初二数学三角形辅助线

初二数学三角形辅助线
初二数学三角形辅助线

(1)“取长补短法“证线段的和差关系

1、如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠DBA ,CD 过点E ,求证;AB =AC+BD

2:如图,ΔABC 是等腰直角三角形,∠BAC=90°,BD 平分∠ABC 交AC 于点D ,

CE 垂直于BD ,交BD 的延长线于点E 。求证:BD=2CE 。

3.已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD

_ D

_

图1-4

A

B

C

4、如图,已知在ABC ?中,?=∠60B ,ABC ?的角平分线AD ,CE 相交于点O .

求证:OD OE =

5、已知,如图1,在四边形ABCD 中,BC >AB ,AD =DC ,BD 平分∠ABC 。 求证:∠BAD +∠BCD =180°。

(2)利用三角形全等证明角或线段全等

1.如图所示,在△ABC 中,∠C =90°,AC =BC , AD 平分∠CAB ,并交BC 于D ,DE ⊥AB 于E ,若AB =6cm ,求△DEB 的周长。

F

O

D

E

A

C

B

2.如右图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BD=CD.

求证:AD平分∠BAC.

(3)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

1.如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。

(4)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线。

1.已知,如图,AC平分∠BAD,CD=CB,AB>AD。求证:∠B+∠ADC=180°。

2.如图,ABC ?中,AC AB 2=,AD 平分BAC ∠,且BD AD =,求证:AC CD ⊥

3.如图2-2,在△ABC 中,∠A=90 ,AB=AC ,∠ABD=∠CBD 。

求证:BC=AB+AD

图2-2

B

C

M

C

A

B

D

4.已知如图2-3,△ABC 的角平分线BM 、CN 相交于点P 。求证:

∠BAC 的平分线也经过点P 。

(5)连接四边形的对角线,把四边形的问题转化成为三角形来解决。

1.如图7:AB ∥CD ,AD ∥BC 求证:AB=CD 。

(6).连接已知点,构造全等三角形。

(易)

1.已知:如图AB=AD ,CB=CD ,证:∠B=∠D .

图2-3

A

B

C

A

B

C

D

7

图1

2

3

4

(课后练习) 一、选择题:

1. 能使两个直角三角形全等的条件是( ) A. 两直角边对应相等 B. 一锐角对应相等

C. 两锐角对应相等

D. 斜边相等

2. 根据下列条件,能画出唯一ABC ?的是( ) A. 3AB =,4BC =,8CA =

B. 4AB =,3BC =,30A ∠=

C. 60C ∠=,45B ∠=,4AB =

D. 90C ∠=,6AB =

3. 如图,已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;

③C D ∠=∠;④B E ∠=∠。其中能使ABC AED ???的条件有( ) A. 4个

B. 3个

C. 2个

D. 1个

(第3题) (第4题) (第5题) (第6题) 4. 如图,已知AB CD =,BC AD =,23B ∠=,则D ∠等于( ) A. 67

B. 46

C. 23

D. 无法确定

二、填空题:

5. 如图,在ABC ?中,90C ∠=,ABC ∠的平分线BD 交AC 于点D ,且

:2:3CD AD =,10AC cm =,则点D 到AB 的距离等于__________cm ;

6. 将一张正方形纸片按如图的方式折叠,,BC BD 为折痕,则CBD ∠的大小为_________; 三、解答题:

7. 如图,ABC ?为等边三角形,点,M N 分别在,BC AC 上,且BM CN =,AM 与

BN 交于Q 点。求AQN ∠的度数。

8. 如图,90ACB ∠=,AC BC =,D 为AB 上一点,AE CD ⊥,BF CD ⊥,交

CD 延长线于F 点。求证:BF CE =。

9. 如图,已知AE ⊥AD ,AF ⊥AB ,AF=AB ,AE=AD=BC ,AD//BC.求证:(1)AC=EF ,(2)AC ⊥EF

10. 已知:如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,∠1=∠2,CE ⊥BD 的延长线于E.求证:BD=2CE.

11、如图,△ABC 中,AD 是高,CE 是中线,DC =BE ,DG ⊥CE 于G 。 (1)求证:G 是CE 的中点; (2)∠B =2∠BCE 。

12、在△ABC 中,AB ≠AC ,D 、E 在BC 上,且DE =EC ,过D 作DF ∥BA 交AE 于点F ,DF =AC ,求证:AE 平分∠BAC 。

13、如图,在△ABC 中,∠B =22.50,∠C =600,AB 的垂直平分线交BC 于点D ,BD =

26,AE ⊥BC 于点E ,求EC 的长。

一、选择题: 1. A

2. C

3. B

4. C

二、填空题: 5. 4

6. 90

三、解答题: 7. 解:

ABC ?为等边三角形

∴AB BC =,60ABC C ∠=∠=

在ABM ?与BCN ?中

AB BC

ABC C

BM CN

=

?

