高等数学公式大全——最新修订(突击必备)

高等数学公式——最新修订

导数公式:

基本积分表:

三角函数的有理式积分:

2

22212211cos 12sin u du

dx x tg u u u x u u x +=

=+-=+=, , , 

a

x x a

a a ctgx x x tgx x x x ctgx x tgx a x x ln 1

)(log ln )(csc )(csc sec )(sec csc )(sec )(2

2

=

'='?-='?='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'?

?????????+±+=±+=+=+=+-=?+=?+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

2222222?

????++-=-+-+--=-+++++=+-=

==-C

a

x a x a x dx x a C

a x x a a x x dx a x C

a x x a a x x dx a x I n

n xdx xdx I n n n

n arcsin 22ln 22)ln(221

cos sin 22

2222222

2222222

22

2

22

2

ππ

一些初等函数: 两个重要极限:

三角函数公式: ·诱导公式:

高等数学公式大全——最新修订(突击必备)

·和差角公式: ·和差化积公式:

2

sin

2sin 2cos cos 2cos

2cos 2cos cos 2sin

2cos 2sin sin 2cos

2sin

2sin sin β

αβαβαβ

αβαβαβ

αβαβαβ

αβ

αβα-+=--+=+-+=--+=+α

ββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±?=

±?±=

±=±±=±1

)(1)(sin sin cos cos )cos(sin cos cos sin )sin( x

x

arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x

x x

x x

x -+=-+±=++=+-=

=+=

-=

----11ln

21)

1ln(1ln(:2

:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x

x

x x x x

·倍角公式:

·半角公式:

α

α

αααααααααααα

α

ααα

cos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 12

2

cos 12cos 2cos 12

sin -=

+=-+±=+=-=+-±

=+±=-±=ctg tg

·正弦定理:R C

c

B b A a 2sin sin sin === ·余弦定理:

C ab b a c cos 2222-+=

·反三角函数性质:arcctgx arctgx x x -=

-=

2

arccos 2

arcsin π

π

高阶导数公式——莱布尼兹(Leibniz )公式:

)

()

()()2()1()(0

)

()()

(!

)1()1(!2)1()

(n k k n n n n n

k k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+

'+==---=-∑

中值定理与导数应用:

拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=

---'=-)(F )

()

()()()()())(()()(ξξξ

曲率:

.1;0.

)1(lim M s M M :.,13

202a

K a K y y ds d s K M M s

K tg y dx y ds s =

='+''==??='?'???=

=''+=→?的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:αααα

α α

ααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=

-=-=α

α

αααααααααα

αα22222212221

2sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=

-=

-=-=-==

定积分的近似计算:

???----+++++++++-≈

++++-≈

+++-≈

b

a

n n n b

a

n n b

a n y y y y y y y y n

a

b x f y y y y n a b x f y y y n

a

b x f )](4)(2)[(3)(])(2

1

[)()()(1312420110110 抛物线法:梯形法:矩形法:

定积分应用相关公式:

??--==?=?=b

a

b a dt t f a b dx x f a b y k r

m

m k F A

p F s

F W )(1)(1

,2221均方根:函数的平均值:为引力系数引力:水压力:功:

空间解析几何和向量代数:

高等数学公式大全——最新修订(突击必备)

代表平行六面体的体积为锐角时,

向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22

2

2

2

2

2

212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k

j i

b a

c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M M

d z

y

x z y x

z

y x

z

y

x

z y x

z

y x z y x z

z y y x x z z y y x x u u

??==??=?=?==?=++?++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面:

同号)

(、抛物面:、椭球面:二次曲面:

参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:

1

1

3,,2221

1};,,{,1

30

2),,(},,,{0)()()(122

222222

22222

222

22220000002

220000000000=+-=-+=+=++???

