决策树和大型数据集(Decision tree and large dataset)_数据挖掘_科研数据集

决策树和大型数据集(Decision tree and large dataset)_数据挖掘_科研数据集
决策树和大型数据集(Decision tree and large dataset)_数据挖掘_科研数据集

决策树和大型数据集(Decision tree and large dataset)

数据介绍:

Dealing with large dataset is on of the most important challenge of the Data Mining. In this context, it is interesting to analyze and to compare the performances of various free implementations of the learning methods, especially the computation time and the memory occupation. Most of the programs download all the dataset into memory. The main bottleneck is the available memory.

关键词:

决策树,软件比较,监督学习,大型数据集, Decision tree,Software Comparison,Supervised Learning,large dataset,

数据格式:

TEXT

数据详细介绍:

Decision tree and large dataset

Dealing with large dataset is on of the most important challenge of the Data Mining. In this context, it is interesting to analyze and to compare the performances of various free implementations of the learning methods, especially the computation time and the memory occupation. Most of the programs download all the dataset into memory. The main bottleneck is the

available memory.

In this tutorial, we compare the performance of several implementations of the C4.5 algorithm (Quinlan, 1993) when processing a file containing 500,000 observations and 22 variables. The programs used are: Knime 1.3.5; Orange 1.0b2; R (rpart package) 2.6.0; RapidMiner Community Edition; Sipina Research; Tanagra 1.4.27; Weka 3.5.6.

Our data file is well-known artificial dataset described in the CART book (Breiman et al., 1984). We have generated a dataset with 500.000 observations. The class attribute has 3 values, there are 21 continuous predictors.

Keywords: c4.5, decision tree, classification tree, large dataset, knime, orange, r, rapidminer, sipina, tanagra, weka

Components: SUPERVISED LEARNING, C4.5

Tutorial: en_Tanagra_Perfs_Comp_Decision_Tree.pdf

Dataset: wave500k.zip

Reference: R. Quinlan, ? C4.5 : Programs for Machine Learning ?, Morgan Kaufman, 1993.

数据预览:

点此下载完整数据集

决策树算法的原理与应用

决策树算法的原理与应用 发表时间:2019-02-18T17:17:08.530Z 来源:《科技新时代》2018年12期作者:曹逸知[导读] 在以后,分类问题也是伴随我们生活的主要问题之一,决策树算法也会在更多的领域发挥作用。江苏省宜兴中学江苏宜兴 214200 摘要:在机器学习与大数据飞速发展的21世纪,各种不同的算法成为了推动发展的基石.而作为十大经典算法之一的决策树算法是机器学习中十分重要的一种算法。本文对决策树算法的原理,发展历程以及在现实生活中的基本应用进行介绍,并突出说明了决策树算法所涉及的几种核心技术和几种具有代表性的算法模式。 关键词:机器学习算法决策树 1.决策树算法介绍 1.1算法原理简介 决策树模型是一种用于对数据集进行分类的树形结构。决策树类似于数据结构中的树型结构,主要是有节点和连接节点的边两种结构组成。节点又分为内部节点和叶节点。内部节点表示一个特征或属性, 叶节点表示一个类. 决策树(Decision Tree),又称为判定树, 是一种以树结构(包括二叉树和多叉树)形式表达的预测分析模型,决策树算法被评为十大经典机器学习算法之一[1]。 1.2 发展历程 决策树方法产生于上世纪中旬,到了1975年由J Ross Quinlan提出了ID3算法,作为第一种分类算法模型,在很多数据集上有不错的表现。随着ID3算法的不断发展,1993年J Ross Quinlan提出C4.5算法,算法对于缺失值补充、树型结构剪枝等方面作了较大改进,使得算法能够更好的处理分类和回归问题。决策树算法的发展同时也离不开信息论研究的深入,香农提出的信息熵概念,为ID3算法的核心,信息增益奠定了基础。1984年,Breiman提出了分类回归树算法,使用Gini系数代替了信息熵,并且利用数据来对树模型不断进行优化[2]。2.决策树算法的核心 2.1数据增益 香农在信息论方面的研究,提出了以信息熵来表示事情的不确定性。在数据均匀分布的情况下,熵越大代表事物的越不确定。在ID3算法中,使用信息熵作为判断依据,在建树的过程中,选定某个特征对数据集进行分类后,数据集分类前后信息熵的变化就叫作信息增益,如果使用多个特征对数据集分别进行分类时,信息增益可以衡量特征是否有利于算法对数据集进行分类,从而选择最优的分类方式建树。如果一个随机变量X的可以取值为Xi(i=1…n),那么对于变量X来说,它的熵就是

大数据分析及其在医疗领域中的应用-图文(精)