?

∠=∠

?

?=

?

∴ABM BCN

???(SAS)

∴NBC BAM

∠=∠

∴60 AQN ABQ BAM ABQ NBC

∠=∠+∠=∠+∠=。

8. 证明:AE CD

⊥,BF CD

∴90

F AEC

∠=∠=

∴90

ACE CAE

∠+∠=

90

ACB

∠=

∴90

ACE BCF

∠+∠=

∴CAE BCF

∠=∠

在ACE

?与CBF

?中

F AEC

CAE BCF

AC BC

∠=∠

?

?

∠=∠

?

?=

?

∴ACE CBF

???(AAS)

∴BF CE

=。

9.证明:

(1)∵AD//BC,∴∠B+∠DAB=180°

又∵∠DAB+∠4+∠EAF+∠3=360°,∠3=∠4=90°

∴∠DAB+∠EAF=180°

∴∠B=∠EAF

在△ABC和△FAE中

∴△ABC≌△FAE(SAS)∴AC=EF

(2)∵△AB C≌△FAE

∴∠1=∠F又∵∠1+∠3=∠2+∠F

∴∠2=∠3又∵∠3=90° ∴∠2=90°∴AG⊥EF,即AC⊥EF

10.

证明:延长BA、CE交于点F.∵∠3=90°,∴∠5+∠F=90°

又∵BE⊥CE,∴∠4=90°,∠7=90°∴∠1+∠F=90°,∠6=180°-90°=90°∴∠1=∠5

在△ABD和△ACF中∴△ABD≌△ACF(ASA)

∴BD=FC

在△BEF和△BEC中∴△BEF≌△BEC(ASA)

∴EF=EC∴FC=2EC∴BD=2E C

11. 提示:连结ED

12、延长FE 到G ,使EG =EF ,连结CG ,证△DEF ≌△CEG

13、连结AD ,DF 为AB 的垂直平分线,AD =BD =26,∠B =∠DAB =22.50 ∴∠ADE =450,AE =22AD =262

2?=6 又∵∠C =600

∴EC =

323

63

==

AE

2009,7.如图,给出下列四组条件: ①

AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.

其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组

2008,21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C.

(B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =

∠C ,求证:AD =CD.

A C B

D

F

E

(第7题)

D

C

B

A

(图6)

A B

C

D

O

2007,19.已知:如图6,直线AD 与BC 交于点O ,OA OD =,OB OC =.

求证:AB ∥CD .

2012,23.如图,C 为AB 的中点。四边形ACDE 为平行四边形,BE 与CD 相交于点F 。

求证:EF=BF 。

2010,23题,如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在

AD 及其延长线上, CE ∥BF ,连接BE 、CF . (1)求证:△BDF ≌△CDE ;

(2)若AB=AC ,求证:四边形BFCE 是菱形

2011,23.如图,在四边形ABCD中,AB=CD,BF=DE,

AE⊥BD,CF⊥BD,垂足分别为E、F。

(1)求证:△ABE≌△CDF;

(2)若AC与BD交于点O,求证:AO=CO.

D (第23题)

初中数学辅助线的添加方法

初中数学辅助线的添加方法 一、添辅助线有二种情况 1、按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。2、按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形: 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形:

几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形: 当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明 (9)半圆上的圆周角: 出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。 二、基本图形的辅助线的画法

八年级数学上册全等三角形知识点总结

第十二章《全等三角形 》 知识点归纳 一、知识网络 ??????????→?????????????? ???对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理 二、基础知识梳理 (一)、基本概念 1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。SSS (2)两角和它们的夹边对应相等的两个三角形全等。ASA (3)两角和其中一角的对边对应相等的两个三角形全等。AAS (4)两边和它们的夹角对应相等的两个三角形全等。SAS (5)斜边和一条直角边对应相等的两个直角三角形全等。HL 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等

判定:角的内部到角的两边的距离相等的点在角的平分线上 (二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边 对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找 ①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS) 证明两三角形全等或利用它证明线段或角的相等的基本方法步骤: 1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系); 2.回顾三角形判定公理,搞清还需要什么; 3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。 常见考法 (1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等; (2)利用判定公理来证明两个三角形全等; (3)题目开放性问题,补全条件,使两个三角形全等。