??+=+=+===-=-=-+++++=

=++=+++==-+-+-c

z b y a x c z b y a x q p z q y p x c z b y a x pt

z z nt

y y m t

x x p n m s t p z z n y y m x x C B A D

Cz By Ax d c z

b y a x D Cz By Ax z y x M C B A n z z C y y B x x A

多元函数微分法及应用

z

y z x y x y x y x y x F F y z

F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y

v

dx x v dv dy y u dx x u du y x v v y x u u x

v

v z x u u z x z y x v y x u f z t

v

v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z

u dy y u dx x u du dy y z dx x z dz -

=??-=??=?

-??

-??=-==??+??=??+??=

==???

??+?????=??=?????+?????==?+?=≈???+??+??=??+??=

, , 隐函数+, , 隐函数隐函数的求导公式:

时,,当

多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

)

,(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F v

G u

G v F

u

F

v u G F J v u y x G v u y x F v

u v u ???-=?????-=?????-=?????-=??=????????=??=?

??== 隐函数方程组:

微分法在几何上的应用:

)

,,(),,(),,(30

))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()

()()

(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x y

x y

x x z x z z y z y -=

-=-=-+-+-==??

??

?====-'+-'+-''-=

'-='-??

?

??===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:

上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线

ωψ?ωψ?ωψ?方向导数与梯度:

上的投影。在是单位向量。方向上的

,为,其中:它与方向导数的关系是的梯度:在一点函数的转角。

轴到方向为其中的方向导数为:沿任一方向在一点函数l y x f l f

l j i e e y x f l

f j y

f i x f y x f y x p y x f z l x y f

x f l f l y x p y x f z ),(grad sin cos ),(grad ),(grad ),(),(sin cos ),(),(??∴?+?=?=????+??=

=??+??=??=

????

?

多元函数的极值及其求法:

????

???

??=-<-???><>-===== 不确定时值时, 无极

为极小值为极大值时,则: ,令:设,00),(,0),(,00),(,),(,),(0),(),(22

000020000000000B AC B AC y x A y x A B AC C y x f B y x f A y x f y x f y x f yy xy xx y x

重积分及其应用:

??????

??????????????

????++-=++=++==>===

=

==

???

? ????+??? ????+==='

D

z D

y D

x z y x D

y D

x D

D

y D

x D

D D

a y x xd y x fa F a y x yd y x f F a y x xd y x f F F F F F a a M z xoy d y x x I y d y x y I x d y x d y x y M

M y d y x d y x x M

M x dxdy y z x z A y x f z rdrd r r f dxdy y x f 2

3

22

2

2

3

22

2

2

3

22

2

22D

2

2

)

(),()

(),()

(),(},,{)0(),,0,0(),(,),(),(),(,),(),(1),()sin ,cos (),(σ

ρσ

ρσ

ρσρσρσ

ρσ

ρσ

ρσ

ρθ

θθ, , ,其中:的引力:轴上质点平面)对平面薄片(位于轴 对于轴对于平面薄片的转动惯量: 平面薄片的重心:的面积曲面

柱面坐标和球面坐标:

???????????????????????????

?????????Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

ΩΩ+=+=+====

=

=

===???=??

???=====???

??===dv

y x I dv z x I dv z y I dv

x M dv z M

z dv y M

y dv x M

x dr r r F d d d drd r r F dxdydz z y x f d drd r dr d r rd dv r z r y r x z r r f z r F dz rdrd z r F dxdydz z y x f z

z r y r x z y x r ρρρρρρρ?θ??

θθ??θ?θ

??θ???θ?θ?θθθθθθθπ

πθ?)()()(1,1,1

sin ),,(sin ),,(),,(sin sin cos sin sin cos sin )

,sin ,cos (),,(,),,(),,(,sin cos 22222220

)

,(0

2

2

2

, , 转动惯量:, 其中 重心:, 球面坐标:其中: 柱面坐标:

曲线积分:

??

?==<'+'=≤≤??

?==?