第7期 24 2014年4月10日 计算机教育 ComputerEducation ◆新视点 文章编号:1672.5913(2014)07—0024-06 中图分类号:G642 大数据分析及其在医疗领域中的应用 邹北骥 (中南大学信息科学与工程学院,湖南长沙410083) 摘要:互联网和物联网技术的快速发展给数据的上传与下载带来了前所未有的便利,使得互联网上 的数据量急剧增长,由此产生了针对大数据的存储、计算、分析、处理等新问题,尤其是对大数据的挖掘。文章分析当前大数据产生的背景,阐述大数据的基本特征及其应用,结合医疗领域,论述医疗 大数据分析的目的、意义和主要方法。 关键词:大数据;物联网;医疗;大数据挖掘 1 大数据早已存在,为何现在称之为大

数据时代 计算与数据是一对孪生姐妹,计算需要数据,数据通过计算产生新的价值。数据是客观事 物的定量表达,来自于客观世界并早已存在。例 如,半个世纪前,全球的人口数量就有数十亿,与之相关的数据就是大数据;但是在那个时代,由于技术的局限性,大数据的采集、存储和处理 还难以实现。 互联网时代之前,采集世界各地的数据并让它们快速地进入计算系统几乎是一件不可想象的 事情。20世纪80年代兴起的互联网技术在近30 年里发生了翻天覆地的变化,彻底地改变了人们的工作和生活方式【l】。通过互联网人们不仅可以下载到新闻、小说、论文等各类文字数据,而且可以轻而易举地下载到音乐、图像和视频等多媒体数据,这使得互联网上的数据流量急剧增长。据统计,现在互联网上每分钟流人流出的数 据量达到1 000 PB,即10亿 GBt21。 推动大数据产生的另一个重要因素是物联网技术。近几年发展起来的物联网技 术通过给每个物品贴上标签 并应用RFID等技术实现了

决策树生成原理

决策树生成原理 Abstract This paper details the ID3 classification algorithm. Very simply, ID3 builds a decision tree from a fixed set of examples. The resulting tree is used to classify future samples. The example has several attributes and belongs to a class (like yes or no). The leaf nodes of the decision tree contain the class name whereas a non-leaf node is a decision node. The decision node is an attribute test with each branch (to another decision tree) being a possible value of the attribute. ID3 uses information gain to help it decide which attribute goes into a decision node. The advantage of learning a decision tree is that a program, rather than a knowledge engineer, elicits knowledge from an expert. Introduction J. Ross Quinlan originally developed ID3 at the University of Sydney. He first presented ID3 in 1975 in a book, Machine Learning, vol. 1, no. 1. ID3 is based off the Concept Learning System (CLS) algorithm. The basic CLS algorithm over a set of training instances C: Step 1: If all instances in C are positive, then create YES node and halt. If all instances in C are negative, create a NO node and halt. Otherwise select a feature, F with values v1, ..., vn and create a decision node. Step 2: Partition the training instances in C into subsets C1, C2, ..., Cn according to the values of V. Step 3: apply the algorithm recursively to each of the sets Ci. Note, the trainer (the expert) decides which feature to select. ID3 improves on CLS by adding a feature selection heuristic. ID3 searches through the attributes of the training instances and extracts the attribute that best separates the given examples. If the attribute perfectly classifies the training sets then ID3 stops; otherwise it recursively operates on the n (where n = number of possible values of an attribute) partitioned subsets to get their "best" attribute. The algorithm uses a greedy search, that is, it picks the best attribute and never looks back to reconsider earlier choices. Discussion ID3 is a nonincremental algorithm, meaning it derives its classes from a fixed set of training instances. An incremental algorithm revises the current concept definition, if necessary, with a new sample. The classes created by ID3 are inductive, that is, given a small set of training instances, the specific classes created by ID3 are expected to work for all future instances. The distribution of the unknowns must be the same as the test cases. Induction classes cannot be proven to work in every case since they may classify an infinite number of instances. Note that ID3 (or any inductive algorithm) may misclassify data.

流程图 决策表 决策树习题及答案

1、已知产品出库管理的过程是:仓库管理员将提货人员的零售出库单上的数据登记到零售出库流水账上,并每天将零售出库流水账上当天按产品名称、规格分别累计的数据记入库存账台。请根据出库管理的过程画出它的业务流图。 产品出库管理业务流图 2、设产品出库量的计算方法是:当库存量大于等于提货量时,以提货量作为出库量;当库存量小于提货量而大于等于提货量的10%时,以实际库存量作为出库量;当库存量小于提货量的10%时,出库量为0(即提货不成功)。请表示出库量计算的决策树。 3、有一工资处理系统,每月根据职工应发的工资计算个人收入所得税,交税额算法如下: 若职工月收入=<800元,不交税; 若800职工<职工月收入=<1300元,则交超过800元工资额的5%;