初中数学几何图形的辅助线添加方法大全

初中数学添加辅助线的方法汇总 作辅助线的基本方法 一:中点、中位线,延长线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。”

托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表) 五:两圆若相交,连心公共弦。 如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。 六:两圆相切、离,连心,公切线。 如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。 七:切线连直径,直角与半圆。 如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。 如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。 八:弧、弦、弦心距;平行、等距、弦。 如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。 如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。 如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。 有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想

初中数学--辅助线典型做法汇总

初中数学| 辅助线典型做法汇总(珍藏版) 三角形中常见辅助线的添加 1. 与角平分线有关的 (1)可向两边作垂线。 (2)可作平行线,构造等腰三角形 (3)在角的两边截取相等的线段,构造全等三角形 2. 与线段长度相关的 (1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可 (2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可 (3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。 (4)遇到中点,考虑中位线或等腰等边中的三线合一。 3. 与等腰等边三角形相关的 (1)考虑三线合一 (2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 ° 四边形中常见辅助线的添加 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形。在解决一些和四边形有关的问题时往往需要添加辅助线。下面介绍一些辅助线的添加方法。 1. 和平行四边形有关的辅助线作法 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。 (1)利用一组对边平行且相等构造平行四边形 (2)利用两组对边平行构造平行四边形 (3)利用对角线互相平分构造平行四边形 2. 与矩形有辅助线作法

(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题。 (2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题。和矩形有关的试题的辅助线的作法较少。 3. 和菱形有关的辅助线的作法 和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题。 (1)作菱形的高 (2)连结菱形的对角线 4. 与正方形有关辅助线的作法 正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多。解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线。 5. 与梯形有关的辅助线的作法 和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型: (1)作一腰的平行线构造平行四边形和特殊三角形 (2)作梯形的高,构造矩形和直角三角形 (3)作一对角线的平行线,构造直角三角形和平行四边形 (4)延长两腰构成三角形 (5)作两腰的平行线等 圆中常见辅助线的添加 1. 遇到弦时(解决有关弦的问题时) 常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 作用: ①利用垂径定理 ②利用圆心角及其所对的弧、弦和弦心距之间的关系 ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量 2. 遇到有直径时,常常添加(画)直径所对的圆周角 作用:利用圆周角的性质得到直角或直角三角形 3. 遇到90度的圆周角时,常常连结两条弦没有公共点的另一端点 作用:利用圆周角的性质,可得到直径

第四讲------三角形中辅助线的常见的添加方法

第四讲-------常用的辅助线的方法 知识点一: 三角形问题添加辅助线方法 1)、方法1:三角形中线--------------中线加倍。 含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结 论恰当的转移,很容易地解决了问题。 2)、方法2:含有平分线------------构造全等三角形。 常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等 三角形,从而利用全等三角形的知识解决问题。 3)、 方法3:证明两线段相等,可通过 构成全等三角形; 利用关于平分线段的一些定理; 转化到同一三角形中,证明角相等; 4)、 方法4:证明一条线段与另一条线段之和等于第三条线段-----------常 采用截长法或补短法。 截长法是把第三条线段分成两部分,证其中的一部分等于第一条线段,而 另一部分等于第二条线段。 三角形中作辅助线的常用方法举例 一.倍长中线 1:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF =2AD 。 A B C D E F 2 5 图

二、截长补短法作辅助线。 在△ABC 中,AD 平分∠BAC ,∠ACB =2∠B ,求证:AB =AC +CD 。 三、延长已知边构造三角形: 例如:如图7-1:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 练习 如图,在梯形ABCD 中,AD//BC ,∠B=50°,∠C=80°,AD=2,BC=5,求CD 的长。 A D C B E 12 A B C D E 1 7 图O

