml/kg/min的摄氧量强度)运动过程中的呼吸交换率平均为0.9 ,请问在骑车的三十分钟内,您共消耗多少克的葡萄糖与脂肪?」。 首先,必须先确定您的体重是多少公斤。如果您的体重正好是70公斤,那么三十分钟内的总氧气消耗量为 5 X 3.5ml/kg/min X 70kg X 30min= 36750ml 的氧气,共消耗4.924kcal/每公升氧气X 36.75公升氧气二180.96kcal的能量(运动后的过耗氧量并不在此计算的范围内)。 在不考虑运动后的心跳率与耗氧量,会有缓慢下降的事实下,三十分钟的中等强度骑脚踏车运动期间,能量消耗约180kcal 左右。如果运动的过程中,蛋白质没有提供身体能量来源(只有葡萄糖与脂肪提供能量),那么0.9 的RER

-内能和热量-比热容

【同步教育信息】 一. 本周教案内容: 第一章分子动理论与内能 2. 内能和热量(2) 3. 比热容 二. 重点、难点: 1. 知道改变物体内能的方法 2. 知道燃料热值及相关计算 3. 理解比热容概念、物理意义及有关的因素 4. 能用比热容来解释生活中的一些现象,进行热量的计算 三. 具体内容: (一)物体内能的改变 1. 两个温度不同的物体互相接触,低温物体温度升高,高温物体温度降低。这个过程,叫做热传递。 在热传递过程中,低温物体温度升高,内能增加;高温物体温度降低,内能减少。 在热传递过程中,传递内能的多少叫做热量。单位是焦耳,符号J。 物体吸热,内能增加;物体放热,内能减少。 物体吸收或放出的热量越多,它的内能改变越大。 特别说明:热量是过程量,只能说“吸收”或“放出”,不能说“具有”、“含有”或“××的”。就是说热量的大小与物体内能的多少,物体温度的高低没有关系。 2. 除了热传递外,做功也可以改变物体内能。 冬天搓手可使双手变得暖和,是因为做功,使手的内能增加,温度升高。 对物体做功,使物体内能增加。

物体对外做功,本身的内能会减少。 例如:暖瓶塞被顶起后,瓶口出现白雾是因为:水蒸气顶起瓶塞做功,内能减少,发生液化现象,形成白雾。 总结一下: (二)燃烧的热值 1. 燃料燃烧时能的转化 燃料的燃烧是一种化学变化,在燃烧过程中,燃料的化学能转化为内能,也就是常说的释放能量。 2. 定义 1kg某种燃料完全燃烧时放出的热量,叫做这种燃料的热值。 热值是为了表示相同质量的不同燃料在燃烧时放出热量不同而引入的物理量。它反映了燃料通过燃烧放出热量本领大小不同的燃烧特性。燃料的热值是燃料本身的一种燃烧特性,不同燃料的热值一般是不同的,同种燃料的热值是一定的,它与燃料的质量、体积、放出热量多少无关。 3. 在学习热值的概念时,应注意以下几点: (1)“完全燃烧”是指燃料全部燃烧变成另一种物质。 (2)强调所取燃料的质量为“1kg”,要比较不同燃料燃烧本领的不同,就必须在燃烧质量和燃烧程度完全相同的条件下进行比较。 (3)“某种燃料”强调了热值是针对燃料的特性与燃料的种类有关。 热值的单位J/kg,读作焦每千克。还要注意,气体燃料有时使用J/m3 4. 热值的物理意义 表示一定质量的燃料在完全燃烧时所放出热量的多少。同种燃料热值相同,不同燃料的热值不同。 5. 放出热量的计算 如果用m表示完全燃烧燃料的质量,用q表示该种燃料的热值,用Q放表示燃料完全燃烧时所放出的热量,则Q放=m·q。 第三节比热容 (一)物质的吸热能力 不同物质在质量相等、温度变化也相同时,吸收的热量不同。 (二)比热容 要知道质量相等的不同物质升高相同的温度,吸收的热量不相等,为了比较各种物质这种性质上的不同,而引入了比热的概念。1 kg的某种物质,温度升高1℃吸收的热量,叫做这种物质的比热容。设质量为m的物质温度升高t-t0时,所需吸收的热量为Q,则这种物质的比热c可用下式来量度: c Q m t = ?

