用PASCA及NH3-TPD法表征AL2O3载体表面酸度

用PASCA及NH3-TPD法表征AL2O3载体表面酸度
用PASCA及NH3-TPD法表征AL2O3载体表面酸度

氧化铝的制备方法

氧化铝的制备方法 1氧化铝的制备 硝酸铝分析纯天津市大茂化学试剂厂 异丙醇铝分析纯天津市大茂化学试剂厂 尿素分析纯天津市大茂化学试剂厂 硝酸分析纯广州化学试剂厂 1.1氨水沉淀法 氨水(2mol/L)用量筒量取150ml65%氨水注入1000ml的容量瓶,用去离子水标定至刻度。 硝酸(1:1)用量筒量取浓硝酸100ml注入200ml容量瓶中,用去离子水标定至刻度。 利用酸法即Al(NO3)3与氨水反应来制取拟薄水铝石。以防止引入其他金属离子,而且可以通过加热的方法去除溶液中的NH4+和NO3-离子。 实验步骤: 1)称取18.75 g(约0.05 mol)的硝酸铝溶于50ml去离子水中,加热搅拌使其溶解成透明Al(NO3)3溶液。 2)室温下用2mol/L的氨水进行滴定同时进行剧烈搅拌,直至pH值8.5后停止滴定并放慢脚板速度。 3)在室温条件下(搅拌)老化2小时。 滴定前,Al(NO3)3溶液的pH值1.8左右。滴定过程中,在pH值4.5时溶液黏度突然增大,并产生大量Al(OH)3半透明沉淀,继续滴定胶体黏度下降。pH值由1.8升至4.5共消耗氨水(2mol/L)约36毫升,由4.5至8.5消耗氨水约9毫升。 1.2均匀沉淀法 本步骤的目的是将溶液中的Al(OH)3微粒以沉淀的形式分离出来。碱性沉淀剂的直接加入难免会造成溶液中局部沉淀剂瞬时过量的现象,致使生成的沉淀粒子形态和尺寸均有较大区别,从而影响焙烧后氧化铝载体的性状。不同于其他沉淀剂的添加,尿素均相沉淀法通过尿素在加热过程中均匀缓慢的释放氨水从整体上提高pH值,克服了液相直接接触造成的瞬时局部过量的不足,从而获得尺寸均匀、分散性好的Al(OH)3沉淀。 实验步骤: 1)称取25 g(约理论用量4倍)的尿素溶于25ml去离子水中,将尿素溶液注入上一步生成的胶体溶液。 2)开始通过水浴加热,并不停搅拌,于90℃恒温加热2小时。加热在开始的一段时间内,pH值始终在1以下,升至约40~50℃左右,原本半透明的胶体逐渐变清。待到温度升至90℃时,由搅拌子中心漩涡出有气泡产生,溶液开始变混浊。pH值升至7以后,溶液基本呈乳白色,直至加热结束。 3)在室温条件下(搅拌)老化2小时。 1.3 溶胶凝胶异丙醇铝水解法 本步骤的目用溶胶凝胶法合成介孔氧化铝,比表面积大, 表面不同的电势使金属离子更容易负载, 在催化领域中具有重要的应用价值,其性能明显优于传统的氧化铝。采用硝酸和异丙醇铝来合成有序介孔氧化铝。 硝酸(0.05mol/L)用量筒量取浓硝酸0.67ml注入200ml容量瓶中,用去离子水标定

拜耳法氧化铝生产中的有机物

拜耳法氧化铝生产中的有机物 有机物的积累和危害是大多数拜耳法氧化铝厂必须面对的问题。溶液中有机物含量较高时,其所产生的负面影响往往是多方面的,工厂的产量、产品质量及其它技术经济指标将因此受到严重影响。文献[1]报道,仅澳大利亚每年由于有机物造成的氧化铝产量损失就达130万吨。某些有机物的存在使生产砂状氧化铝变得困难。因此,有机物问题成为氧化铝生产中的主要研究方向之一。国外就拜耳法生产中有机物的行为、对生产过程的影响及其排除方法等进行了长期的、大量的研究,取得了重要进展。 我国大多数氧化铝厂采用混联法或烧结法生产,有机物的影响很小或完全不存在。平果铝业公司氧化铝厂是我国目前唯一的采用纯拜耳法生产的工厂,投产较晚,原矿中的有机物含量也较低,有机物的影响需继续观察和研究。我国在“九五”期间进行的中、低品位铝土矿选矿研究取得了重大的进展,但除原矿中部分有机物进入精矿外,还有一定数量的浮选药剂被带入精矿,这种浮选药剂在拜耳法生产中的行为及其影响如何,尚未见诸文献报道,非常值得重视。 一、拜耳法溶液中的有机物 拜耳法溶液中的有机物主要来自铝土矿,絮凝剂、消泡剂、脱水剂等添加剂也会带入少量有机物。但据文献报道,其数量和影响均较小。铝土矿中的有机碳含量通常为0.1-0.3%,但亦可低至0.03%或高达0.6%(某些地表矿)。热带铝土矿中有机碳含量较高,一般为0.2~0.4%,而一水硬铝石型铝土矿中

的含量则较低,通常为0.1%。南美、非洲、澳大利亚铝土矿中的有机物含量较高,而欧洲、俄罗斯和中国的大多数铝土矿有机物含量较低。 铝土矿中的有机物分为腐殖质和沥青两种[2]。腐殖质主要成分为木质素转变的产物—腐殖酸。腐殖质成分复杂,其平均元素组成为,%:58%C,36%O2,4%H2,2%N2及其它杂质。腐殖质易溶于碱液。沥青中的C和H含量比腐殖质中的高,实际上不溶于碱液。据文献[3],铝土矿高压溶出时,腐殖质几乎全部溶入溶液,而沥青的溶出率不高于10%,在赤泥浆液稀释及沉降分离过程中,又全部析出进入赤泥。Jose G. Pulperiro等[4]报道,在铝土矿溶出条件下,60-90%的腐殖质溶解于强苛性碱溶液中,生成腐殖酸钠。不溶解的腐殖质是由于被铝土矿中不溶的无机物结合或吸附。 虽然原矿中有机物的含量一般不高,在铝土矿溶出时也非全部进入溶液,但由于种分母液与洗液是循环的,拜耳法流程中的有机物会逐渐积累,直至达到进出平衡为止。溶液中有机物的平衡浓度主要取决于铝土矿中有机物的含量及其组成,也与溶出条件等有关。一般情况下,拜耳溶液中有机碳含量为7-15g/L,在极端情况下可达25g/L[5]。文献[6]报道,处理热带铝土矿的德国施塔德氧化铝厂的溶出液中,有机碳含量甚至高达34g/L。 Β. Α. Зинченко[7]早期所作的乌拉尔氧化铝厂有机物的平衡表明:随铝土矿(一水硬铝石型)进入流程的有机物占全部有机物的88.5%,其余11.5%来自面粉(当时用作赤泥絮凝剂),而赤泥排走的有机物占全部有机物总量的83%,仅有17%进入溶液。进入溶液中的有机物主要随苏打结晶(据有关资料,苏打结晶中有机碳含量达0.5~1.5%)和氢氧化铝排出,二者分别占原矿中有机物总量的5.7%和4.5%,按对进入溶液中的有机物总量计算,则分别占33.5%和26.5%,其余则随苏打苛化后的石灰渣、蒸发母液等

