Gaps in content-based image retrieval

Gaps in content-based image retrieval
Gaps in content-based image retrieval

Gaps in content-based image retrieval

Thomas M. Deserno a,b,1, Sameer Antani b, and Rodney Long b

a Department of Medical Informatics,

Aachen University of Technology (RWTH), 52057 Aachen, Germany

b U. S. National Library of Medicine, U. S. National Institutes of Health,

8600 Rockville Pike, Bethesda, MD 20894, USA

ABSTRACT

Content-based image retrieval (CBIR) is a promising technology to enrich the core functionality of picture archiving and communication systems (PACS). CBIR has a potentially strong impact in diagnostics, research, and education. Research successes that are increasingly reported in the scientific literature, however, have not made significant inroads as medical CBIR applications incorporated into routine clinical medicine or medical research. The cause is often attributed without sufficient analytical reasoning to the inability of these applications in overcoming the “semantic gap”. The semantic gap divides the high-level scene analysis of humans from the low-level pixel analysis of computers.

In this paper, we suggest a more systematic and comprehensive view on the concept of gaps in medical CBIR research. In particular, we define a total of 13 gaps that address the image content and features, as well as the system performance and usability. In addition to these gaps, we identify 6 system characteristics that impact CBIR applicability and performance. The framework we have created can be used a posteriori to compare medical CBIR systems and approaches for specific biomedical image domains and goals and a priori during the design phase of a medical CBIR application. To illustrate the a posteriori use of our conceptual system, we apply it, initially, to the classification of three medical CBIR implementations: the content-based PACS approach (cbPACS), the medical GNU image finding tool (medGIFT), and the image retrieval in medical applications (IRMA) project. We show that systematic analysis of gaps provides detailed insight in system comparison and helps to direct future research.

Keywords:Content-Based Image Retrieval (CBIR), Picture Archiving and Communication Systems (PACS), Information System Integration, Radiology, Data Mining, Information Retrieval, Semantic Gap

1.INTRODUCTION

Content-based image retrieval (CBIR) is a novel technology that describes methods and means to access pictures by reference image patterns rather than alphanumerical indices [1]. Using various visual query mechanisms, such as the query-by-example (QBE) paradigm [2], the user presents a sample image, image region of interest (ROI), or pattern to the system, which responds images similar to the given pattern. In order to allow a rapid response, discriminant numerical features that serve as identifying signatures are extracted from each image in the repository. The images are then indexed on these precomputed signatures. At query time, the signature extracted from the query example is compared with these.

Although this approach was originally developed for multimedia repositories such as the Word Wide Web, techniques for content-based access to medical image repositories are a subject of high interest in recent research, and remarkable efforts have been reported [3, 4, 5]. In particular, CBIR for picture archiving and communication systems (PACS) discussed in [6, 7, 8] can make a significant positive impact to health informatics and health care. In spite of the reports of innovations, however, routine use of CBIR in PACS has not yet been established. The reasons are manifold, but these

1 Corresponding author: Priv.-Doz. Dr. Thomas M. Deserno, née Lehmann, Assoc. Prof., Department of Medical Informatics, Aachen University of Technology (RWTH), Pauwelsstr. 30, D - 52057 Aachen, Germany, email: deserno@https://www.360docs.net/doc/6110283508.html,; web: https://www.360docs.net/doc/6110283508.html,/deserno, phone: +49 241 80 88793, fax: +49 241 80 33 88793.

are identified only informally without an objective measure for evaluating the CBIR systems and identifying the shortcomings (or gaps) in the methods.

In general, two gaps have been identified in CBIR techniques: (i) there is the semantic gap [1,5] between the low-level features that are automatically extracted by machine and the high-level concepts of human vision and image understanding; and (ii) Smeulders et al. have defined a sensory gap between the object in the world and the information in a (computational) description derived from a recording of that scene [1]. However, in our view, there are many other gaps that hinder the use of CBIR techniques in daily routine of medical image management. For instance, there is a gap between the publication of system approaches or technological concepts and their prototypical realization and implementation. As another example, there is a gap if three-dimensional (3D) image data is represented by signatures that are based on two-dimensional (2D) slices of the data.