初中物理内能热量与热值相关知识点总结

初中物理内能、热量与热值相关知识点总 1.内能:在物理学中,把物体内所有的分子动能与分子势能的总和叫做物体的内能。具有内能。内能的单位是焦(J)。 2.影响内能大小的因素之一是:温度,温度越高,分子无规则运动越剧烈,分子动能 这说明,同一物体的内能是随温度的变化而变化的。3.改变物体内能的方法是:①做式对于改变物体的内能是等效的。4.对物体做功,物体的内能增大,温度升高;物体 温度降低5.热传递发生的条件是:两个物体有温度差;热传递的方式有:传导、对流热量(内能)从高温物体传向低温物体,高温物体放出热量,低温物体吸收热量,直到止。6.热量:在物理学中,把在热传递过程中物体内能改变的多少叫做热量。物体吸热量,内能减少。7.热量用字母Q表示,单位是焦(J)。一根火柴完全燃烧放出的验表明:对同种物质的物体,它吸收或放出的热量跟物体的质量大小、温度的变化多少1kg某种燃料在完全燃烧时所放出的热量叫做这种燃料的热值。10.热值是燃料的一全燃烧等没有关系,只与燃料的种类有关,不同燃料的热值一般不同。11.燃料完全燃Q=qm或Q=qV 12.Q表示热量,单位是焦(J),q表示热值,单位是焦/千克(J/k m表示质量,单位是千克(kg);V表示体积,单位是米3(m3)13.氢气的热值很大,表示的物理意义是:1m3的氢气在完全燃烧时所放出的热量为1.4×108J。14.提高燃烧条件,使燃料尽可能充分燃烧;②尽可能减少各种热量损失15.比热容:单位质(或降低)1℃所吸收(或放出)的热量,叫这种物质的比热容。16.比热容是物质量、体积等无关,只与物质的种类有关。不同物质的比热容一般不同,同种物质的比热容与热容用字母c表示,单位是:焦/(千克?℃),符号是:J/(kg?℃) 18.水的比热容

温度内能热能和热量的区别和联系

温度、内能、热能与热量的区别与联系 就是用来表示物体冷热程度的物理量,就是状态量。从分子运动观点瞧,温 度就是物体分子平均动能的标志,就是大量分子热运动的集体表现,对于个别分子没有意义。当物体温度变化到一定温度时,吸收或放出热量,物态可能发生变化。 从广义来说,内能就是指物体内部所包含的总能量,就是状态量。教材中所 说的,内能就是物体内部所有分子做无规则运动的动能与分子势能的总与。它包括分子热运动的动能,分子间相互作用的分子势能、分子、原子内的能量、原子核内的能量。在热学中,内能就是指分子动能与分子势能之与。内能跟构成物质的分子数目、分子质量、分子热运动与分子间的作用力有关。一切物体都具有内能,物体质量越大,温度越高,内能就越大;同一物体温度越高,分子热运动越剧烈,分子动能越大,内能越大。分子势能跟分子间的距离,分子间相互作用力有关,如一块0℃的冰熔化成0℃的水内能怎样变化。0℃的冰变成0℃的水温度不变,分子动能不变,由于质量没有变,分子间距离变小,分子势能变小,内能变小。 就是内能的通俗说法,实际上与内能有区别。热能就是指分子热运动的分子 动能,就是内能的一部分,就是分子无规则运动具有的能量。 就是在热传递的过程中,传递内能的多少。内能从高温物体传向低温物体。 高温物体减少的内能叫放出的热量,低温物体增加的内能叫吸收的热量。热量就是热传递过程中内能变化的量度,就是一个过程量,而温度与内能就是状态量。热量跟温度高低无关,跟变化的温度有关。 (1)内能与温度的关系 ①物体温度的变化一定会引起内能的变化。 因为物体温度升高(或降低),物体内分子无规则运动的速度加快(或减慢),分子动能增加(或减少),因此它的内能一定增加(或减少)。 ②物体温度不变,其内能可能改变(物体内能增加或减小,不一定引起温度变化)。 如晶体冰熔化过程中,吸收热量,温度不变,分子动能不变,分子间距离减小,分子势能减小,因此冰熔化过程中内能减小。晶体凝固与熔化过程,液体沸腾过程,温