?)()()()()](),([),(),(,)

()(),(2

2t y t x dt t t t t f ds y x f t t y t x L L y x f L

?βαψ?ψ?βαψ?β

α

特殊情况: 则: 的参数方程为:上连续,在设长的曲线积分):

第一类曲线积分(对弧

,通常设的全微分,其中:

才是二元函数时,=在:

二元函数的全微分求积注意方向相反!

减去对此奇点的积分,,应。注意奇点,如=,且内具有一阶连续偏导数在,、是一个单连通区域;

、无关的条件:平面上曲线积分与路径的面积:时,得到,即:当格林公式:格林公式:的方向角。

上积分起止点处切向量分别为

和,其中系:两类曲线积分之间的关,则:的参数方程为设标的曲线积分):第二类曲线积分(对坐0),(),(),(),(·)0,0(),(),(21·21

2,)()()cos cos ()}()](),([)()](),([{),(),()()(00

)

,()

,(00==+=

+????????-==

=??-??=-=+=??-??+=??-??+=

+'+'=+?

?

?==??????????????y x

dy y x Q dx y x P y x u y x u Qdy Pdx y

P x Q y

P

x Q G y x Q y x P G ydx

xdy dxdy A D y P x Q x Q y P Qdy

Pdx dxdy y P

x Q Qdy Pdx dxdy y P x Q L ds Q P Qdy Pdx dt

t t t Q t t t P dy y x Q dx y x P t y t x L y x y x D

L

D L

D L L

L

L

βαβαψψ??ψ?ψ?β

α

曲面积分:

??????????????????????∑

++=++±=±=±=++++=

ds

R Q P Rdxdy Qdzdx Pdydz dzdx z x z y x Q dzdx z y x Q dydz

z y z y x P dydz z y x P dxdy

y x z y x R dxdy z y x R dxdy

z y x R dzdx z y x Q dydz z y x P dxdy

y x z y x z y x z y x f ds z y x f zx

yz

xy

xy

D D D D y x )cos cos cos (]),,(,[),,(],),,([),,()],(,,[),,(),,(),,(),,(),(),(1)]

,(,,[),,(22γβα系:两类曲面积分之间的关号。,取曲面的右侧时取正

号;,取曲面的前侧时取正号;,取曲面的上侧时取正,其中:对坐标的曲面积分:对面积的曲面积分:

高斯公式:

??????????????????Ω

Ω

∑=++==?

A dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R

y Q x P n n

div )cos cos cos (...

,0div ,div )cos cos cos ()(

成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:

—高斯公式的物理意义γβαννγβα

斯托克斯公式——曲线积分与曲面积分的关系:

?????????Γ

Γ

∑∑

Γ

?=++Γ??

????=

??=

????=????=????????

=??????++=??-??+??-??+??-??ds

t A Rdz Qdy Pdx A R

Q P z y x A y P

x Q x R z P z Q y R R

Q

P

z y x R Q P z y x dxdy dzdx dydz Rdz Qdy Pdx dxdy y P x Q dzdx x R z P dydz z Q y R

的环流量:沿有向闭曲线向量场旋度:, , 关的条件:空间曲线积分与路径无上式左端又可写成:k

j i rot cos cos cos )()()(

γβ

α

常数项级数:

是发散的

调和级数:等差数列:等比数列:n

n n n q q q q q n n 1

312112

)1(3211111

2

+++++=

++++--=

++++-

级数审敛法:

散。

存在,则收敛;否则发、定义法:

时,不确定

时,级数发散

时,级数收敛

,则设:、比值审敛法:

时,不确定时,级数发散

时,级数收敛

,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞

→+∞→∞

→+++=??

?

??=><=??

?