若超过1300元,则交800到1300元的5%和超过1300元部分 的10%。 试画出计算所得税的决策树和决策表。 1、解:(1)决策树 设X为职工工资,Y为职工应缴税额。 X<=800 ——Y=0 某工资处理系统8001300 ——Y=(1300-800)*5%+(X-1300)*10% (2)决策表 4、某货运站的收费标准如下: (1) 收费地点在本省,则快件每公斤6元,慢件每公斤4元; (2) 收费地点在外省,则在25公斤以内(含25公斤)快件每公斤8 元,慢件每公斤6元;如果超过25公斤时,快件每公斤10元,慢件 每公斤8元 试根据上述要求,绘制确定收费标准的决策表,并配以简要文字说明。 答:在货运收费标准中牵涉条件的有:本省、外省之分,有快、慢件之分,对于外省运件以25公斤为分界线,故货运站收费标准决策表的条件有三个,执行的价格有四档:4元/公斤、6元/公斤、8元/公斤、10元/公斤,从而可得某货运站的收费标准执行判断表如下表格所示。 收费标准判断表

决策树原理与应用:C5.0

决策树原理与应用:C5.0 分类预测指通过向现有数据的学习,使模型具备对未来新数据的预测能力。对于分类预测有这样几个重要,一是此模型使用的方法是归纳和提炼,而不是演绎。非数据挖掘类的软件的基本原理往往是演绎,软件能通过一系列的运算,用已知的公式对数据进行运算或统计。分类预测的基本原理是归纳,是学习,是发现新知识和新规律;二是指导性学习。所谓指导性学习,指数据中包含的变量不仅有预测性变量,还有目标变量;三是学习,模型通过归纳而不断学习。 事实上,预测包含目标变量为连续型变量的预测和目标变量为分在变量的分类预测。两者虽然都是预测,但结合决策树算法和我们之前介绍过的时间序列算法知,二者还是有明显的差别的。 Clementine决策树的特点是数据分析能力出色,分析结果易于展示。决策树算法是应用非常广泛的分类预测算法。 1.1决策树算法概述1.11什么是决策树决策树算法属于有指导的学习,即原数据必须包含预测变量和目标变量。决策树之所以如此命名,是因为其分析结果以一棵倒置的树的形式呈现。决策树由上到下依次为根节点、内部节点和叶节点。一个节点对应于数据中的一个字段,即一个字段——即Question——对数据进行一次划分。决策树分为分类决策树

(目标变量为分类型数值)和回归决策树(目标变量为连续型变量)。分类决策树叶节点所含样本中,其输出变量的众数就是分类结果;回归树的叶节点所含样本中,其输出变量的平均值就是预测结果。这一点需要格外注意。 与其它分类预测算法不同的是,决策树基于逻辑比较(即布尔比较)。可以简单描述为:If(条件1)Then(结果1);If (条件2)Then(结果2)。这样,每一个叶节点都对应于一条布尔比较的推理规则,对新数据的预测就正是依靠这些复杂的推理规则。在实际应用中,一个数据产生的推理规则是极为庞大和复杂的,因此对推理规则的精简是需要关注的。 1.12决策树的几何理解将训练样本集(即操作中常说的Training Data)看做一个n维空间上的一个点,则上面我们提到的布尔比较后的推理规则就像是存在于这个n维空间中的“线”。决策树建立的过程形象上看,就是倒置的树生长的过程,其几何意义上是,每个分枝(每条推理规则)完成对n维空间区域划分的过程。决策树正式生成,则n维空间正式划分完毕,则每一个小区域,代表一个叶节点。通常n 维空间不易于理解,故采用倒置的树来表示此结果。需要注意的一点是,在划分过程中,要尽量做到不同类别的结果归于不同的“区域”。 1.13决策树的核心问题:生成与修剪决策树核心问题有二。一是利用Training Data完成决策树的生成过程;二是利用

决策树算法介绍

3.1分类与决策树概述 3.1.1分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病 症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是E—个离散属性,它的取值是一个类别值,这种问题在数 据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这 里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种 问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2决策树的基本原理 1. 构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是 “差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3 个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={ “优”,