温度内能热能和热量的区别和联系

温度内能热能和热量的 区别和联系 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

温度、内能、热能和热量的区别和联系 看,温度是物体分子平均动能的标志,是大量分子热运动的集体表现,对于个别分子没有意义。当物体温度变化到一定温度时,吸收或放出热量,物态可能发生变化。 材中所说的,内能是物体内部所有分子做无规则运动的动能和分子势能的总和。它包括分子热运动的动能,分子间相互作用的分子势能、分子、原子内的能量、原子核内的能量。在热学中,内能是指分子动能和分子势能之和。内能跟构成物质的分子数目、分子质量、分子热运动和分子间的作用力有关。一切物体都具有内能,物体质量越大,温度越高,内能就越大;同一物体温度越高,分子热运动越剧烈,分子动能越大,内能越大。分子势能跟分子间的距离,分子间相互作用力有关,如一块0℃的冰熔化成0℃的水内能怎样变化。0℃的冰变成0℃的水温度不变,分子动能不变,由于质量没有变,分子间距离变小,分子势能变小,内能变小。 的分子动能,是内能的一部分,是分子无规则运动具有的能量。

温物体。高温物体减少的内能叫放出的热量,低温物体增加的内能叫吸收的热量。热量是热传递过程中内能变化的量度,是一个过程量,而温度和内能是状态量。热量跟温度高低无关,跟变化的温度有关。 (1)内能和温度的关系 ①物体温度的变化一定会引起内能的变化。 因为物体温度升高(或降低),物体内分子无规则运动的速度加快(或减慢),分子动能增加(或减少),因此它的内能一定增加(或减少)。 ②物体温度不变,其内能可能改变(物体内能增加或减小,不一定引起温度变化)。 如晶体冰熔化过程中,吸收热量,温度不变,分子动能不变,分子间距离减小,分子势能减小,因此冰熔化过程中内能减小。晶体凝固和熔化过程,液体沸腾过程,温度不变其内能要发生变化。在热传递过程中有温度差,温度发生变化,内能也要发生变化。 (2)内能与热量的关系 ①物体内能变化,不一定吸收(或放出热量)。

中学物理内能能力点5.5 热量计算公式比例计算

能力点5.5 热量计算公式比例计算 ------------------------- 例题 1 比例计算水和煤油吸收的热量相等,水的比热是煤油的2倍,水升高的温度是煤油的1/3;倍,则它们的质量之比m水:m油是() A.3:2 B.2:3 C.1:6 D.6:1 练习1水和干泥土的比热容之比是5:1,质量之比是1:2,吸收的热量之比是3:2,则水和干泥土升高的温度之比是() A.5:3 B.3:5 C.15:4 D.15:1 练习2 有三块金属块,它们的质量相同,比热容之比C 甲:C乙:C丙=3:4:5,让它们吸收相同的热量后,升高的温度之比为() A.3:4:5 B.5:4:3 C.12:15:20 D.20:15:12 练习3 铜的比热容是铅的比热容的3倍.质量相同的铜块和铅块,若它们升高的温度之比为1:4,则它们吸热之比为() A.3:4 B.4:3 C.8:1 D.1:8 练习4知二求二有甲、乙两个金属球,它们的比热之比3:2,吸收的热量之比4:1,那甲、乙两金属球的质量之比和升高的温度之比可能分别是() A.2:1,4:1 B.3:2,4:1 C.4:5,3:10 D.4:5,10:3 ------------------- 巩固练习 1有甲、乙两物体,它们的质量之比是3:1,吸收的热量之比是2:1.如果升高的温度之比是5:3,则甲、乙两物质的比热容之比是() A.10:1 B.1:10 C.2:5 D.5:2 2如图所示,是将冷水与热水相混合时,温度随时间的变化图象。(在热传递过程中忽略热量的损失)由图中所给的信息可知,冷热水的质量与吸放热之比分别是() A.1:2、1:1 B.1:1、2:1 C.1:1、1:2 D.2:1、1:1 -------------------