??=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ

。的绝对值其余项,那么级数收敛且其和

如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞

→+≤≤?????=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛:

∑∑∑∑>≤-+++++++++时收敛

1时发散p 级数: 收敛;

级数:收敛;

发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数;

肯定收敛,且称为绝对收敛,则如果为任意实数;,其中11

1

)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n

n n n

幂级数:

01

0)3(lim

)3(111

1111

221032=+∞=+∞===

≠==><+++++≥-<++++++++∞

→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n

n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定

时发散时收敛

,使在数轴上都收敛,则必存收敛,也不是在全

,如果它不是仅在原点 对于级数时,发散

时,收敛于

ρρρ

ρρ

函数展开成幂级数:

+++''+'+===-+=+-++-''+-=∞→++n

n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f !

)0(!2)0()0()0()(00

lim )(,)()!1()()(!

)()(!2)())(()()(2010)1(00)(2

0000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ 一些函数展开成幂级数:

)

()!

12()1(!5!3sin )

11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n x

x x x x x x n n m m m x m m m x x n n n

m

欧拉公式:

???

????-=+=+=--2sin 2cos sin cos ix ix ix

ix ix e e x e e x x i x e 或 三角级数:

上的积分=在任意两个不同项的乘积正交性:。

,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin )sin cos (2)sin()(001

10ππω???ω-====++=

++=∑∑∞

=∞

= nx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n

傅立叶级数:

是偶函数 ,余弦级数:是奇函数

,正弦级数:(相减)

(相加)

其中,周期∑?∑???∑+=

==

======+-+-=++++=

+++=

+++???

????=====++=--∞

=nx a a x f n nxdx x f a b nx b

x f n xdx x f b a n nxdx x f b n nxdx x f a nx b nx a a x f n n n n

n n n n n n n cos 2

)(2,1,0cos )(2

0sin )(3,2,1n sin )(2

012413121164

1312112461412185

1311)3,2,1(sin )(1)2,1,0(cos )(1

2)sin cos (2)(0

2

2222

2222

2

222

221

π

π

π

πππ

π

π

πππππππ

周期为l 2的周期函数的傅立叶级数:

???

????=====++=??∑--∞

=l

l n l l

n n n n n dx l x n x f l b n dx l x

n x f l a l

l x

n b l x n a a x f )3,2,1(sin )(1)2,1,0(cos

)(12)sin cos (2)(10 其中,周期ππππ

微分方程的相关概念: 即得齐次方程通解。

代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成

齐次方程:一阶微分方称为隐式通解。

得:的形式,解法:

为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y

u u du x dx u dx du u dx du x u dx dy x y u x

y

y x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='??)()(),(),()()()()()()(0

),(),(),(???

一阶线性微分方程:

)

1,0()()(2))((0)(,0)()

()(1)()()(≠=+?

+?=≠?

===+?--n y x Q y x P dx

dy e C dx e x Q y x Q Ce y x Q x Q y x P dx

dy

n dx

x P dx

x P dx

x P ,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程:

全微分方程:

通解。

应该是该全微分方程的,,其中:分方程,即:

中左端是某函数的全微如果C y x u y x Q y u

y x P x u dy y x Q dx y x P y x du dy y x Q dx y x P =∴=??=??=+==+),()

,(),(0),(),(),(0),(),( 二阶微分方程:

时为非齐次

时为齐次,0)(0)()()()(2

2≠≡=++x f x f x f y x Q dx dy

x P dx y d 二阶常系数齐次线性微分方程及其解法:

2

122,)(2,,(*)0)(1,0(*)r r y y y r r q pr r q p qy y p y 式的两个根、求出的系数;式中的系数及常数项恰好是,,其中、写出特征方程:求解步骤:

为常数;,其中?'''=++?=+'+''式的通解:

出的不同情况,按下表写、根据(*),321r r

高等数学公式大全——最新修订(突击必备)

二阶常系数非齐次线性微分方程

为常数;型,为常数,]sin )(cos )([)()()(,)(x x P x x P e x f x P e x f q p x f qy y p y n l x m x ωωλλλ+===+'+''

推荐阅读

相关文档