决策树程序实验

决策树程序实验 众所周知,数据库技术从20世纪80年代开始,已经得到广泛的普及和应用。随着数据库容量的膨胀,特别是数据仓库以及web等新型数据源的日益普及,人们面临的主要问题不再是缺乏足够的信息可以使用,而是面对浩瀚的数据海洋如何有效地利用这些数据。 从数据中生成分类器的一个特别有效的方法是生成一个决策树(Decision Tree)。决策树表示方法是应用最广泛的逻辑方法之一,它从一组无次序、无规则的事例中推理出决策树表示形式的分类规则。决策树分类方法采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较并根据不同的属性值判断从该结点向下的分支,在决策树的叶结点得到结论。所以从决策树的根到叶结点的一条路径就对应着一条合取规则,整棵决策树就对应着一组析取表达式规则。 决策树是应用非常广泛的分类方法,目前有多种决策树方法,如ID3、CN2、SLIQ、SPRINT等。 一、问题描述 相关信息 决策树是一个类似于流程图的树结构,其中每个内部结点表示在一个属性上的测试,每个分支代表一个测试输入,而每个树叶结点代表类或类分布。数的最顶层结点是根结点。一棵典型的决策树如图1所示。它表示概念buys_computer,它预测顾客是否可能购买计算机。内部结点用矩形表示,而树叶结点用椭圆表示。为了对未知的样本分类,样本的属性值在决策树上测试。决策树从根到叶结点的一条路径就对应着一条合取规则,因此决策树容易转化成分类规则。 图1 ID3算法: ■决策树中每一个非叶结点对应着一个非类别属性,树枝代表这个属性的值。一个叶结点代表从树根到叶结点之间的路径对应的记录所属的类别属性值。 ■每一个非叶结点都将与属性中具有最大信息量的非类别属性相关联。 ■采用信息增益来选择能够最好地将样本分类的属性。 信息增益基于信息论中熵的概念。ID3总是选择具有最高信息增益(或最大熵压缩)的属性作为当前结点的测试属性。该属性使得对结果划分中的样本分类所需的信息量最小,并反映划分的最小随机性或“不纯性”。 问题重述 1、目标概念为“寿险促销” 2、计算每个属性的信息增益 3、确定根节点的测试属性

课程名称大数据分析与应用

课程名称:大数据分析与应用 一、课程编码: 课内学时:32学分:2 二、适用学科专业:计算机专业硕士 三、先修课程:无 四、教学目标 通过本课程的课堂学习与应用案例,建立科学的大数据观,掌握大数据架构、大数据精准语义搜索、大数据语义分析挖掘、知识图谱等关键技术,熟练使用常用的大数据搜索挖掘与可视化工具,提升大数据的综合应用能力。 五、教学方式 课堂学习、研讨班与应用实践 六、主要内容及学时分配 1.科学的大数据观2学时 1.1.大数据的定义,科学发展渊源; 1.2.如何科学看待大数据? 1.3.如何把握大数据,分别从“知著”、“显微”、“晓义”三个层面阐述科学的大 数据观。 2.大数据技术平台与架构4学时 2.1云计算技术与开源平台搭建 2.2Hadoop、Spark等数据架构、计算范式与应用实践 3.机器学习与常用数据挖掘4学时 3.1常用机器学习算法:Bayes,SVM,最大熵、深度神经网络等; 3.2常用数据挖掘技术:关联规则挖掘、分类、聚类、奇异点分析。 4.大数据语义精准搜索4学时 4.1.通用搜索引擎与大数据垂直业务的矛盾; 4.2.大数据精准搜索的基本技术:快速增量在线倒排索引、结构化与非机构化数 据融合、大数据排序算法、语义关联、自动缓存与优化机制; 4.3.大数据精准搜索语法:邻近搜索、复合搜索、情感搜索、精准搜索; 4.4.JZSearch大数据精准搜索应用案例:国家电网、中国邮政搜索、国家标准搜 索、维吾尔语搜索、内网文档搜索、舆情搜索; 5.非结构化大数据语义挖掘10学时 5.1.语义理解基础:ICTCLAS与汉语分词 5.2.内容关键语义自动标引与词云自动生成; 5.3.大数据聚类; 5.4.大数据分类与信息过滤; 5.5.大数据去重、自动摘要; 5.6.情感分析与情绪计算;

决策树,生成剪枝,CART算法

决策树 1. 原理 1.1 模型简介 决策树是一种基本的回归和分类算法。在分类问题中,可以认为是一系列if-then 规则的几何。决策树学通常包括三个步骤:特征选择,决策树的生成,决策树的修剪。 定义:决策树由结点和有向边组成,内部节点表示一个特征和属性,叶子结点表示一个类。 性质:决策树路径(或者对应的if-then 规则)具有互斥且完备性:每一个实例都被一条路径或规则所覆盖,而且只被这条路径或规则所覆盖。 决策树学习:能够正确对数据集进行分类的决策树可能有多个,也可能一个也没有,我们的目的是找到一个与训练数据集矛盾较小的,同时具有很好泛化能力的决策树。 特征选择:一种是在决策树学习开始的时候,对特征进行选择,只留下对训练数据有足够分类能力的特征,一种是在学习过程中对训练数据分割成自己的时候,选择最优的特征进行分割。 决策树生成:一般这是一个递归的规程。 决策树的剪枝:提高决策树的泛化能力。 1.2 特征选择 特征选择的准则一般是:信息增益和信息增益比 1.2.1 信息增益 a.信息增益:信息增益大的特征具有更强的分类能力,即选择信息增益值大的特征作为最优特征。 b.信息熵:表示变量的不确定性(在得知特征X 的信息时,使得Y 的信息不确定性减少的程度),熵越大,变量的不确定性越大。设X 是一个取有限值的离散型随机变量,其概率分布为: ()i i p X x p == 则随机变量X 的熵定义为:

1()log n i i i H X p p ==-∑ 注:若p i =0,定义0log 00=。其中若对数以2为底,熵的单位称为比特,若以e 为底,单位称为纳特。 c.条件熵:随机变量X 在给定条件下随机变量Y 的条件熵H (Y|X )表示:X 给定条件下Y 的条件概率分布的熵 关于X 的数学期望: 1(|)(|)n i i i H Y X p H Y X x ===∑ 其中,()i i p X x p ==。 当熵和条件熵有数据估计(特别是极大似然估计)得到时,被分别称为经验熵和经验条件熵。 信息增益: 特征A 对训练数据集D 的信息增益g(D|A)定义为: (,)()(|)g D A H D H D A =- 其中,()H D 为集合D 的经验熵,(|)H D A 为特征A 给定条件下D 的经验条件熵。 d.信息增益的计算方法。 设: 训练数据集D ,个数为|D|。 K 个类,分别为C k..每个类内个数|C k | 根据特征A ,能够将训练集划分为n 个子集:D 1,D 2,…D n 。|D I |为该子集的样本个数。 子集D i 中属于类C k 的个数|D ik |。 则计算信息增益的公式为: 数据集D 的信息熵: i 1||||()log()||||k K K C C H D D D ==-∑ 特征A 对数据集D 的经验条件熵: 111||||||||(|)()log()||||||||n n K i i ik ik i i i k i i D D D D H D A H D D D D D =====∑∑∑ 注:此公式意义:在特征A 作用下,将数据集D 分为多个D i 。这时关于D 的熵等于关于D i 熵的均值。 计算信息增益。

大数据应用分析案例分析

大数据应用分析案例分 析 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

大数据应用与案例分析 当下,”大数据”几乎是每个IT人都在谈论的一个词汇,不单单是时代发展的趋势,也是革命技术的创新。大数据对于行业的用户也越来越重要。掌握了核心数据,不单单可以进行智能化的决策,还可以在竞争激烈的行业当中脱颖而出,所以对于大数据的战略布局让越来越多的企业引起了重视,并重新定义了自己的在行业的核心竞争。 在当前的互联网领域,大数据的应用已十分广泛,尤其以企业为主,企业成为大数据应用的主体。大数据真能改变企业的运作方式吗答案毋庸置疑是肯定的。随着企业开始利用大数据,我们每天都会看到大数据新的奇妙的应用,帮助人们真正从中获益。大数据的应用已广泛深入我们生活的方方面面,涵盖医疗、交通、金融、教育、体育、零售等各行各业。 大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,并在此基础上作简单的梳理和分类。 一、大数据应用案例之:医疗行业 SetonHealthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。

决策树算法介绍

3.1 分类与决策树概述 3.1.1 分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是一个离散属性,它的取值是一个类别值,这种问题在数据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。

3.1.2 决策树的基本原理 1.构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷

款给该用户。这里的信用等级分析模型,就可以是一棵决策树。 在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={“优”,“良”,“差”}。 在决策树方法中,有两个基本的步骤。其一是构建决策树,其二是将决策树应用于数据库。大多数研究都集中在如何有效地构建决策树,而应用则相对比较简单。构建决策树算法比较多,在Clementine中提供了4种算法,包括C&RT、CHAID、QUEST和C5.0。采用其中的某种算法,输入训练数据集,就可以构造出一棵类似于图3.1所示的决策树。

大数据分析的应用和产品

大数据分析的应用和产品 大数据很火。2月18日,微软宣布投资三家中国云计算和大数据公司。2月19日,IBM宣布将与AT&T在大数据分析领域展开合作——AT&T计划贡献出一个全球可访问的移动网络,用来收集数据并将其发送至应用程序;IBM公司则主要致力于生产用于数据管理和分析的软件。 “读心术”、“未卜先知”,都是大数据分析头上的耀眼光环。不管你信不信,“数据”真的会说话。人们在互联网上的一切行为都会留下数据,而通过对这些数据的分析,就能够得到消费习惯、职业、喜好甚至性格等信息。在这些信息的基础上,政府可以治理交通,减少犯罪率,而企业则可以利用这些数据进行有针对性的营销,提升业绩。 虽然目前大数据分析还处于发展的初级阶段,要从海量的非结构性数据中提取出有用信息并不是一件容易的事儿,但是很多企业已经开始利用大数据分析并推出了相关的应用和产品。大数据分析究竟能做什么?大数据分析又正在做什么?让我们一起来看看吧! 洞察“人类大迁徙” “春运”,被誉为人类历史上规模最大、有周期性的人类大迁徙。过去,我们只是粗略地知道在40天左右的时间里,有几十亿人次的人口流动。现在,随着大数据时代的到来,我们可以描绘出能够揭露更多细节的“迁徙地图”。 2014年的春运,央视首次推出了“据说春运”特别节目,基于“百度迁徙”提供的可视化大数据服务,实时播报国内春节人口的迁徙情况,例如最热门的迁出城市,最热门的迁入城市等等。尽管采用的是大数据这一当前最时髦的科技手段,但浅显易懂的“迁徙地图”,还是几乎让每个老百姓都看得明白。 那么,这张“迁徙地图”是如何绘制的呢?原理上其实并不复杂。目前,几乎每个中国人都拥有一部手机,而每部手机每一天基本上都会产生3次与位置相关的数据:既包括来自基站的数据,也包括用户在使用定位、导航等与位置相关服务时产生的数据。因此,只要调