牛乳酸度测定

食品分析与检测实训指导手册 专业班级 食品营养与检测091 姓 名 朱思林 学 号 20097101132 任务一 滴定法测定牛乳的酸度 【任务描述】 本任务主要为测定实验室提供的牛奶样品的酸度。整个任务过程主要包含基准物质的正确称量、碱标准溶液的配制,以及用酸碱滴定法测定产品中酸的含量;并通过多个样品的检验,对所得数据进行方差分析、误差分析、Q 检验等分析。 P 任务策划部分 【本任务应掌握知识点及技能】 相关知识点 重点掌握技能 以任务为导向 PDCA 教学过程控制 比较教学法 -课程改革专用

食品酸度的概念及意义 不同称量法之间的异同 滴定基准物的概念及应用 酸碱滴定原理 数据记录与处理,给出评价报告、Q 检验、误差等概念天平时减量法的操作方法酸、碱标准溶液的配制方法碱式滴定管的使用方法 滴定终点判断 误差、标准差的计算方法Q检验的方法 相关知识点 1、食品酸度的概念及意义 食品的酸度可分为:总酸度、有效酸、挥发酸度和牛乳酸度 ①总酸度:指食品中所有酸性成分的总量.它包括未离解的酸的浓度和已离解的酸的浓度,其大小可用滴定法来确定,故总酸度又称为"可滴定酸度” ②牛乳酸度:牛乳有两种酸度 a.外表酸度:又叫固有酸度(潜在酸度),是指刚挤出来的新鲜牛乳本身所具有的酸度,是由磷酸、柠檬酸、酪蛋白、白蛋白和二氧化碳等所引起的,外表酸度在新鲜牛乳中占0.15~0.18%(以乳酸计) b.真实酸度:也叫发酵酸度,是指牛乳放置过程中,在乳酸菌作用下乳糖发酵产生了乳酸而升高的那部分酸度,若牛乳中含酸量超过0.5~0.2%,即表明有乳酸存在,因此习惯上把0.2%以下含酸量的牛乳称为新鲜牛乳,若达到0.3%就有酸味,0.6%就凝固了 2、不同称量法之间的异同 ①直接称量法:适用于称量洁净干燥的器皿、棒状或块状的金属及不易潮解或升华的整块固体样式 ②固体称量法(增量):适用于不易吸湿、在空气中性质稳定的粉末状物质。在化学分析实验中,当需要用直接配制法配制指定浓度的标准溶液时通常用此法称取基准物质 ③减量称量法:适用于易吸湿、易氧化和易与CO?反应的物质。称量时不必调整零点,称量快速准确。在分析化学实验中,常用来称取基准物和待测样品,是一种最常用的称量方法,但此法不宜称取指定质量的样品 3、滴定基准物的概念及应用 基准物的概念:能用于直接配制或标定标准溶液的纯物质 基准物质通常都含有不同量的水,使用前需作适当的干燥处理。

氧化铝催化剂

综述 1荧光粉原料的氧化铝的制备 氧化铝是固相法合成铝酸盐基质荧光粉,如:PDP蓝色和绿色荧光粉的主要原料,其物理特性不仅直接影响荧光粉的颗粒及形貌,而且还对荧光粉的光学性能、稳定性及光衰等特性影响很大。作为荧光粉原料的氧化铝,除了要求其纯度高外,还要求其具有结晶良好、粒径较小且分布均匀、颗粒形貌较好、比表面积小等特性。目前,该类氧化铝主要由硫酸铝铵或碳酸铝铵热分解法、改良的#$%$& 法或醇盐水解等方法制备,但生产出来的氧化铝粉一般为无定型硬团聚颗粒,粒径分布宽、比表面积过大且反应活性低,以此为原料烧制的荧光粉颗粒大小和形貌不易控制,而且存在发光效率较差、光衰性能不佳等问题。因此,改善氧化铝的粒径及形貌等特性,制备出优良的荧光粉原料,对提高铝酸盐基质荧光粉的品质具有重要意义。 采用化学沉淀法制备碳酸铝铵前驱体,高温煅烧分解制得了α-Al2O3。通过严格控制沉淀条件,获得了结晶碳酸铝铵沉淀,成功克服了常规制备方法中容易产生的胶状沉淀现象,煅烧后得到超细分散的α-Al2O3粉末。同时,通过添加晶体生长促进剂的方法,成功控制了氧化铝颗粒的大小和形貌。通过调节晶体生长促进剂的加入量,获得了从300nm直至8μm以上近似六角形的α-Al2O3分散颗粒,可以满足不同粒径荧光粉的要求。 2高比表面积窄孔分布氧化铝的制备 氧化铝用作催化剂和催化剂载体,因其具有特殊的结构和优良的性能,使之在许多催化领域,特别是在石油的催化转化过程中得到了广泛的应用. 因此,人们对氧化铝的制备、结构和性能等方面的研究也日益深入. 在石油的催化转化方面,近年来由于重渣油加工技术的开发,对加工过程中的催化剂载体氧化铝又提出了许多新的要求. 例如,渣油的加氢脱硫和脱金属要求适中的表面积及一定比例的大孔和小孔分布;加氢脱氮催化剂则要求能均匀负载高金属含量的高比表面积、大孔体积及适当比例的中、小孔结构,并提出集中孔的观点. 但是,如何获得这种性能好又有实用价值的氧化铝载体,研究报道较少. 本文采用pH 摆动法制备了这种氧化铝,考察了沉淀剂、沉淀温度及沉淀时酸侧pH值对氧化铝物性的影响,并对pH 摆动法与等pH 沉淀法的结果进行了比较. 氧化铝的孔结构决定于其前身拟薄水铝石的形貌、粒子大小和聚集状态. 因此,要获得孔径相对集中的氧化铝载体,沉淀的拟薄水铝石粒子的大小必须均匀. 然而,在传统的制备