人教版初二数学上册三角形习题整理.doc

一、选择题(每小题3分,共30分) 1. 有下列长度的三条线段,能组成三角形的是( ) A 2cm ,3cm ,4cm B 1cm ,4cm ,2cm C1cm ,2cm ,3cm D 6cm ,2cm ,3cm 2. 六边形的对角线的条数是( ) (A )7 (B )8 (C )9 (D )10 3.右图中三角形的个数是( ) A .6 B .7 C .8 D .9 4.能把一个任意三角形分成面积相等的两部分是( ) A.角平分线 B.中线 C.高 D.A 、B 、C 都可以 5下列不能够镶嵌的正多边形组合是( ) A.正三角形与正六边形 B.正方形与正六边形 C.正三角形与正方形 D.正五边形与正十边形 6.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( ) A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形 7如图1四个图形中,线段BE 是△ABC 的高的图是( ) 8一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A.5 B.6 C.7 D.8 9.三角形的一个外角是锐角,则此三角形的形状是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.无 10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角, ③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形 中两锐角的和为900,其中判断正确的有( ) A.1个 B.2个 C.3个 D.4个 二、填空题:(每题4分共32分) 11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样 做的道理是 。 12、如图2所示:(1)在△ABC 中,BC 边上的高是 ; C D A B E F 3题 A B C D 图1 (D)E C A (C)E C B A (B)E C B A (A) E B A

初中数学常见辅助线做法

初中数学常用辅助线 一.添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形, 添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律 可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等 第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三 角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线 组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关 系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三 角形斜边上中线基本图形。

(5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 *(7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形 当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明 (9)半圆上的圆周角

初中数学证明题常见辅助线作法规律.

初中数学证明题常见辅助线作法规律 初中数学证明题常见辅助线作法记忆歌诀;及几何规律汇编;人们从来就是用自己的聪明才智创造条件解决问题的,;初中几何常见辅助线作法歌诀;人说几何很困难,难点就在辅助线;辅助线,如何添?把握定理和概念;还要刻苦加钻研,找出规律凭经验;三角形;图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试 初中数学证明题常见辅助线作法记忆歌诀 及几何规律汇编 人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 初中几何常见辅助线作法歌诀 人说几何很困难,难点就在辅助线。 辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。圆

半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。

八年级上册数学三角形测试题

三角形测试题 一、选择题 1.下面四个图形中,线段BE 是⊿ABC 的高的图是( ) 2.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cm B .6cm C .5cm D .4cm 3.三角形一个外角小于与它相邻的内角,这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .属于哪一类不能确定 4.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个 5.如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB=( ) A 、900 B 、1200 C 、1600 D 、1800 6.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个 7.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。正确的命题有( ) A.1个 B.2个 C.3个 D.4个 二、填空题 8.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。 9.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。 第5题图 第6题图

八年级数学全等三角形证明题中常见的辅助线的作法

八年级数学全等三角形证明题中常见的辅助线的作 法 Prepared on 22 November 2020

D C B A E F C B A 八年级数学《全等三角形》证明题中常见的辅助线的作法 常见辅助线的作法有以下几种: 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小. 例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.

E D C B A D C B A P Q C B A 应用: 1、(09崇文二模)以ABC ?的两边AB 、AC 为腰分别向外作等腰Rt ABD ?和等腰Rt ACE ?,90,BAD CAE ∠=∠=?连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系. (1)如图① 当ABC ?为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ; (2)将图①中的等腰Rt ABD ?绕点A 沿逆时针方向旋转? θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变并说明理由. 二、截长补短 1、如图,ABC ?中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC 2、如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠DBA ,CD 过点E ,求证;AB =AC+BD 3、如图,已知在ABC 内,0 60BAC ∠=,0 40C ∠=, P ,Q 分别在 BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分 线。求证:BQ+AQ=AB+BP ABC ∠, 4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分求证: 0 180=∠+∠C A 5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一 点,求证;AB-AC >PB-PC 应用: 三、平移变换 例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于为MN 上一点,△ABC 周长记为

初中数学三角形辅助线大全(精简、全面)

三角形作辅助线方法大全 1.在利用三角形的外角大于任何和它不相邻的角证明角的不等关系时,如果直接证不出来, 可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在角的位置上,再利用外角定理证题. 例:已知D 为△ABC 任一点,求证:∠BDC >∠BAC 证法(一):延长BD 交AC 于E , ∵∠BDC 是△EDC 的外角, ∴∠BDC >∠DEC 同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD ∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC 2.有角平分线时常在角两边截取相等的线段,构造全等三角形. 例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4, 求证:BE +CF >EF 证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC 在△BDE 和△NDE 中, DN = DB ∠1 = ∠2 ED = ED ∴△BDE ≌△NDE ∴BE = NE 同理可证:CF = NF 在△EFN 中,EN +FN >EF ∴BE +CF >EF 3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形. 例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF 证明:延长ED 到M ,使DM = DE ,连结CM 、FM △BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD ∴△BDE ≌△CDM ∴CM = BE 又∵∠1 = ∠2,∠3 = ∠4 ∠1+∠2+∠3 + ∠4 = 180o F A B C D E D C B A 43 21N F E D C B A