大数据分析与应用

《应用统计学系列教材·大数据分析:方法与应用》可用做统计学、管理学、计算机科学等专业进行数据挖掘、机器学习、人工智能等相关课程的本科高年级、研究生教材或教学参考书。 目录 第1章大数据分析概述 1.1大数据概述 1.1.1什么是大数据 1.1.2数据、信息与认知 1.1.3数据管理与数据库 1.1.4数据仓库 1.1.5数据挖掘的内涵和基本特征1.2数据挖掘的产生与功能 1.2.1数据挖掘的历史 1.2.2数据挖掘的功能 1.3数据挖掘与相关领域之间的关系1.3.1数据挖掘与机器学习 1.3.2数据挖掘与数据仓库 1.3.3数据挖掘与统计学 1.3.4数据挖掘与智能决策 1.3.5数据挖掘与云计算 1.4大数据研究方法 1.5讨论题目 1.6推荐阅读 第2章数据挖掘流程 2.1数据挖掘流程概述 2.1.1问题识别 2.1.2数据理解 2.1.3数据准备 2.1.4建立模型 2.1.5模型评价 2.1.6部署应用 2.2离群点发现 2.2.1基于统计的离群点检测 2.2.2基于距离的离群点检测 2.2.3局部离群点算法 2.3不平衡数据级联算法 2.4讨论题目 2.5推荐阅读 第3章有指导的学习 3.1有指导的学习概述3.2K—近邻 3.3决策树 3.3.1决策树的基本概念 3.3.2分类回归树 3.3.3决策树的剪枝 3.4提升方法 3.5随机森林树 3.5.1随机森林树算法的定义 3.5.2如何确定随机森林树算法中树的节点分裂变量 3.5.3随机森林树的回归算法 3.6人工神经网络 3.6.1人工神经网络基本概念 3.6.2感知器算法 3.6.3LMS算法 3.6.4反向传播算法 3.6.5神经网络相关问题讨论 3.7支持向量机 3.7.1最大边距分类 3.7.2支持向量机问题的求解 3.7.3支持向量机的核方法 3.8多元自适应回归样条 3.9讨论题目 3.10推荐阅读 第4章无指导的学习 4.1关联规则 4.1.1静态关联规则算法Apriori算法 4.1.2动态关联规则算法Carma算法 4.1.3序列规则挖掘算法 4.2聚类分析 4.2.1聚类分析的含义及作用 4.2.2距离的定义 4.2.3系统层次聚类法 4.2.4K—均值算法 4.2.5BIRCH算法 4.2.6基于密度的聚类算法 4.3基于预测强度的聚类方法 4.3.1预测强度 4.3.2预测强度方法的应用 4.3.3案例分析 4.4聚类问题的变量选择 4.4.1高斯成对罚模型聚类

机器学习 决策树(ID3)算法及案例

机器学习--决策树(ID3)算法及案例 1基本原理 决策树是一个预测模型。它代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,每个分支路径代表某个可能的属性值,每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。一般情况下,决策树由决策结点、分支路径和叶结点组成。在选择哪个属性作为结点的时候,采用信息论原理,计算信息增益,获得最大信息增益的属性就是最好的选择。信息增益是指原有数据集的熵减去按某个属性分类后数据集的熵所得的差值。然后采用递归的原则处理数据集,并得到了我们需要的决策树。 2算法流程 检测数据集中的每个子项是否属于同一分类: If是,则返回类别标签; Else 计算信息增益,寻找划分数据集的最好特 征 划分数据数据集 创建分支节点(叶结点或决策结点)