_氧化铝载体合成的研究

第32卷第6期辽 宁 化 工Vol.32,No.6 2003年6月Liaoning Chemical Industry June,2003 -氧化铝载体合成的研究 彭绍忠,王继锋 (抚顺石油化工研究院,辽宁抚顺113001) 摘 要: 对以氯化铝和氨水为原料制备氧化铝的过程进行了考察,着重考察中和的温度、pH值、 反应物浓度和老化条件对 -Al 2O 3 对氧化铝孔结构的影响。在试验范围内,氯化铝浓度对氧化铝孔容 和比表面积影响不大,提高中和温度,氧化铝的孔容和比表面积增加高,高p H有利于提高孔容和比表面积;老化时间和温度对氧化铝孔结构没有明显的影响。 关 键 词: 氧化铝;中和;载体 中图分类号: TQ426.65 文献标识码: A 文章编号: 10040935(2003)06024103 活性氧化铝是最重要的催化剂载体之一,在石油加工催化剂领域应用广泛。迄今已知氧化铝有8种晶态,其中 -Al2O3具有较高的孔容、比表面积和热稳定性,因此得到广泛的应用。催化剂载体的重要性质之一是它的孔结构特征,它的孔结构决定催化剂的孔结构。对催化剂载体孔结构的要求首先是提供尽可能大的反应接触面积,提高活性组分的分散度,其次是孔径,孔径过大,载体的比表面积就会减小,孔径过小,给反应物的扩散带来不利的影响,从而影响催化剂的活性。因此,孔结构适宜的 -Al2O3成为催化剂开发的重要课题之一。针对这个问题,抚顺石油化工研究院开展 -Al2O3合成的研究工作。 -Al2O3可以通过拟薄水铝石脱水制备,拟薄水铝石合成方法主要有以下3种,即铝盐与氨水中和、强酸或强酸的铝盐中和铝酸钠以及烷基铝水解。强酸或强酸的铝盐中和铝酸钠制备氧化铝,生产效率高,环境污染小,但是用于中和的2种物料是强酸和强碱,因此反应体系稳定性差,容易造成产品质量波动,当局部碱性过强时,易生成三水氧化铝;烷基铝水解制备氧化铝可以得到纯度非常高的氧化铝,但是该方法生产的氧化铝成本较高;以氯化铝和氨水为原料,产品质量稳定,杂质脱出容易,不易生成三水氧化铝,在相同制备条件下,晶粒完整、晶粒较大,因此本文针对以氯化铝和氨水为原料制备氧化铝的过程进行了考察。利用中和方法制备氧化铝,由于反应体系非常复杂,反应种类繁多,在制备过程中任何环节发生细微的变化都可能影响最终产品的结构,可以说几乎氧化铝制备的各个方面因素都或多或少地影响氧化铝的孔结构。影响氧化铝孔结构的主要因素有:反应物浓度、中和的温度、pH值、以及老化条件等,本文着重论述这几个因素对 -Al2O3孔结构的影响。 1 实 验 1.1 试剂和仪器 氯化铝溶液(工业用氯化铝溶液配制);氨水(分析纯,沈阳化学试剂厂);孔结构采用美国ASAP2400低温氮吸附仪测定。 1.2 试验方法 采用连续罐成胶方式中和,制备主要流程如下: 氨 水 氯化铝溶液 连续成胶老化压滤洗涤 干燥粉碎ALO(OH)干胶粉 其中,助剂在中和过程中加入AlO(OH)干胶粉焙烧后分析孔结构。 收稿日期: 2003-03-17 作者简介: 彭绍忠(1969-),男,工程师。

拜耳法生产氧化铝的工艺流程#(精选.)

1拜耳法生产氧化铝的工艺流程概述 拜耳法系奥地利拜耳(K.J.Bayer)于 1888年发明。其原理是用苛性钠(NaOH)溶液加温溶出铝土矿中的氧化铝,得到铝酸钠溶液。溶液与残渣(赤泥)分离后,降低温度,加入氢氧化铝作晶种,经长时间搅拌,铝酸钠分解析出氢氧化铝,洗净,并在950~1200℃温度下煅烧,便得氧化铝成品。析出氢氧化铝后的溶液称为母液,蒸发浓缩后循环使用。 拜耳法的简要化学反应如下: 由于三水铝石、一水软铝石和一水硬铝石的结晶构造不同,它们在苛性钠溶液中的溶解性能有很大差异,所以要提供不同的溶出条件,主要是不同的溶出温度。三水铝石型铝土矿可在125~140℃下溶出,一水硬铝石型铝土矿则要在240~260℃并添加石灰(3~7%)的条件下溶出。 现代拜耳法的主要进展在于:①设备的大型化和连续操作; ②生产过程的自动化;③节省能量,例如高压强化溶出和流态化焙烧;④生产砂状氧化铝以满足铝电解和烟气干式净化的需要。拜耳法的工艺流程见图1。

拜耳法的优点主要是流程简单、投资省和能耗较低,最低者每吨氧化铝的能耗仅3×106千卡左右,碱耗一般为100公斤左右(以Na2CO3计)。 拜耳法生产的经济效果决定于铝土矿的质量,主要是矿石中的SiO2含量,通常以矿石的铝硅比,即矿石中的Al2O3与SiO2含量的重量比来表示。因为在拜耳法的溶出过程中,SiO2转变成方钠石型的水合铝硅酸钠(Na2O·Al2O3·1.7SiO2·nH2O),随同赤泥排出。矿石中每公斤SiO2大约要造成1公斤Al2O3和0.8公斤NaOH的损失。铝土矿的铝硅比越低,拜耳法的经济效果越差。 2 主要生产原理及过程 2.1 预脱硅与铝硅比的提高 拜耳法生产的经济效果决定于铝土矿的质量,主要是矿石中的SiO2含量,通常以矿石的铝硅比,即矿石中的Al2O3与SiO2