By means of the concept of gaps, this paper presents a systematic analysis of required system features and properties. The paper classifies some prominent CBIR approaches in an effort to spur a more systematic and comprehensive view on the concept of gaps in medical CBIR research. The paper also attempts to show how the established terminology is applied to characterize and distinguish prominent medical CBIR approaches that have been published in the literature.

2.METHODS

There are several gaps that one can define to explain the discrepancy between the proliferation of CBIR systems in the literature and the lack of their use in daily routine in the departments of diagnostic radiology at healthcare institutions. It is insufficient, however, to merely define these gaps. In order to benefit from the concept of gaps, it is imperative to analyze systems presented in the literature on their capability to close or minimize these gaps. In addition to the gaps, it is also important to be aware of other system characteristics that, although not resulting in a gap, might be critical for CBIR system analysis and classification. In this section, we address these points systematically.

2.1.Defining an Ontology

We aim at defining a classification scheme by means of individual criteria, i.e., the so-called gaps. According to Lehmann [9], such ontology must satisfy several requirements regarding the entities (gaps), the catalog (ontology), and the applications of the ontology.

2.1.1.Requirements for the entities

Any ontology is an abstract complex of terms, and concrete criteria for requirements of the entities must be defined on a meta-level of abstraction. In particular, such terms must be

-abstract: they are formulated in a general manner that allows their instantiation to any approach of medical CBIR system that has been published in the literature.

-applicable: they are formulated in such a way that they can be used in a variety of semantic contexts of medicine, where CBIR systems are applied. In particular, the instantiation of the entities of the ontology should not be affected by the person using the ontology.

-verifiable: they are formulated in such a way that there exists a method to evaluate each individual criterion.

2.1.2.Requirements for the catalog

A system of abstract, applicable and verifiable entities is called ontology. However, in addition to the characteristics that are required for the entities of the ontology, the ontology itself must satisfy certain criteria. In particular, the collection of criteria must be

-complete: the ontology covers all characteristics of medical CBIR systems and can be mapped to any situation and context of use. In particular, if two systems are characterized by the instances of the entities of the ontology, these instances must differ for different systems.

-unique: the ontology is well defined. In other words, if a system is characterized by means of the ontology, the same system always results in the same set of instances.

-sorted:the entities of the ontology are ordered semantically. For instance, they are grouped to support their unique assignment.

-efficient: the application of the ontology is possible within a limited amount of time or efforts, and all criterions can be decided without additional devices or computer programs.

2.1.

3.Requirements for the application

Regarding CBIR in medicine, an ontology is defined to characterize existing system approaches, or to assist the concept and design of a novel system before its implementation. Hence, there are two basic types of usage of an ontology:

- a priori: the ontology is used as a guideline for system design.

- a posteriori: the ontology is used as a catalogue of criterions for system analysis and weak point detection.

2.2.The Concept of Gaps

In this paper, we aim to build an ontology of gaps. The concept of gaps has often been used in CBIR literature, and the semantic gap is one of the prominent examples [1, 5]. As mentioned before, the semantic gap results from the similarity of images, which on the one hand is defined by a human observer in a particular context on a high level of semantics, and, on the other hand, results from computational analyses of pixel values regarding color, texture, or shape. In a more detailed view, the semantic gap addresses the content of the image and the features used for the signature. However, the lack of CBIR systems in routine radiological use also results from the performance and quality of those systems, as well as the disconnect in their design and implementations from their target users. In summary, our ontology of gaps must regard the

-content: the user’s view of modeling and understanding images.

-features: the computational point of view regarding numerical features and their limitations.

-performance: the implementation as well as the quality of integration and evaluation.

-usability: the comfort of how the system can be used in routine applications.

2.3.CBIR Characteristics

In addition to the gaps, certain characteristics may apply to specify and distinguish medical CBIR systems. Since we aim at an a posteriori application of the gap ontology, we additionally characterize the

-system: the intention the medical CBIR approach is suggested for, and the data that is used with it.

-I/O: the level of input and output data that is required to communicate with the CBIR system.

-signature: the kind of features and distance measures applied by the system.