能量传递计算

生态系统中能量流动的计算方法 生态系统中能量流动的计算是近几年高考的热点,考生常因缺乏系统总结和解法归纳而容易出错。下面就相关问题解法分析如下: 一、食物链中的能量计算 1.已知较低营养级生物具有的能量(或生物量),求较高营养级生物所能获得能量(或生物量)的最大值。 例1.若某生态系统固定的总能量为24000kJ,则该生态系统的第四营养级生物最多能获得的能量是() A. 24kJ B. 192kJ C.96kJ D. 960kJ 解析:据题意,生态系统固定的总能量是生态系统中生产者(第一营养级)所固定的能量,即24000kJ,当能量的传递效率为20%时,每一个营养级从前一个营养级获得的能量是最多的。因而第四营养级所获得能量的最大值为:24000×20%×20%×20%=192kJ。 答案:D 规律:已知较低营养级的能量(或生物量),不知道传递效率,计算较高营养级生物获得能量(或生物量)的最大值时,可按照最大传递效率20%计算,即较低营养级能量(或生物量)×(20%)n(n为食物链中由较低营养级到所需计算的营养级的箭头数)。 2.已知较高营养级的能量(或生物量),求较低营养级应具备的能量(或生物量)的最小值。 例2.在一条有5个营养级的食物链中,若第五营养级的生物体重增加1 kg,理论上至少要消耗第一营养级的生物量为() A. 25 kg B. 125 kg C. 625 kg D. 3125 kg 解析:据题意,要计算消耗的第一营养级的生物量,应按照能量传递的最大效率20%计算。设需消耗第一营养级的生物量为X kg,则X=1÷(20%)4=625 kg 答案:C 规律:已知能量传递途径和较高营养级生物的能量(或生物量)时,若需计算较低营养级应具有的能量(或生物量)的最小值(即至少)时,按能量传递效率的最大值20%进行计算,即较低营养级的生物量至少是较高营养级的能量(或生物量)×5n(n为食物链中,由较低营养级到所需计算的营养级的箭头数)。 3.已知能量的传递途径和传递效率,根据要求计算相关生物的能量(或生物量)。 ,若能量传递效率例3.在能量金字塔中,生产者固定能量时产生了240molO 2 为10%~15%时,次级消费者获得的能量最多相当于多少mol葡萄糖? () A.0.04 B. 0.4 C.0.9 D.0.09 解析:结合光合作用的相关知识可知:生产者固定的能量相当于240÷6=40mol葡萄糖;生产者的能量传递给次级消费者经过了两次传递,按最大的能量传递效率计算,次级消费者获得的能量最多相当于40×15%×15%=0.9mol葡萄糖。 答案:C

温度、内能、热能和热量的区别和联系(教育材料)

温度、内能、热能和热量的区别和联系 1. 温度、内能、热能和热量的区别 温度:是用来表示物体冷热程度的物理量,是状态量。从分子运动观点看,温度 是物体分子平均动能的标志,是大量分子热运动的集体表现,对于个别分子没有意义。当物体温度变化到一定温度时,吸收或放出热量,物态可能发生变化。 内能:从广义来说,内能是指物体内部所包含的总能量,是状态量。教材中所说 的,内能是物体内部所有分子做无规则运动的动能和分子势能的总和。它包括分子热运动的动能,分子间相互作用的分子势能、分子、原子内的能量、原子核内的能量。在热学中,内能是指分子动能和分子势能之和。内能跟构成物质的分子数目、分子质量、分子热运动和分子间的作用力有关。一切物体都具有内能,物体质量越大,温度越高,内能就越大;同一物体温度越高,分子热运动越剧烈,分子动能越大,内能越大。分子势能跟分子间的距离,分子间相互作用力有关,如一块0℃的冰熔化成0℃的水内能怎样变化。0℃的冰变成0℃的水温度不变,分子动能不变,由于质量没有变,分子间距离变小,分子势能变小,内能变小。 热能:是内能的通俗说法,实际上与内能有区别。热能是指分子热运动的分子动能,是内能的一部分,是分子无规则运动具有的能量。 热量:是在热传递的过程中,传递内能的多少。内能从高温物体传向低温物体。 高温物体减少的内能叫放出的热量,低温物体增加的内能叫吸收的热量。热量是热传递过程中内能变化的量度,是一个过程量,而温度和内能是状态量。热量跟温度高低无关,跟变化的温度有关。 2. 温度、内能和热量的关系 (1)内能和温度的关系 ①物体温度的变化一定会引起内能的变化。 因为物体温度升高(或降低),物体内分子无规则运动的速度加快(或减慢),分子动能增加(或减少),因此它的内能一定增加(或减少)。 ②物体温度不变,其内能可能改变(物体内能增加或减小,不一定引起温度变化)。 如晶体冰熔化过程中,吸收热量,温度不变,分子动能不变,分子间距离减小,分子势能减小,因此冰熔化过程中内能减小。晶体凝固和熔化过程,液体沸腾过