烧结法

烧结法生产氧化铝的基本原理 烧结法生产氧化铝的基本原理是将铝土矿与一定量的纯碱、石灰(或石灰石)配成炉料在高温下进行烧结,使氧化硅与石灰化合成不溶于水的原硅酸钙2CaO·SiO2,氧化铝与纯碱化合成可溶于水的固体铝酸钠Na2O·Al2O3、而氧化铁与纯碱化合成可以水解的铁酸钠Na2O·Fe2O3,将烧结产物(熟料)用稀碱溶液溶出时Na2O·Al2O3便进入溶液,Na2O·Fe2O3水解放出碱,氧化铁以水合物与原硅酸钙一道进入赤泥。再用二氧化碳分解铝酸钠溶液便可以析出氢氧化铝。经过焙烧后产出氧化铝。分离氢氧化铝后的母液成为碳分母液(主要成分为Na2CO3),经蒸发后返回配料。 烧结法生产氧化铝工序 ?生料浆的制备 ?熟料烧结 ?熟料溶出 ?铝酸钠溶液脱硅 ?碳酸钠分解 ?氢氧化铝分离、洗涤 ?氢氧化铝焙烧 ?碳分母液蒸发 碱比是指生料浆中氧化钠与氧化铝和氧化铁的分子比。 ?钙比是指生料浆中氧化钙与氧化硅的分 子比。 ?铁铝比是指生料浆中氧化铁和氧化铝的 分子比。 熟料烧结目的 ?烧结过程的目的就是要使调配合格后的 生料浆在回转窑中高温烧结,使生料各成 分互相反应。使其中的Al2O3尽可能转变 成易溶于水或稀碱溶液的Na2O·Al2O3, 而使Fe2O3转变成易水解的 Na2O·Fe2O3,SiO2等杂质转变为不溶于 水或稀碱溶液的2CaO·SiO2,并形成具有 一定容积密度和孔隙率、可磨性好的熟 料,以便在溶出过程中将有用成份与有害 杂质较好的进行分离,最大限度提取氧化 铝和回收碱。 熟料溶出的主要目的 ?熟料溶出的目的就是将熟料中的A12O3 和Na2O最大限度地溶解于溶液中,制取 铝酸钠溶液(粗液),而熟料中的原硅酸 钙转入固相赤泥中。实现有用成份氧化钠 和氧化铝与杂质进行分离,并为赤泥分离 洗涤创造良好的条件。混联法碱循环, 充分说明了混联法工艺特点和生产组织 状况。A、混联法工艺是密闭型的,所 以拜耳……烧结两系统间生产能力有一 定制约。就是说,混联法的主要联合点: 拜耳法产出的赤泥,必须为烧结法所平衡 (消耗);烧结法向拜耳法供应的种分母液 必须满足拜耳法系统的碱输出(含损失)需 要,混联法才能平衡。其生产波动的缓冲 靠熟料仓、种分槽和碱赤泥浆贮槽。从这 方面看,混联法同串联、并联联合法一样, 烧结法从属于拜耳法。 B、烧结法有完整的生产流程,有独立的碱循环系统,除对拜耳法系统有从属的一面外,尚有独立的一面。就是说,当烧结法生产能力有富余时,可以加大其流量,从而扩大其碱循环量,获得比与拜耳法平衡的更多的氧化铝产量。这一点,不同于串联、并联联合法。混联法命名之根据,就在于此。 C、原则上,拜耳法流程不能独立,受烧结法生产能力,即烧结法向拜耳法补碱量和烧结法本身碱循环量的限制。就是说,当烧结法生产能力不足时,拜耳法富余的生产能力将不能充分发挥,如果以外排赤泥来挖掘其富余能力,只有在拜耳法以烧碱补充碱输出量,才能不破坏混联法的碱平衡关系。从混联法碱平衡特点出发,发挥其综合生产能力的途径是选择与碱循环有关的主工技术指标。主要技术指标的选择,要考虑矿石A/S,拜耳……烧结两大系统设备能力,经综合平衡来确定。 混联法碱循环工艺流程 碱法生产氧化铝存在一个碱循环问题。所谓碱循环,实际上就是氧化铝生产中液量(碱、水)的循环。生产方法不同,碱循环方式不同,循环碱量与 生产规模成正比。 混联法工艺碱循环最为复杂。它依靠补充纯碱来弥补生产过程中碱的化学、机械损失,保持多个(主要是两个)碱循环系统的平衡,周而复始,溶出一批一批铝土矿,获得氧化铝,排出赤泥。混联法两个主要的碱循环系统是:

氧化铝的生产方法

氧化铝的生产工艺流程 氧化铝的生产工艺流程从矿石提取氧化铝有多种方法,例如:拜耳法、碱石灰烧结法、拜耳-烧结联合法等。拜耳法一直是生产氧化铝的主要方法,其产量约占全世界氧化铝总产量的95%左右。70年代以来,对酸法的研究已有较大进展,但尚未在工业上应用。 拜耳法 系奥地利拜耳(K.J.Bayer)于1888年发明。其原理是用苛性钠(NaOH)溶液加温溶出铝土矿中的氧化铝,得到铝酸钠溶液。溶液与残渣(赤泥)分离后,降低温度,加入氢氧化铝作晶种,经长时间搅拌,铝酸钠分解析出氢氧化铝,洗净,并在950~1200℃温度下煅烧,便得氧化铝成品。析出氢氧化铝后的溶液称为母液,蒸发浓缩后循环使用。拜耳法的简要化学反应如下: 由于三水铝石、一水软铝石和一水硬铝石的结晶构造不同,它们在苛性钠溶液中的溶解性能有很大差异,所以要提供不同的溶出条件,主要是不同的溶出温度。三水铝石型铝土矿可在125~140℃下溶出,一水硬铝石型铝土矿则要在240~260℃并添加石灰(3~7%)的条件下溶出。现代拜耳法的主要进展在于:①设备的大型化和连续操作;②生产过程的自动化;③节省能量,例如高压强化溶出和流态化焙烧;④生产砂状氧化铝以满足铝电解和烟气干式净化的需要。 拜耳法的工艺流程见图1。

拜耳法的优点主要是流程简单、投资省和能耗较低,最低者每吨氧化铝的能耗仅3×106千卡左右,碱耗一般为100公斤左右(以Na2CO3计)。拜耳法生产的经济效果决定于铝土矿的质量,主要是矿石中的SiO2含量,通常以矿石的铝硅比,即矿石中的Al2O3与SiO2含量的重量比来表示。因为在拜耳法的溶出过程中,SiO2转变成方钠石型的水合铝硅酸钠(Na2O·Al2O3·1.7SiO2·nH2O),随同赤泥排出。矿石中每公斤SiO2大约要造成1公斤Al2O3和0.8公斤NaOH的损失。铝土矿的铝硅比越低,拜耳法的经济效果越差。直到70年代后期,拜耳法所处理的铝土矿的铝硅比均大于7~8。由于高品位三水铝石型铝土矿资源逐渐减少,如何利用其他类型的低品位铝矿资源和节能新工艺等问题,已是研究、开发的重要方向。 碱石灰烧结法 适用于处理高硅的铝土矿,将铝土矿、碳酸钠和石灰按一定比例混合配料,在回转窑内烧结成由铝酸钠(Na2O·Al2O3)、铁酸钠(Na2O·Fe2O3、原硅酸钙(2CaO·SiO2)和钛酸钠(CaO·TiO2组成的熟料。然后用稀碱溶液溶出熟料中的铝酸钠。此时铁酸钠水解得到的NaOH也进入溶液。如果溶出条件控制适当,原硅酸钙就不会大量地与铝酸钠溶液发生反应,而与钛酸钙、Fe2O3·H2O 等组成赤泥排出。溶出熟料得到的铝酸钠溶液经过专门的脱硅过程,SiO2O形成水合铝硅酸钠(称为钠硅渣)或水化石榴石3CaO·Al2O3·xSiO2·(6-2x)H2O 沉淀(其中x≈0.1),而使溶液提纯。把CO2气体通入精制铝酸钠溶液,和加入晶种搅拌,得到氢氧化铝沉淀物和主要成分是碳酸钠的母液。氢氧化铝经煅烧成为氧化铝成品。水化石榴