for每个划分的子集 递归调用,并增加返回结果 到分支节点中 return分支结点 算法的基本思想可以概括为: 1)树以代表训练样本的根结点开始。 2)如果样本都在同一个类.则该结点成为树叶,并记录该类。 3)否则,算法选择最有分类能力的属性作为决策树的当前结点. 4)根据当前决策结点属性取值的不同,将训练样本根据该属性的值分为若干子集,每个取值形成一个分枝,有几个取值形成几个分枝。匀针对上一步得到的一个子集,重复进行先前步骤,递归形成每个划分样本上的决策树。一旦一个属性只出现在一个结点上,就不必在该结点的任何后代考虑它,直接标记类别。 5)递归划分步骤仅当下列条件之一成立时停止: ①给定结点的所有样本属于同一类。 ②没有剩余属性可以用来进一步划分样本.在这种情况下.使用多数表决,将给定的结点转换成树叶,并以样本中元组个数最多的类别作为类别标记,同时也可以存放该结点样本的类别分布[这个主要可以用来剪枝]。 ③如果某一分枝tc,没有满足该分支中已有分类的样本,则以样本的多数类生成叶子节点。 算法中2)步所指的最优分类能力的属性。这个属性的选择是本算法种的关键点,分裂属性的选择直接关系到此算法的优劣。 一般来说可以用比较信息增益和信息增益率的方式来进行。 其中信息增益的概念又会牵扯出熵的概念。熵的概念是香农在研究信息量方面的提出的。它的计算公式是:

项目6决策树和决策规则

项目6 决策树和决策规则 6.1 实验目的 (1)掌握使用决策树进行分类决策的操作方法,并学会对结果进行解释、提取合理的分类规则; (2)理解决策树模型相对于其他预测模型(如神经网络)的优势所在,如它的决策模型可以为自然语言构成的规则或为逻辑陈述; (3)了解较为流行的决策树模型的不同特征,如CHAID和CART; (4)了解决策树模型中的替代规则对于处理缺失值的优势,掌握操作方法; (5)学会使用决策树模型进行变量选择。 6.2 实验原理 数据库内容丰富,蕴藏大量信息,可以用来作出智能的决策。分类和预测是数据分析的两种形式,可以用来提取描述重要数据类的模型或预测未来的数据趋势。分类是预测分类标号,而预测建立连续值函数模型。在本章中,我们将学习利用决策树进行数据分类的技术。 决策树是一个类似于流程图的树结构,其中每个内部节点表示在一个属性上的测试,每个分枝代表一个测试输出,而每个树叶节点代表类或类分布。树的最顶层节点是根节点。有些决策树算法只产生二叉树,而另一些决策树算法可以产生非二叉树。 对于一个需要进行分类的数据,我们可以利用该数据的各个属性的值,在决策树的包括根节点在内的节点上对相应的数据的属性进行测试,这样就形成了一条由顶到底的或从根节点到某个叶子节点的路径。该数据所到达的叶子节点给出了该数据所应归属的类。 决策树容易转换成为分类规则。我们可以根据需要分类的数据在决策树中所经过的所有可能的路径得到一组分类规则,并利用分类规则对数据进行分类。 决策树的构造不需要任何领域知识或参数设置,因此适合于探测式知识发现。决策树可以处理高维数据。获取的知识用树的形式表示是直观的,并且容易理解。 决策树建立时,许多分枝可能反映的是训练数据中的噪声或离群点。树剪枝试图识别并剪去这种分枝,以提高对未知数据分类的准确性。 6.2.1 决策树归纳 目前比较有名的决策树算法大概有上百种,其中,最有影响的当属ID3、C4.5、C5.0,

大数据处理技术发展现状及其应用展望

. ,.. 大数据处理技术发展现状及其应用展望 一、定义 著名的管理咨询公司麦肯锡曾预测到:“数据,已经渗透到当今每一个行业和业务职能领域, 成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者 盈余浪潮的到来。”这是大数据的最早定义。业界(于2012年,高德纳修改了对大数据的定义)将大数据的特征归纳为4个“V”(量Volume,多样Variety,价值Value,速Velocity),或者说特点有四个层面:第一,海量数据量。大数据计量单位至少是PB级别;第二,数据 类型繁多。比如,网络日志、视频、图片、地理位置信息等等都是囊括进来。第三,商业价 值高。第四,处理速度快。 在大数据时代,三分技术,七分数据,得数据者得天下。在大数据时代已经到来的时候要用 大数据思维去发掘大数据的潜在价值。Google利用人们的搜索记录挖掘数据二次利用价值, 比如预测某地流感爆发的趋势;Amazon利用用户的购买和浏览历史数据进行有针对性的书 籍购买推荐,以此有效提升销售量;Farecast利用过去十年所有的航线机票价格打折数据, 来预测用户购买机票的时机是否合适。 大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具 有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 二、大数据的技术 技术是大数据价值体现的手段和前进的基石。我将分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。 2.1、云技术 大数据常和云计算联系到一起,因为实时的大型数据集分析需要分布式处理框架来向数十、 数百或甚至数万的电脑分配工作。可以说,云计算充当了工业革命时期的发动机的角色,而大数据则是电。 云计算思想的起源是麦卡锡在上世纪60年代提出的:把计算能力作为一种像水和电一样的 公用事业提供给用户。如今,在Google、Amazon、Facebook等一批互联网企业引领下,一 种行之有效的模式出现了:云计算提供基础架构平台,大数据应用运行在这个平台上。 业内是这么形容两者的关系:没有大数据的信息积淀,则云计算的计算能力再强大,也难以找到用武之地;没有云计算的处理能力,则大数据的信息积淀再丰富,也终究只是镜花水月。 那么大数据到底需要哪些云计算技术呢?这里暂且列举一些,比如虚拟化技术,分布式处理技术,海量数据的存储和管理技术,NoSQL、实时流数据处理、智能分析技术(类似模式识