UV能量计的计算方法

UV能量计的计算方法 现在很多UV设备厂家或者UV设备的使用厂家都在用UV能量计测试UV机的能量值,看似很简单的一个仪器,但UV能量计是如何计算测试数值的呢?因此我来为此做一个详细的介绍。 首先从灯管供应商处取得灯管一些相关参数,包括:灯管线性功率W/cm,灯管发光长度cm,灯管功率W或者KW-用来考评灯管是否达到指标,视乎灯管口径。接着计算光强mW/cm*cm。公式为灯管线性功率W/cm*灯管发光长度cm*有效UV光谱17%*10%/12cm*灯管发光长度cm计算出来的结果单位为:mW/cm*cm。 下一步,计算产品曝光时间,视乎灯管排放方式,直放按灯管实际发光长度算,单位cm,(单管),再除以机器运转速度(cm/秒,s),横放按12cm算(单管),计算方法同上,如果多支灯管排放,则取时间总和。最后计算出UV曝光量=光强mW/cm*cm*时间s(秒),计算出来的结果为:mj/cm2。现在通常的UV检测方法,是测试UV灯管工作时峰值强度peak值,单位为:w/cm*cm或mw/cm*cm,和UV能量密度--曝光量,单位J/cm*cm 或者mj/cm*cm,峰值强度体现灯管UV射线的聚焦和衰减状况,来评估灯管适用性,UV曝光量(J/cm*cm)是我们关注的参数,对涂层固化至关重要,很多情况下涂层会标定基本的能量要求,即涂料配方设计时设定好的曝光量范围,对传送带型UV机器,可以通过调整速度来控制UV曝光量,而对于UV灯反光罩,可以通过曝光时间补偿或者对UV灯管强度调整来达到要求UV能曝光量。 严格来说,通常工业上根据应用将UV射线分为四个波段,UVA、UVB、UVC、UVV,各个UV能量计厂家对波段的定义有细微差别,UVA(320-390nm),UVB(280-320nm),UVC(250-260nm),UVV(395-445nm),各种灯管的光谱分布不同.通常在选择UV能量计时,要先了解,您关注的UV波段是哪一个区域,再作出选择相应的单波段UV能量计如美国EIT(UV ICURE PLUS),当然如果需要更多的信息,或是经常更换不同涂层的应用,选择四波段的UV能量计美国EIT(UV POWER PUCK)。 众所周知,在保证UV曝光量的前提下,UV机器在进行设计时,可以采取双灯混合固化,双灯可以提供独有的固化优势,混合4种不同光谱灯管。比如,传送带第一个灯管用UVB固化表面,防止臭氧影响表面褶皱,形成光滑表面。第二个灯管适用UVA型灯泡,长波长可以更有效渗透,实现深层的固化。这种方法优化涂层的反应速度.UV曝光能量大小,还受到物距,外部电源电压电流,灯管质量,好的灯管UV有效光谱可达到25%,正常状态下,物距取15cm上下,此时距离因子取0.1。故以公式计算出来的数据只是表述UV 曝光能量落在哪一个范畴,为了得到更加准确的数据,必要时还需要修正UV有效光谱参数以及距离因子。但是,所计算出来的数据与好的能量计所测量出来的数值并不会相差太大,相差10%左右还市能够接受。 UV能量计生产产家众多,有国产的也有进口的,可以这样说,不同牌子的能量计所测出来的数据都有差别,个别牌子相同型号甚至落差很大,真是令人大跌眼睛。这个时候,以公式法计算实际UV曝光强度就起到了一个极为重要的参照作用,市面上,一般采用德国产的UV能量计测量,品牌:KUHNAST,UV-DESIGN,这两个常见的品牌,美国的EIT,日本的ORC,国内的UV-BIKESU这些品牌质量相对可靠些,笔者认为很值得推荐。