牛奶酸度的测定

牛奶酸度的测定 方法原理: 牛奶的酸度取决于牛奶中乳酸含量和蛋白质的酸反应。目前使用电位滴定法,NaOH滴定至pH达到8.3时为滴定的终点值。此外,可滴定酸度,旋光(°D)或乳酸的百分比(%)表示。本实验中电位滴定法适用于任何类型的牛奶(全脂或脱脂等)。 仪器配置和附件: - TITREX中央模块 - 自动滴定管 - T9201独立分析平台或T9216标准自动进样器16位 -汉密尔顿pH复合电极 - Pt100温度传感器 - 80列打印机EPSON LX300+ 所需试剂: - 滴定剂:0.25 M氢氧化钠溶液 注意事项: - 在这个浓度进行滴定时的最佳取样量为50毫升(推荐)也可使用0.1 M 的NaOH溶液. - 滴定前需标定NaOH溶液浓度(使用基准物质邻苯二甲酸氢钾) 样品制备: 无需进行任何准前处理。准确量取50mL的牛奶至滴定容器中,在方法程序中设定“预搅拌”10秒,它重要的是测量的初始pH值,特别是对高脂肪含量的样品,建议将此时间增加为20秒或更多。 方法设定: 1、首先使用“新方法”,选择方法中的“终点”类型。 2、编写滴定管与滴定剂试剂等相关参数,然后“保存方法”。 3、使用“标定”的对pH电极进行校准,推荐使用两个缓冲液(pH为4.0和7.0)的自动校准。使用自动进样器可以完全自动执行此任务。 4、使用“加载方法”或选择“首选项”调用方法。 程序设定:

结果: 牛奶的酸度有以下几种表示方法: -°SH:其对应的定义为将100ml牛奶样品滴定至pH=8.3(正常范围ewin为6-8)终点时消耗的化钠溶液N/4(0.25M)的体积,有时也表示为滴定50ml 牛奶样品时的滴定体积 -°D:其对应的定义是将100ml牛奶样品滴定至pH=8.3(正常范围为14-18)终点时消耗的化钠溶液N/9(0.11M)的体积。 -乳酸的百分比,正常范围为0.14-0.18 以上几个参数的转换关系式为: 1 ° SH = 2.25 ° D = 0.0225 % a.l. 1° D = 0.444 ° SH = 0.01 % a.l. 注意: 在程序设定标题中所设定的一些参数,用户根据实际的操作和样品条件进行修改,从而提高分析的速度和精度。

氧化铝

氧化铝再生试验 活性氧化铝的应用范围很广,可用作催化剂、吸附剂和干燥剂等领域[1]。在蒽醌法生产双氧水过程中,活性氧化铝作为工作液的再生处理剂,其性能影响双氧水生产质量与成本。当使用一段时间后,氧化铝将失去活性,就必需更换。用完的活性氧化铝作为废弃物用深埋或焚烧处理方法,既浪费大量的资源且污染环境。据文献报导[2]2005年全国双氧水生产量为83.5万吨/年,有报导2007年我国双氧水消费量约310万吨[8](折27.5%)。且每年以10%的速度增长。据此估计每年废弃的氧化铝以数万吨计。本研究通过煅烧处理,使失活的活性氧化铝再生并循环使用。 一、活性氧化铝再生方法 活性氧化铝再生已有多人做过研究[4,5,6,7,8],各种回收方法的处理中都有煅烧过程,且都提到此过程对回收的氧化铝性能影响最大。在双氧水生产中废弃氧化铝表面主要吸附了蒽醌及其降解物、水分、少量的盐。其中水分在加热到一定温度后可以脱除,而蒽醌及其降解物可以通过氧气氧化成二氧化碳和水。文献报导在400℃~600℃的温度范围内锻烧,可以获得较好的效果[6]。氧化铝在锻烧过程中进行了再结晶过程[3],使表面更新,并恢复活性。本实验采用直接煅烧的办法再生活性氧化铝。 二、实验部份 废氧化铝来自上海某外资双氧水有限公司和国内某厂,是直径分别为1~3.5mm和3~5mm的球形颗粒。比表面测试仪采用

的Tristar 。 催空气由压通过电在恒定入口温度条件下通 过催化剂床层,反应若干时间。 1.催化剂质量19.5g ,入口温度400℃,空气流量1.5m 3/h 。 2.催化剂质量35g ,入口温度400℃,空气流量2.0m 3/h 。 100 200 300 400 500 600 T e m ℃ Tim min 图二 小球温度变化图

牛乳中酸度的测定

牛乳中酸度的测定 ?

目标要求和技能目标 ?目标要求:了解牛乳酸度的基本概念和原理。掌握牛乳酸度的测定意义及测定方法。 ?技能目标:能够完成相关实验并且能够检测出酸度的含量进行计算

实验原理 ?RCOOH+NaOH----RCOONa+H2O ?此中和反应用酚酞作指示剂,它在PH约8.2时,就确定了游离酸中的终点。无色的酚酞与碱作用时,生成酚酞盐,同时失去一分子水,引起醌型重排而呈现红色。

酸度的概念及分类 ?1、总酸度: ?又称为可滴定酸度,是指食品中所有酸性物质的总量,包括已离解的酸浓度。 ?2、有效酸度: ?指样品中呈离子状态的氢离子的浓度(严格地讲是活度),用PH计进行测定,用PH值表示。 ?3、挥发性酸度: ?指食品中易挥发的有机酸。 ?4、牛乳酸度: ?牛乳中有两种酸度:外表酸度和真实酸度。牛乳中的总酸度为外表酸度和真实酸度之和。 ?(1)外表酸度: ?又称为固有酸度或潜在酸度,是指刚挤出来的新鲜牛乳本身所具有的酸度,主要来源于鲜牛乳中的酪蛋白、白蛋白、柠檬酸盐及磷酸盐等酸性成分。 ?(2)真实酸度: ?又称为发酵酸度,是指牛乳在放置过程中,由乳酸菌作用于乳糖产生乳酸而升高的那部分酸度。