2.4.Evaluation

Based on the resulting scheme of gaps and system characteristics, we want to show how the ontology is applied a posteriori. For that, we selected three prominent research projects on medical CBIR:

-cbPACS: the content-based Picture Archiving and Communication System (cbPACS) [11],

-medGIFT: the medical GNU Image Finding Tool (http://www.sim.hcuge.ch/medgift) [12], and

-IRMA: the Image Retrieval in Medical Applications project (https://www.360docs.net/doc/6110283508.html,) [8].

3.RESULTS

Figure 1 summarizes the overall results. In total, we defined 13 entities in the four groups of gaps, and six entities in the three groups of CBIR characteristics. “xxx” denotes that the entity can be specified with additional information according to the medical context and/or system.

3.1.Content Gaps

This group of gaps addresses the modeling, understanding, and use of images from the standpoint of a user. Consequently, two gaps seem to be of relevance.

3.1.1.Semantic Gap

The similarity of images defined by a human observer in a particular context is based on a high level of semantics, which is usually addressed by assigning meaningful labels to the imaged concepts. In contrast, computational analysis of image content is based simply on pixel gray values. In our definition, the semantic gap is bridged if a relation of image structures to medical meaning is established. This gap in a system is then:

-not addressed: meaningful terms are not assigned to images or ROIs.

-manual: meaningful terms are manually assigned.

-computer-assisted: a semi-automatic process is used to assign meaningful terms.

-automatic: meaningful terms are automatically assigned.

3.1.2.Context Gap

The context in which a CBIR system can be used is usually restricted. Medical CBIR systems frequently are designed to support queries on a certain imaging modality or within a certain clinical context such as the protocol used or the diagnostics. These restriction allows the use of medical a priori knowledge of the imaging modality or context, which otherwise may be difficult to formulate so that it is computable. It may be desirable for the system to support generalized use with minimal to no user limitation. As such, to bridge the context gap, a system can be classified as one in which this characteristic is:

-not addressed: the system is specific in a certain context, and the context gap is wide.

-limited: restrictions apply only to the modality or to the protocol or to the diagnostics.

-general: no restrictions apply at all, neither to the modality nor to the protocol nor to the diagnostics.

3.2.Feature Gaps

Feature-related gaps arise from the computational point of view. The gaps correspond to the inadequacies of the chosen numerical features to characterize the image content.

3.2.1.Extraction Gap

Not all medical CBIR systems automatically extract the features. Some are based on manual indexing of images, which comes along with remarkable efforts and the potential of errors. This gap is bridged by computer-assisted or automatic feature extraction methods. Features are obtained from the input data

-not addressed: completely interactive or manual, e.g., manually outlined shapes.

-computer-assisted: partly interactive, e.g., shapes segmented with the “livewire” algorithm [10].

-automatic: non interactive.

3.2.2.Structure Gap

The extraction of global parameters which describe the entire image is frequently insufficient for medical applications. Hence, regions of interest (ROIs), which describe only a certain part of an image, must be identified and characterized by appropriate parameters. To bridge this gap, the assignment of image features is

-not addressed: for the entire image or global.

-local: for an individual ROI.

-relational: for a certain composition of individual ROIs or objects.

3.2.3.Scale Gap

Since a suitable size of ROIs or scenes again depends on the query task and context, and therefore is variable, dedicated multi-scale approaches for image content description must be developed. To bridge this gap, the scale of image analysis is

-not addressed: a fixed single scale is used.

-multi: a multi-scale approach is applied.

3.2.

4.Dimension Gap

A system has this gap if the features are extracted and used on a dimension that is lower than the original data dimension. For instance, 3D data is processed frequently as individual 2D slices. However, for 1D biomedical signals and 2D medical images, this gap does not exist. The gap in the system is identified as:

-not addressed: the system handles 1D or 2D data only.

-complete range: for instance, color features are used for color images.

-complete domain: for instance, volumes are used as ROIs for 3D data.

-complete both: in other words, neither a domain nor a range gap opens.

3.3.Performance Gaps

Not all systems found in the literature are completely implemented and executable for performance evaluation. For those that can be tested, the performance criteria include quality of integration and evaluation in addition to other classical performance measures.

3.3.1.Application Gap

In scientific literature, there is a immense gap between the conceptual level of the described medical CBIR systems and their implementation or establishment. Frequently, concepts are published but a running system is not available. The application gap narrows if a medical CBIR application is

-not addressed: not mentioned at all.