初二数学八上第十一章三角形知识点总结复习和常考题型练习

第十一章三角形 一、知识框架: 二、知识概念: 1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 要点:①三条线段;②不在同一直线上;③首尾顺次相接 2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边. 注意:已知两边可得第三边的取值范围是:两边之差<第三边<两边之和 3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高. 注意:①三角形的三条高是线段;②画三角形的高时,只需要三角形一个顶点向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高. 4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点,交点叫重心. ②画三角形中线时只需连结顶点及对边的中点即可. 5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. 注意:①三角形的角平分线是一条线段,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画. 6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性. 7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. 8.多边形的内角:多边形相邻两边组成的角叫做它的内角. 9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面, 13.公式与性质: ⑴三角形的内角和定理:三角形的内角和为180° 直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形. ⑵三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角.三角形的一个外角和与

初中数学常见辅助线的添加方法

初中数学常见辅助线的 添加方法 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

中考数学复习专题 ——几何论证题中辅助线的添加方法 例1: ADBC 中AB ∥CD ,底角∠ABC=450 AC 、BD 交于点O ,且∠BOC=1200 分析:在已知条件中,底角∠ABC=450,有的同学想到延长两腰,出现一个等腰直角三角形。而在本题中这样添辅助线,反而增加解题困难,因为 ∠BOC=1200 的条件不能很好的运用。故本题添辅助线时,应考虑过上底顶点D (或A )作对角线的平行线,把梯形问题转化为平行四边形及顶角为1200的等腰三角形问题,而解等腰三角形时,常添的辅助线是作底上的高,这样不难求BC AD 的比值。 证明:过D 点作DF ∥AC 交BC 的延长线于F ,作DE ⊥BC 于E AD ∥BC AD=CF AC ∥DF ??ACFD 平行四边形 AC=DF 等腰梯形ABCD ? DB=AC ?BD=DF AC ∥DF ?∠BDF=∠BOC=1200 DE ⊥BF ∠BDE=600 ? BE=EF ?BE=EF=a 3 ∠BED=900 设a DE =

DE ⊥BC a CE DE == a AD CF )13(-== ∠BCD=450 EF=a 3 a CE BE BC )13(+=+= PQ 是线段AB 的中垂线, OD ⊥BC OD 的中点 是线段AB 的中垂线,同学们肯定想到连结AC 运用线段中垂线性质,但证明此题这样的添线与其它已知条件的应用没有多大关系,这种添线不能解答本题,而图中出现“母子三角形”,使我们想到能否运用三角形相似及线段成比例来解本题。而要证CM ⊥AD ,从图中观察到如能证得∠1=∠A ,那么CM ⊥AD 即可成立;而∠A 除了在Rt △AON 中,它还在△AOD 中,若把∠1也放到与△AOD 相似的三角形中,结论就可成立。因此构筑一个与△AOD 相似的三角形是本题解答的关键。而已知条件M 是OD 的中点,想到增添中点(或添平行线)的方法,故取OC 的中点为G ,想法证明△AOD ∽ △CGM 。通过基本图形分析,发现∠2=∠3,故∠AOD=∠CGM 。因此证:GM CG OD AO =是本题又一关键。 证明:取OC 的中点为G ,连GM, ∵PQ 是AB 的中垂线, ∴∠BOC=900设OA=OB=a ,OD=b . ∵OD ⊥BC, ∴∠CDO=∠ODB=900

初中数学三角形(三)常用辅助线作法

初中数学三角形(三)常用辅助线作法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 常用辅助线作法 姓名 时间 与中点有关的辅助线常用作法: 一、有中线时可倍长中线,构造全等三角形. 例1.已知:如图,AD 为ABC ?的中线,AE=EF.求证: 例2. 如图,AB=CD ,E 为BC 的中点,∠ BAC=∠BCA ,求证:AD=2AE 。 二、有以线段中点为端点的线段时,倍长该线段,构造全等三角形. 例3.已知:如图,在ABC ?中,?=∠90C ,M 为AB 中点,P 、Q 分别在AC 、BC 上,且 QM PM ⊥ 于M.求证:222BQ AP PQ +=. A B E C D