牛乳酸度表示法 ?牛乳除按乳酸表示总酸外,还有一种表示法,用°T表示,滴定酸度简称“酸度”。?牛乳°T—指滴定100 ml 牛乳样品,消耗0.1 mol/L NaOH 溶液的ml数,或滴定10 ml 样品,结果再乘10。新鲜牛乳的酸度常为16 ~ 18°T。

使用仪器和试剂 ?仪器:锥形瓶碱式滴定管烧杯移液管容量瓶胶头滴管电子天平和分析天平 ?试剂:0.1mol/LNaOH 化学纯邻苯二甲酸氢钾0.5%酚酞乙醇溶液牛乳

氧化铝冶炼工艺流程简介

氧化铝的主要冶炼工艺介绍 氧化铝的冶炼工艺大致可以分为烧结法、拜耳法和烧结-拜耳联合法等。 一、烧结法 1.1烧结法的基本原理 将铝土矿与一定数量的纯碱、石灰(或者石灰石)、配成炉料在高温下进行烧结,使氧化硅和石灰化合成不溶于水的原硅酸钙,氧化铝与纯碱化合成可溶于水的固体铝酸钠,而氧化铁与纯碱化合成可以水解的铁酸钠,将烧结产物(熟料)用稀碱溶液溶出时固体铝酸钠便进入溶液,铁酸钠水解放出碱,氧化铁以水合物与原硅酸钙一道进入赤泥。在用二氧化碳分解铝酸钠溶液便可以析出氢氧化铝,经过焙烧后产出氧化铝。分离氢氧化铝后的母液成为碳分母液经过蒸发后返回配料。 1.2烧结法工艺过程简述 烧结法生产氧化铝有生料浆制备、熟料烧结、熟料溶出、赤泥分离以及洗涤、粗液脱硅、精液碳酸化分解、氢氧化铝的分离以及洗涤、氢氧化铝焙烧、母液蒸发等主要生产工序。 生料浆制备:将铝土矿、石灰(或石灰石)、碱粉、无烟煤以及碳分母液按一定的比例,送入原料磨中磨制成生料浆,经过料浆槽的三次调配成各项指标合格的生料浆,送熟料窑烧结。 熟料烧结:配合格的生料浆送入熟料窑内,在1200℃-1300℃的高温下发生一系列的物理化学变化,主要生产使氧化硅和石灰化合成不溶于水的熟料。熟料窑烧结过程通常在熟料窑(回转窑)内进行,氧化硅和石灰化合成不溶于水的原硅酸钙,氧化铝和纯碱化合成可溶于水的固体铝酸钠,而氧化铁与纯碱化合成可以水解的铁酸钠,并且烧至部分熔融,冷却后成外观为黑灰色的颗粒状物料即熟料。 熟料溶出:熟料经过破碎达到要求的粒度后,用稀碱溶液(生产上称调整液),在湿磨内进行粉碎性溶出,有用成分氧化铝和氧化钠进入溶液,成为铝酸钠溶液,而杂质铁和硅则进入赤泥。 赤泥分离和洗涤:为了减少溶出过程中的化学损失,赤泥和铝酸钠溶液必须快速分离,为了回收赤泥附液中所带走的有用成分氧化铝和氧化钠,将赤泥进行多次反向洗涤再排入堆场。

奶各种指标的测定方法

《乳品分析与检测》主编张延明薛富.北京:科学出版社,2010(1):25~ 理化指标——酸度,脂肪,蛋白质,奶粉中乳糖、蔗糖和总糖,相对密度,奶粉中水分,溶解度,杂质度,掺假,抗生素的测定。 一、酸度的测定 乳品滴定酸度的表现形式:吉尔涅尔度()、乳酸度、pH 正常的新鲜乳,pH为6.5~6.7, 16~18吉尔涅尔度 酸碱滴定法:1、原理:用0.1mol/L NaOH溶液滴定时,乳中的乳酸与0.1mol/L NaOH反应,生成乳酸钠和水。根据强碱的消耗量计算乳的酸度。指示剂用酚酞。滴定终点为无色变为粉红色(30s)不退色。2、仪器:0.1mol/L NaOH标准溶液(保护此溶液,防止CO2渗透)、酚酞、碱式滴定管、pH计、150mL和250mL锥形瓶。3、0.1mol/L NaOH标准液的配制及标定:用邻苯二家酸氢钾经行标定,计算氢氧化钠标准溶液浓度4、操作方法:对于原料乳来讲——吸取10ml乳样注入150ml锥形瓶中,再加入20ml煮沸后冷却的蒸馏水(不加水时判定中点不太容易,可导致酸度提高),加入0.5毫升的0.5%酚酞,小心混匀,再用0.1mol/L NaOH标准液滴定,直至为红色30s不退色。把消耗的0.1mol/L NaOH标准液乘以10,即为鲜乳的酸度。对发酵乳——称样5g左右于锥形瓶中,加入40ml煮沸后冷却的蒸馏水,再加1%酚酞5滴,小心摇匀,用标准液滴定,滴定所消耗的0.1mol/L NaOH标准液的量除以样品克数,再乘以100,即为所求的酸度。 酒精滴定法:1、原理:(1)乳中酪蛋白胶粒带有负电荷,酪蛋白胶粒具有亲水性,在胶粒周围形成了结合水层,所以,酪蛋白在乳中以稳定的胶体状态存在。(2)酒精是较强的亲水性物质,它可使蛋白质胶粒脱水,浓度越大,脱水作用越强。(3)当乳的酸度增高时,酪蛋白胶粒带有负电荷被H+中和。(4)酪蛋白胶粒周围的结合水易被酒精脱去,中和负电荷造成凝集。用一定浓度的酒精与等量牛乳混合,根据蛋白质的凝集,判定牛乳的酸度,以测定原料乳在高温加工中的热稳定性。2、仪器和试剂:体积分数68%乙醇(调至中性)、体积分数70%乙醇(调至中性)、体积分数72%乙醇(调至中性)、试管、吸管3、用吸管吸取2ml 乳液于试管中,再加入等量的酒精,边加边转动,使酒精与乳样充分混合,振摇后不出行絮片的牛乳符合表3-3酸度标准,出现絮片的牛乳为酒精阳性如乳,表示其酸度较高。试验温度为20℃为标准,不同温度需经行校正,4、结果对照: 3-3对照表 酒精浓度% 不出现絮片的酸度/吉尔尼尔度 68 <20 70 <19 72 <18 二、脂肪的测定 1、巴布考克法。原理:牛乳与硫酸铵按一定比例混合后,使乳糖、蛋白质等非脂成分溶解,使脂肪球膜破坏,脂肪游离出来。由于硫酸作用产生的热量,促使脂肪上升到液体表面,再经过加热离心后,则脂肪集中在巴氏乳脂瓶颈处,直接读取脂肪层高度即为脂肪含量。操作方法:吸取20℃牛乳17.6ml,注入巴氏乳脂瓶中,加入等量硫酸,小心倒入乳脂瓶中,硫酸流入牛乳下层,摇动乳脂瓶使牛乳和硫酸混合,即成棕黑色,继续摇动2~3min,将乳脂瓶放入离心机中,以1000r/min离心5min,取出后向瓶中加60℃热水至分离的脂肪层在瓶颈部刻度处,再用同样的转速旋转2min,取出置于60℃水浴锅保温5min,立即度数。所得数即为脂肪的百分数。 2、盖勃氏法。原理:在原料乳中加入硫酸,可破坏牛乳的胶质性,使牛乳中的酪蛋白钙盐