-mentioned: in the project description, but no proof is given.

-documented: screen shots are shown in the publication to proof the implementation of the system.

-offline: available for download and installation.

-online: direct accessible and executable via the Internet.

3.3.2.Integration Gap

If a system for medical CBIR exists, another gap opens. Such a system usually is standalone, and not sufficiently integrated into the clinical routine. The integration gap is bridged according to the level of workflow integration. These levels are

-not addressed: the application is not interconnected with clinical software.

-data: the application can access clinical data.

-function: the application can be called from other clinical software.

-context: the actual patient/image information is passed to the CBIR application.

3.3.3.Indexing Gap

The performance of a medical CBIR system also depends on the response time and indexing of multi-scale image descriptions for efficient data access. This indexing is not trivial. Simple strategies like A*-trees or inverse files cannot be applied directly, and profound research is required to cope with large image repositories as generated in health care. The indexing gap is bridged if the computation of similarities is performed using following approaches:

-not addressed: the system is based on a brute force approach, where all features are compared for every image.

-parallel: the computation of distances is brute force but distributed.

-indexed: fast access to relevant feature cluster or cluster-trees is provided.

-both: the CBIR application employs cluster forests with distributed computation.

3.3.

4.Evaluation Gap

In large data bases, the gold standard or ground truth is unknown, i.e. it is impossible to determine the correct answer for a test query. In other words, an expected output of the system answering a certain question is unavailable. Hence, the comparison of competing approaches for global/local feature extraction and distance measures is difficult and inaccurate. Instead of error measures computed from leave-one-out experiments, precision, recall, and the F-measure are calculated, where the number of correct answers is not used. Experiments are performed

-not addressed – xxx: no experiment are described, but the database contains xxx images.

-qualitative – xxx: without expected output or ground truth, based on xxx images.

-quantitative – xxx: with expected output, based on xxx images.

https://www.360docs.net/doc/6110283508.html,ability Gaps

This group of gaps addresses the usability of the system. While the Performance Gaps focus on the area in which the system is used, the Usability Gaps describe the ease of use the system, from the perspective of the end user.

3.4.1.Query Gap

Using the QBE paradigm, where a visual example is presented to the retrieval system, specialized mechanisms and interfaces are required. Currently, appropriate tools to assist the user in drawing or composing a search pattern are missing, and QBE is difficult and time-consuming. The query gap in the system is identified as:

-not addressed: alphanumerical text is used disregarding the QBE paradigm.

-feature: certain intervals of feature vectors or vector components are given by the user.

-pattern: such a pattern can be an example image or a part of an image (ROI).

-composition: the user interactively selects and places structures from a given set.

-sketch: the system allows input of individually and interactively created pattern, including the previous options.

3.4.2.Feedback Gap

The result of a CBIR query is usually presented by displaying the most similar images found in the archive. However, it is hard to understand why the presented images are similar and how the query needs to be altered to improve the recall. To close the feedback gap, some rationale for the retrieved results is provided by the CBIR system. This can be

-not addressed: the results returned by the system are not commented at all.

-basic: a similarity number is given for each returned element.

-advanced: more sophisticated explanations are provided by the system.

3.4.3.Refinement Gap

CBIR systems should provide the user options to repeat and modify a query. Sometimes, they also track the refinement process to learn for user’s preferences. To bridge the refinement gaps, the query refinement is

-not addressed: just one request is answered.

-forward: a rudimentary option for query refinement is provided.

-backward: in the refinement loop, the user can step back if results become worse.

-complete: a full history of the interactive session is available for restoration of any intermediate stage.

-combination: different queries can be performed, and their results can be combined.

-learning: during the usage, the system adapts to the user’s need.

3.5.System Characteristics

Not all characteristics of medical CBIR systems really aim at closing a certain gap. We seek to capture these non-gap attributes, which may differ from system to system, under the general heading of system, I/O, and signature characteristics. The system characteristics address the intention of CBIR application and the data domain in use.

3.5.1.System Intention

The purpose of a system as well as the target group may vary. A medical CBIR system can assist the user in various clinical and research tasks. In particular, a system intention can be identified as:

-not addressed: no information about the purpose is given.