3 三、有中点时,可再取中点,构造中位线. 例4.如图,ABC ?中,D 、E 分别为AB 、AC 上点,且BD=CE ,M 、N 为BE 、CD 中点,连MN 交AB 、AC 于 P 、Q ,求证:AP=AQ . 四、等腰三角形有底边中点, 连中中点,利用三线合一. 例5.已知:如图,在ABC Rt ?中,?=∠90BAC ,AB=AC ,D 为BC 边中点,P 为BC 上一点,AB PF ⊥ 于F ,AC PE ⊥于E.求证:DF=DE. 与角平分线有关的辅助线常用作法: 一、出现线段的和、差关系时,通常考虑截长补短. 例6.已知:四边形ABCD 中,AB ∥CD ,∠1=∠2,∠3=∠4,求证:BC=AB +CD . A D P B C Q E M N A B C D E 1 2 3 4

4 例7.如图,AC 平分∠BAD ,CE ⊥AB ,且∠B+∠D=180°,求证:AE=AD+BE 。 二、有角平分线时,利用对称性,在较长边上截取跟较短边相等的线段,构造全等. 例8.如图,AB>AC, ∠1=∠2,求证:AB -AC>BD -CD 。 例9.如图,BC>BA ,BD 平分∠ABC ,且AD=CD ,求证:∠A+∠C=180。 三.角平分线上的点向角一边做垂线时,就过这点向另一边做垂线,利用角平分线定理来解题。 例10.已知:如图在△ABC 中,∠A=90°,AB=AC ,BD 是∠ABC 的平分线,求证:BC=AB+AD 1 2 A C D B B D C A B C E A B C D

初二数学辅助线常用做法及例题(含答案)

D C B A 常见的辅助线的作法 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线 合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可 以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或 40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二 条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转” 法构造全等三角形. 3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂 线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。 4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平 移”或“翻转折叠” 5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条 线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连 线,出一对全等三角形。 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答 一、倍长中线(线段)造全等 例1、已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 解:延长AD 至E 使AE =2AD ,连BE ,由三角形性质知 AB-BE <2AD

初二数学上册三角形教案

初二数学上册第十一章三角形教案 第十一章三角形教材内容本章主要内容有三角形的有关线段、角,多边形及内角和。三角形的高、中线和角平分线是三角形中的主要 线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推 理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用. 教学目标〔知识与技能〕 1、理解三角形及有关概念,会画任意三角 形的高、中线、角平分线;2、了解三角形的稳定性,理解三角形两 边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形; 3、会证明三角形内角和等于1800,了解三角形外角的性质。 4、了 解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。〔过程与方法〕 1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知 识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。〔情感、态度与价值观〕1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生 进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段 的长度判断它们能否构成三角形及简单的平页镶嵌设计是难点。课 时分配 11.1与三角形有关的线段……………………………………… 2课时 11.2 与三角形有关的角………………………………………… 2课时 11.3多边形及其内 角和………………………………………… 2课时本章小结………………………………………………………… 2课时 11.1.1三角形的边

初二数学上册辅助线总结

初二数学上册辅助线总 结 Document number:PBGCG-0857-BTDO-0089-PTT1998

1.遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC 的条件,可以和等腰三角形的三线合一定理结合起来。解答过程:证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。又∠1+∠F=∠3+∠ F=90°,故∠1=∠3。在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。 2.若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。 证明:延长AD到E,使DE=AD,连接BE。又因为AD是BC边上的中线,∴ BD=DC 又∠BDE=∠CDA ΔBED≌ΔCAD,故EB=AC,∠E=∠2, ∵AD是∠BAC的平分线∴∠1=∠2,∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC是等腰三角形 3.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 例3:已知,如图,AC平分∠BAD,CD=CB,AB>AD。求证:∠B+∠ADC=180°。解题思路:因为AC是∠BAD的平分线,所以可过点C作∠BAD的两边的垂线,构造直角三角形,通过证明三角形全等解决问题。解答过程:证明:作CE ⊥AB于E,CF⊥AD于F。∵AC平分∠BAD,∴CE=CF。在Rt△CBE和Rt△CDF中,∵CE=CF,CB=CD,∴Rt△CBE≌Rt△CDF,∴∠B=∠CDF,∵∠CDF+∠ADC=180°,∴∠B+∠ADC=180°。 4.如图,ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC于D,若EB=CF。求证:DE=DF。

初中数学全等三角形辅助线技巧

例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE 垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。

解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。 (2)若遇到三角形的中线,可倍长中线,使延长线段与原中线 长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC 边上的中线。求证:ΔABC是等腰三角形。 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识。 2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。 解答过程:

相关文档
最新文档