决策树算法的原理与应用

决策树算法的原理与应用 摘要:在机器学习与大数据飞速发展的21世纪,各种不同的算法成为了推动发 展的基石.而作为十大经典算法之一的决策树算法是机器学习中十分重要的一种算法。本文对决策树算法的原理,发展历程以及在现实生活中的基本应用进行介绍,并突出说明了决策树算法所涉及的几种核心技术和几种具有代表性的算法模式。 关键词:机器学习算法决策树 1.决策树算法介绍 1.1算法原理简介 决策树模型是一种用于对数据集进行分类的树形结构。决策树类似于数据结 构中的树型结构,主要是有节点和连接节点的边两种结构组成。节点又分为内部 节点和叶节点。内部节点表示一个特征或属性, 叶节点表示一个类. 决策树(Decision Tree),又称为判定树, 是一种以树结构(包括二叉树和多叉树)形式表达的 预测分析模型,决策树算法被评为十大经典机器学习算法之一[1]。 1.2 发展历程 决策树方法产生于上世纪中旬,到了1975年由J Ross Quinlan提出了ID3算法,作为第一种分类算法模型,在很多数据集上有不错的表现。随着ID3算法的 不断发展,1993年J Ross Quinlan提出C4.5算法,算法对于缺失值补充、树型结 构剪枝等方面作了较大改进,使得算法能够更好的处理分类和回归问题。决策树 算法的发展同时也离不开信息论研究的深入,香农提出的信息熵概念,为ID3算 法的核心,信息增益奠定了基础。1984年,Breiman提出了分类回归树算法,使 用Gini系数代替了信息熵,并且利用数据来对树模型不断进行优化[2]。 2.决策树算法的核心 2.1数据增益 香农在信息论方面的研究,提出了以信息熵来表示事情的不确定性。在数据 均匀分布的情况下,熵越大代表事物的越不确定。在ID3算法中,使用信息熵作 为判断依据,在建树的过程中,选定某个特征对数据集进行分类后,数据集分类 前后信息熵的变化就叫作信息增益,如果使用多个特征对数据集分别进行分类时,信息增益可以衡量特征是否有利于算法对数据集进行分类,从而选择最优的分类 方式建树。 如果一个随机变量X的可以取值为Xi(i=1…n),那么对于变量X来说,它 的熵就是 在得到基尼指数增益之后,选择基尼指数增益最大的特征来作为当前步骤的 分类依据,在之后的分类中重复迭代使用这一方法来实现模型的构造。 3. 决策树算法的优缺点 3.1决策树算法的优点[3] (1)计算速度快,算法简单,分类依据清晰 (2)在处理数据时,有很高的准确度,同时分类结果清晰,步骤明朗。 (3)可以处理连续和种类字段 (4)适合高维数据 3.2决策树算法的缺点 (1)决策树算法可以帮助使用者创建复杂的树,但是在训练的过程中,如

大数据应用与案例分析

大数据应用与案例分析 当下,”大数据”几乎是每个IT人都在谈论的一个词汇,不单单是时代发展的趋势,也是革命技术的创新。大数据对于行业的用户也越来越重要。掌握了核心数据,不单单可以进行智能化的决策,还可以在竞争激烈的行业当中脱颖而出,所以对于大数据的战略布局让越来越多的企业引起了重视,并重新定义了自己的在行业的核心竞争。 在当前的互联网领域,大数据的应用已十分广泛,尤其以企业为主,企业成为大数据应用的主体。大数据真能改变企业的运作方式吗?答案毋庸置疑是肯定的。随着企业开始利用大数据,我们每天都会看到大数据新的奇妙的应用,帮助人们真正从中获益。大数据的应用已广泛深入我们生活的方方面面,涵盖医疗、交通、金融、教育、体育、零售等各行各业。 大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,并在此基础上作简单的梳理和分类。

一、大数据应用案例之:医疗行业 Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。 它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。 二、大数据应用案例之:能源行业 智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。

相关文档
最新文档