-diagnostics: e.g., for case-based reasoning.

-research: e.g., to support evidence-based medicine.

-teaching: e.g., for the composition of case collections.

-learning: e.g., the self-exploration of medical cases.

-hybrid: at least two of previously mentioned.

3.5.2.Data Dimension

A medical CBIR system usually copes with two-dimensional (2D) images, a sequence of images over time (2D+t), or three-dimensional (3D) volumes. The dimensionality of data that can be retrieved by the CBIR system is:

-1D : a biomedical signal.

-2D: an image.

-2D+t: a sequence of images.

-3D: a volumetric dataset.

-3D+t: a sequence of volumes.

-hybrid: more than one of the categories above.

3.6.I/O Characteristics

Content-based image retrieval in medical application may also be combined with a text-based search in the patient health record. According to Tang et al., different combinations between text and images for input and output might be used [4]. In general, it is easier to make inferences from text to images than from images to text. The first can be done from text associated with the image (e.g., Google image search), while the latter needs semantic concepts.

3.6.1.Input Data

More precisely, the system input can be:

-free text: any alphanumerical wording that requires stemming etc. for automatic processing.

-keyword: words addressing a concept of special semantics, e.g., as part of a controlled vocabulary.

-feature value: instances of an image-based feature, e.g., a numerical range.

-image: a query image, marked region of interest, drawing or any other non-alphanumeric data.

-hybrid: any combination.

3.6.2.Output Data

The system output can be:

-image only: the system returns similar images.

-image & keyword: similar images and controlled image category information.

-image & text: similar images and other text, such as in multimedia documents.

-keyword only: a restricted set of words based on a controlled vocabulary.

-free text: any alphanumerical wording that describes the image.

3.7.Signature Characteristics

The signature that is used to represent the image content is composed of numerical features and a distance or similarity measure.

3.7.1.Image Features

The type of features that are used to represent an image for content-based retrieval is an important characteristic. These features may be computed from points, lines, or areas. In particular, the image features are based on:

-grayscale: intensity-based features only.

-color: color and grayscale.

-shape: location or delineation of a region.

-texture: complex visual pattern related to a ROI.

-special – xxx: any context-based feature, where xxx denotes it's name.

-hybrid: any combination.

3.7.2.Distance Measure

Besides the type of features, different methods to determine the similarity or dissimilarity between the features must be applied. It is of special interest whether the distance measure forms a metric. According to Traina et al. [11], a distance function d(A,B), of features A ≠ B ≠ C, which is a metric, must satisfy (i) reflexivity, i.e., d(A,A) = 0, (ii) non-negativity, i.e., d(A,B) > 0, (iii) symmetry, i.e., d(A,B) = d(B,A), and (iv) the triangle inequality, i.e., d(A,B) + d(B,C) ≥d(A,C). In particular, the distance measure is:

-not applicable: no distance measure used, e.g., retrieval by intervals of feature values.

-undeclared – xxx: the measure is named xxx, but it is not defined whether it is metric.

-non-metric – xxx: non-metric distance measure is used, where xxx denotes the measure.

-metric – xxx: a metric distance measure named xxx is used.

-hybrid: any combination.

System name Content gaps Feature gaps

semantic context extraction structure scale dimension cbPACS n/a general automatic global

single n/a

medGIFT n/a general automatic global multi n/a IRMA concept automatic general automatic relational multi n/a IRMA demo 1 n/a limited automatic global single n/a IRMA demo 2 n/a limited automatic global single n/a IRMA demo 3 n/a specific manual local

single n/a

System name Performance gaps

Usability gaps

application integration indexing

evaluation

query

feedback

refinement

cbPACS shown data

indexed qualitative – 5,549 pattern basic n/a medGIFT offline n/a n/a n/a pattern n/a n/a IRMA concept mentioned context parallel qualitative sketch advanced combination IRMA demo 1 online n/a n/a n/a – 9,936 stamps n/a – 5,579 paintings

pattern n/a n/a

IRMA demo 2 online n/a n/a n/a – 10,000 x-rays pattern basic combination IRMA demo 3 online

data

indexed n/a – 4,514 vertebrae pattern basic combination System name

System characteristics

I/O characteristics Signature characteristics system intention data

dimension input data output data

image features distance measure

cbPACS

diagnostics 3D

image image only intensity metric – MAM medGIFT

n/a 2D, 2D+t image image only

--- ---

IRMA concept hybrid 2D image image & keyword hybrid non-metric – graph similarity IRMA demo 1 n/a 2D image image only color metric – Euclidean RGB IRMA demo 2 n/a 2D image image only texture non-metric – IDM, JSD