内能热量和温度关系

内能热量和温度关系集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

内能热量和温度关系内能、热量和温度是热学中三个重要的物理量。学习内能的知识后,大多数学生对这三个物理量的概念及相互关系不能正确理解,为帮助学生理解和应用把三者的区别和联系总结如下。 一、三者之间的区别 1. 内能是物体内部所有分子做无规则运动的动能和分子势能的总和。内能只能说“有”,不能说“无”。只有当物体内能改变,并与做功或热传递相联系时,才有数量上的意义。 2. 温度表示物体的冷热程度,从分子动理论的观点来看,温度是分子热运动激烈程度的标志,对同一物体而言,温度只能说“是多少”或“达到多少”,不能说“有”“没有”或“含有”等。 3. 热量是在热传递过程中,物体吸收或放出热的多少,其实质是内能的变化量。热量跟热传递紧密相连,离开了热传递就无热量可言。对热量只能说“吸收多少”或“放出多少”,不能在热量名词前加“有”或“没有”“含有”。 二、三者之间的关系 1. 内能和温度的关系 物体内能的变化,不一定引起温度的变化。这是由于物体内能变化的同时,有可能发生物态变化。物体在发生物态变化时内能变化了,温度有时变化有时却不变化。

如晶体的熔化和凝固过程,还有液体沸腾过程,内能虽然发生了变化,但温度却保持不变。温度的高低,标志着物体内部分子运动速度的快慢。 因此,物体的温度升高,其内部分子无规则运动的速度增大,分子的动能增大,因此内能也增大,反之,温度降低,物体内能减小。因此,物体温度的变化,一定会引起内能的变化。 2. 内能与热量的关系 物体的内能改变了,物体却不一定吸收或放出了热量,这是因为改变物体的内能有两种方式:做功和热传递。即物体的内能改变了,可能是由于物体吸收(或放出)了热量也可能是对物体做了功(或物体对外做了功)。 而热量是物体在热传递过程中内能变化的量度。物体吸收热量,内能增加,物体放出热量,内能减少。因此物体吸热或放热,一定会引起内能的变化。 3. 热量与温度的关系 物体吸收或放出热量,温度不一定变化,这是因为物体在吸热或放热的同时,如果物体本身发生了物态变化(如冰的熔化或水的凝固)。这时,物体虽然吸收(或放出)了热量,但温度却保持不变。 物体温度改变了,物体不一定要吸收或放出热量,也可能是由于对物体做功(或物体对外做功)使物体的内能变化了,温度改变了。

热量计算公式

供热简单知识 1. 供热系统:供热系统分一次和二次供热系统,一次由热源单位来提供热源,二次是经过换热站对用户采暖供热 (蒸汽系统除外) ,我公司分东西部供热系统。 2. 热量计算公式:Q=C*G(T2-T1) "000 二次网流量选择原则: G=KW*0.86*1.1/ (T2-T1 ) (地热温差取10 C;分户改造取15 C;二次网直连取 25 C )。 采暖期用热:Q*24*167*0.64 分户估算水量:一般情况下为3-3.5KG/ m2 老式供暖水量:一般情况下为2-2.5KG/ m 地热供暖水量:一般情况下为 3.5-5KG/ m,根据外网负 荷确定。 根据45W,50W,55W 计算流量情况能得出调整水平关系。可以实际计算。 3. 一、二次网的热量相等: Q1=Q2 ,C1*G1*(T22-T21)=C2*G2*(T22 '-T21'), 水 C1=C2 , 一次网温差一般取45 C,直连系统一般选用25 C。但要和设计联系在一起,高值也可取65 C。从公式看出温差和流量决定一、二次网热量计算。 4?板式换热器系统阻力正常范围应在5-7 m H2O 5. 民用建筑室内管道流速不大于 1.2m/s 6. 压力与饱和水温度关系:

单位换算: 例子:45W/川的采暖期的耗热量 45*3600*24*167*0.64=0J 变成GJ: 0 P0=0.41555GJ/ m2 8?比摩阻:供热管路单位长度沿程阻力损失。若将大管径改为小一号管径,比摩阻增加1-2倍。 9?集中供热管网布置与敷设:管网主干线尽可能通过热负荷中心;管网力求线路短直;管网敷设应力求施工方便,工程量少;在满足安全运行、维修简便前提下,应节约用地; 在管网改建、扩建过程中,应尽可能做到新设计的管线不影响原有管线正常运行;管线一般应沿路敷设,不应穿过仓库、堆场以及发展的预留地段;尽可能不通过铁路、公路及其他管线、管沟等,并适当注意整齐美观等,还有许多这里不做介绍。 管网布置有四种形式: A:枝装布置,B :环装布置,C :放射布置,D:网络布置。 10.采暖热指标推荐值(W/ m2)

相关文档
最新文档