滴定法测定牛乳的酸度

任务一 滴定法测定牛乳的酸度 【任务描述】 本任务主要为测定实验室提供的牛奶样品的酸度。整个任务过程主要包含基准物质的正确称量、碱标准溶液的配制,以及用酸碱滴定法测定产品中酸的含量;并通过多个样品的检验,对所得数据进行方差分析、误差分析、Q 检验等分析。 【本任务应掌握知识点及技能】 【任务相关参考资料的查阅(请按参考文献的标准方法记录)】 查阅的相关文献 相关知识点 重点掌握技能 食品酸度的概念及意义 不同称量法之间的异同 滴定基准物的概念及应用 酸碱滴定原理 数据记录与处理,给出评价报告、Q 检验、误差等概念 天平时减量法的操作方法 酸、碱标准溶液的配制方法 碱式滴定管的使用方法 滴定终点判断 误差、标准差的计算方法 Q 检验的方法

GB/T5413.34—2010乳和乳制品酸度的测定[S] 代替GB/T 5009.46-2003《乳与乳制品卫生标准的分析方法》中酸度的测定、GB/T 5416-85《奶油检验方法》中酸度的测定、GB/T 5409-85《牛乳检验方法》中牛乳新鲜度试验和GB/T 5413.28-1997《乳粉滴定酸度的测定》。 注:本标准规定了乳粉、巴氏杀菌乳、灭菌乳、生乳、发酵乳、炼乳、奶油及干酪素酸度的测定方法。本标准第一法适用于乳粉酸度的测定;第二法适用于巴氏杀菌乳、灭菌乳、生乳、发酵乳、炼乳、奶油及干酪素酸度的测定。 GB 5408.1-1999巴氏杀菌乳[S] 产品分类 3.1 全脂巴氏杀菌乳:以牛乳或羊乳为原料,经巴氏杀菌制成的液体产品。 3.2 部分脱脂巴氏杀菌乳:以牛乳或羊乳为原料,脱去部分脂肪,经巴氏杀菌制成的液体产品. 3.3 脱脂巴氏杀菌乳:以牛乳或羊乳为原料,脱去全部脂肪,经巴氏杀菌制成的液体产品. GB/T 5413.28—1997,乳粉滴定酸度的测定[S]. 将一定量的乳粉溶于水中制成复原乳然后用0.1mol/l氢氧化钠滴定至pH为98.3由此消耗的0.1mol/l氢氧化钠溶液毫升数可计算出滴定100ml干物质为12%的复原乳所需的氢氧化钠量所需氢 氧化钠溶液的量随产品中的自然缓冲物质变酸或添加酸性或碱性物质的量而变化。 GB/T 601-2002,化学试剂标准滴定溶液的制备[S]. 本标准中标准滴定溶液的浓度以摩尔每升(mol/L)表示。氢氧化钠标准滴定溶液[c(NaOH)=1moI/L]。前版本中标准滴定溶液的浓度单位采用摩尔浓度(mol/L)与当量(N)或克分子浓度(M)对比的形式。新版标准取消了当量浓度(N)和克分子浓度(M)的表示方法,即标准滴定溶液的浓度单位以后不允许使用“当量浓度(N)”和“克分子浓度(M)”的表示方法. GB/T 5409—85,酸度测定中华人民共和国国家标准牛乳检验方法[S]. 滴定酸度:吸取10ml牛乳,置于250ml三角瓶中,加入20ml水,再加入0.5m10.5%的酚酞乙醇溶液,小心摇匀,用0.1 N氧化钠标准溶液滴至微红色(见注),在1 min内不消失为止。消耗0.1N 氢氧化钠标准溶液的毫升数乘以10,即得酸度(°T)。 注:滴定酸度终点判定标准颜色的制备方法如下。取滴定酸度测定的同批和同样数量的样品如牛乳10ml,置于250 ml三角烧瓶中,加人20ml馏水,再加入3滴0.005%碱性品红溶液,摇匀后作为该样品滴定酸度终点判定的标准颜色。其他产品酸度滴定的标准颜色的制备,可根据其标准滴定酸度测定的取样量和加水稀释量的总容积,参照本方法按比例增加或减少0.005%碱性品红滴数即可。 GB/T 5413.28—1997,乳粉滴定酸度的测定[S]. 将一定量的乳粉溶于水中制成复原乳然后用0.1mol/l氢氧化钠滴定至pH为98.3由此消耗的0.1mol/l氢氧化钠溶液毫升数可计算出滴定100ml干物质为12%的复原乳所需的氢氧化钠量所需氢 氧化钠溶液的量随产品中的自然缓冲物质变酸或添加酸性或碱性物质的量而变化。 樊军浩,秦明利,孟宏昌,李红利.牛乳酸度测定方法的改进〔J〕.漯河职业技术学院学报,2003,2(3):10-11 对酸牛乳酸度的测定, 在GB/T 5009146- 1996由于牛乳白色的掩蔽作用,使所得出的结果远远大于牛乳的实际酸度,给牛乳品质的评定带来较大误差。经过长期实验,对该试验方法进行改进,主要在