IRMA demo 3 n/a

2D

image

image only

shape

metric – Procrustes distance

Table 1: Results of a-posteriori application. MAM – histogram-based metric access method; IDM – image distortion

model; JSD – Jenssen-Shannon divergence

3.8. Classification of CBIR Approaches

Table 1 shows the result of classification of cbPACS, medGIFT, and IRMA systems based on the sources [11], [12], and [8], respectively. Currently, three demo systems are available at the IRMA project home page (https://www.360docs.net/doc/6110283508.html,). In addition to the conceptual papers that have been published in scientific journals, we classified the demo systems available on the Web: - IRMA demo 1 – IRMA Query Demo 3.2.

- IRMA demo 2 – IRMA Extended Query Refinement Demo 3.3. -

IRMA demo 3 – SPIRS-IRMA Combined Retrieval.

It should be noted that medGIFT is a programming framework. As such, it allows advanced users to program their own plugins with individual features and distance measures. It is, therefore, not useful to define the distance property for it. Lack of this information is indicated with "---" in the table.

4. DISCUSSION & CONCLUSION

In this paper, we have proposed a nomenclature and classification scheme for objective assessment of medical CBIR systems. For the first time, the core features and required functionality of medical CBIR is addressed explicitly, systematically, and comprehensively. The impact of the proposed concept of gaps is shown exemplarily by analyzing three well-know medical CBIR approaches cbPACS, med GIFT, and IRMA. The variety in all columns suggests that the proposed definition of gaps and system characteristics is meaningful for system categorization and evaluation.

In addition to the gaps and system features that have been defined in our ontology, other gaps are addressed in scientific literature. For instance in the reviews of Smeulders et al. [1] and Müller et al. [5], a sensory gap is defined addressing the difference between the real world and its representation as a matrix of digital pixels. However, this problem is also exists for the radiologists looking at these digital images and therefore, we disagree with the authors in this point since we do not see the relevance of this point.

Based on this work, future research in medical CBIR can be made more effective and efficient, since the gaps that are needed to be bridged are named explicitly.

ACKNOWLEDGEMENT

This research was supported [in part] by the Intramural Research Program of the U.S. National Institutes of Health (NIH), U.S. National Library of Medicine (NLM), and the U.S. Lister Hill National Center for Biomedical Communications (LHNCBC).

REFERENCES

1.Smeulders AWM, Worring M, Santini S, Gupta A, Jain R: Content-based image retrieval at the end of the early

years. IEEE Transactions on Pattern Analysis and Machine Intelligence 2000; 22(12): 1349-80

2.Niblack W, Barber R, Equitz W, Flickner M, Glasman E, Petkovic D, Yanker P, Faloutsos C, Taubin G: The QBIC

project: Querying images by content using color, texture, and shape. Proceedings SPIE 1993; 1908: 173-87

3.Tagare HD, Jaffe CC, Duncan J. Medical image databases: A content-based retrieval approach. Journal of the

American Medical Informatics Association – JAMIA 1997; 4(3): 184-98

4.Tang LHA, Hanka R, Ip HHS: A review of intelligent content-based indexing and browsing of medical images.