氧化铝生产工艺流程图

氧化铝生产工艺流程图 流程仿真技术原理 根据工艺过程所涉及到的基础物性数据,引用或创建特定的物性包,建立生产过程中的单元设备的数学模型和单元设备之间的模型,从而完成完整描述实际生产过程系统的数学模型[6,7]。通过一定的数学方法对过程中所涉及到的模型进行联列求解。通过装置的稳态和动态模型,进行不同方案和工艺条件的分析,为新工艺的规划、研究开发和技术可靠性进行分析,为生产实际提供优化操作指导。在动态模拟中,还可以通过不同控制策 略的比较,对生产过程进行优化控制[5]。 生产过程的数学模型通常为一大型非线性代数方程组,过程模拟实质就是通过求解该非线性方程组来预测在一定工艺条件下生产过程的性能。常用 的求解方法主要有序贯模块法、联立方程法和联立模块法[3]。 氧化铝生产工艺 氧化铝的生产方法有酸法、碱法和热法。目前氧化铝工业生产实际应用的是碱法。碱法又包括拜耳法、烧结法及各种形式的联合法。因拜耳法生产成本低,经济效益好,流程相对简单,应用最广,所以主要介绍一下拜耳法的生产工艺。 所谓拜耳法是因为它是由K.J.bayer在1889-1892年提出而得名的。拜耳法主要包括两个主要过程,一是Na2O与Al2O3摩尔比为1.8的铝酸钠在常温下,只要添加氢氧化铝作为晶种,不断搅拌,溶液种的Al2O3就可以呈氢氧化铝析出,直到其中Na2O:Al2O3的摩尔比提高到6为止,此即为铝酸钠溶液的晶种分解过程。另一过程是已经析出了大部分氢氧化铝的溶液。在加热时,又可以溶出铝土矿中的氧化铝水合物。此即利用种分母液溶出铝土矿的过程。交替使用这两个过程处理铝土矿,得到氢氧化铝产品,构成所谓拜耳法循环[8]。拜耳法的生产工艺流程图如图1 所示。

拜耳法氧化铝生产工艺流程框图

拜耳法氧化铝生产工艺流程框图 成品氧化铝 图一 焙烧 2O 3 图二 碱法生产氧化铝基本过程

开曼铝业氧化铝厂工艺流程简图

氧化铝厂主要生产车间 一车间:原料准备 包括:地磅房、破碎站、原矿堆场、均化库、石灰仓、石灰消化及原料磨等工段 a.石灰消化:3台ф1200x10500m化灰机,2用1备 b.石灰仓:3台ф14x18m c.拜尔原料磨(棒球两段磨加水力漩流器):4组,每组配一级棒磨 ф3.2x4.5m及二级球磨ф3.6x8.5m,产能100t/h,用3备1。 二车间:高压溶出 包括:常压脱硅、高压泵房、管道化预热、溶出及稀释 a.常压脱硅:3台带加热管束搅拌的ф10x16m预脱硅加热槽及11台 机械搅拌的ф10x16m脱硅槽,1台ф6x6m赤泥洗液槽。其中预脱硅加热槽2用1备,脱硅槽10用1备。 b.高压泵房:36~6.8MPa,流量 400-500m3用1备。 c.溶出装置:2组。采用法铝技术,6级套管预热,4级压煮器预热, 新蒸汽间接加热,保温压煮器停留30分钟,10级闪蒸降温。每组配套预热管预热器长度2880m,19台ф2.8x16.8m压煮器,12台ф3.0-5.0x9.7m闪蒸器。2台ф12.5x13.5m溶出后槽,稀释料浆停留4.2小时,产能400-500kt/a. 三车间:赤泥沉降 包括:赤泥分离及洗涤、絮凝剂制备、控制过滤、赤泥贮槽及赤泥泵站、赤泥堆场、热水站 a.赤泥分离及洗涤:2组。采用高效深锥沉降槽技术及设备。每组配 6台ф14x16-18m高效沉降槽,其中分离槽1台,洗涤槽4台,备用槽1台。 b.控制过滤:7台226m2立式叶滤机,其中用6台备1台。 c.赤泥泵站:3台引进的高压隔膜泵,2用1备。

烧结法生产氧化铝

第二篇烧结法生产氧化铝 第一章原料制备 教学内容 1、原料制备在烧结法生产中的重要作用。 2、矿石的破碎。 3、烧结法配料及配料计算。 4、磨矿。 5、石灰的煅烧。 6、煤粉制备。 教学要求 1、理解原料制备在烧结法生产中的重要作用。 2、掌握矿石的破碎的方法、设备构造和工作原理。 3、掌握烧结法配料及配料计算。 4、了解烧结法磨矿过程、设备。 5、了解石灰煅烧反应、生产过程和石灰炉的构造。 6、了解煤粉制备及要求。 重点与难点 重点 1、烧结法配料及配料计算。 2、磨矿过程、设备构造和工作原理 难点 1、烧结法配料及配料计算 2、破碎机、原料磨、石灰炉、煤粉磨的构造和工作原理。 教学时数:8学时 第一节概述 一、什么叫碱石灰烧结法生产氧化铝? 碱石灰烧结法就是把铝土矿、补充的碱粉、石灰(小石渣)、循环碱液(即碳分蒸发母液)和拜尔法赤泥按比例配料并磨制成合格的生料浆,喷入熟料窑中在高温下烧结成熟料,熟料和调整液在湿磨中粉碎溶出,溶出液经赤泥分离得到粗液,粗液经脱硅、叶滤后得铝酸钠精液送入碳酸化分解,析出氢氧化铝经焙烧得到产品氧化铝。赤泥经6-8次反向洗涤送赤泥堆场,赤泥洗液配调整液。碳分母液经蒸发返回循环碱液槽。 山东铝业公司开采和购进的国内铝土矿,其中的氧化铝的矿物组成大多为一水硬铝石,即α-AI2O32H2O或α-AI O OH,并且混矿铝硅比较低(A/S≈4),采用拜尔法生产(拜尔法生产要求矿石A/S>7),矿石中的SiO2要求高压溶出温度比较高,在溶出时SiO2都转变为含水铝硅酸钠,需要消耗大量的苛性碱。采用碱—石灰烧结法更为有利。但是,烧结法存在工艺复杂流程长、设备投资高、能耗高和产品质量差等缺点。 将铝土矿与一定量的纯碱、石灰(或石灰石)配成炉料并磨细,在高温下烧结,使其中的氧化铝与纯碱化合成可溶于水的铝酸钠(Na2O2AI2O3),氧化硅与配入的石灰化合成不(难、微)溶于水的原硅酸钙(2CaO2SiO2),氧化铁与纯碱化合成可以水解的铁酸钠(Na2O2Fe2O3),将烧结产物(熟料)用稀碱溶液溶出时 铝酸钠(Na2O2AI2O3)——进入溶液 铁酸钠(Na2O2Fe2O3)——水解放出碱、氧化铁进入赤泥 原硅酸钙(2CaO2SiO2)——大部分进入赤泥,小部分溶于溶液(所以需要脱硅)。再用CO2分解铝酸钠溶液(精液)析出氢氧化铝,经焙烧得氧化铝。碳分后的母液,叫做碳分母液(主要成分是Na2CO3),经蒸发后返回配料(循环碱液)。 在自然界中氧化铝水系的结晶化合物有三种:三水铝石、一水软铝石、一水硬铝石,它们的分子式为: 三水铝石,即AI2O323H2O或AI(OH)3

相关文档
最新文档