Health Informatics Journal 1999; 1(5): 40-9

5.Müller H, Michoux N, Bandon D, Geissbuhler A. A review of content-based image retrieval systems in medical

applications. Clinical benefits and future directions. International Journal of Medical Informatics 2004; 73(1): 1-23 6.Qi H, Snyder WE: Content-based image retrieval in picture archiving and communications systems. Journal of

Digital Imaging 1999; 12(2 Suppl 1): 81-3

7.Müller H, Rosset A, Garcia A, Vallée JP, Geissbuhler A: Informatics in radiology (inforad): Benefits of content-

based visual data accessing radiology. Radiographics 2005; 25(3): 849-58

8.Lehmann TM, Güld MO, Thies C, Fischer B, Spitzer K, Keysers D, Ney H, Kohnen M, Schubert H, Wein BB:

Content-based image retrieval in medical applications. Methods of Information in Medicine 2004; 43(4): 354-361 9.Lehmann TM: Digitale Bildverarbeitung für Routineanwendungen. Evaluierung und Integration am Beispiel der

Medizin. Deutscher Universit?ts-Verlag, GWV Fachverlage, Wiesbaden, 2005 [in German]

10.Mortensen EN, Barrett WA: Intelligent scissors for image composition. Proceedings SIGGRAPH 1995; 191-198

11.Traina JC, Traina AJM, Araujo MRB, Bueno JM, Chino FJT, Razente H, Azevedo-Marques PM: Using an image-

extended relational database to support content-based image retrieval in a PACS. Computer Methods and Programs in Biomedicine 2005; 80(1): 71-83

12.Müller H, Rosset A, Vallée JP, Geissbuler A. Integrating content-based visual access methods into a medical case

database. Studies in Health Technology and Informatics 2003; 95: 480-5.

常用计算机术语翻译

专心翻译 做到极致 常用计算机术语翻译--本地化 软件本地化行业有很多经常使用的行业术语,非行业人士或刚刚进入该行业的新人,常常对这些术语感到困惑。另外,软件本地化行业属于信息行业,随着信息技术的迅速发展,不断产生新的术语,所以,即使有多年本地化行业经验的专业人士,也需要跟踪和学习这些新的术语。 本文列举最常用的本地化术语,其中一些也大量用在普通信息技术行业。对这些常用的术语,进行简明的解释,给出对应的英文。 加速键或快捷键(accelerate key)。常应用在Windows 应用程序中,同时按下一系列组合键,完成一个特定的功能。例如,Ctrl + P ,是打印的快捷键。 带重音的字符(accented character)。例如在拉丁字符的上面或下面,添加重音标示符号。对于汉字没有此问题。 校准(alignment)。通过比较源语言文档和翻译过的文档,创建翻译数据库的过程。使用翻译记忆工具可以半自动化地完成此过程。 双向语言(bi-directional language)。对于希伯莱语言或者阿拉伯语言,文字是从右向左显示,而其中的英文单词或商标符号从左向右显示。对于中文,都是从左向右显示。 编译版本(build)。软件开发过程中编译的用于测试的内部版本。一个大型的软件项目通常需要执行多个内部版本的测试,因此需要按计划编译出多个版本用于测试。 版本环境(build environment)。用于编译软件应用程序的一些列文件的集合。

版本健康检查(build sanity check)。由软件编译者对刚刚编译的版本快速执行基本功能检查的活动,通过检查后,再由测试者进行正规详细测试。 级连样式表(cascading style sheet -CSS)。定义html等标示文件显示样式的外部文档。 字符集(character set)。从书写系统到二进制代码集的字符映射。例如,ANSI字符集使用8位长度对单个字符编码。而Unicode,使用16位长度标示一个字符。 简体中文,日文,韩文,繁体中文(CJKT)。也可以表示为SC/JP/KO/TC或 CHS/JPN/KOR/CHT,是英文Simplified Chinese, Janpanese, Korean, Traditional Chinese的简写。 代码页(code page)。字符集和字符编码方案。对每一种语言字符,都用唯一的数字索引表示。 附属条目(collateral)。软件本地化项目中相对较小的条目。例如,快速参考卡,磁盘标签,产品包装盒,市场宣传资料等。 计算机辅助翻译(Computer Aided Translation-CAT)。计算机辅助翻译。采用计算机技术从一种自然语言到另一种语言自动或支持翻译的技术术语。 串联(Concatenation)。添加文字或字符串组成较长字符传的方式。 控制语言(Controlled language)。自然语言的子集,常用于技术文档的写作,采用更加 专心翻译做到极致

(完整版)ps教学计划

一、课程性质和任务 Photoshop是计算机专业必修的一门专业课程,该课程在专业建设中占有重要的地位,重点培养学生的实践动手能力和审美水平。该课程从“如何做”入手,再进一步提升到“为什么这样做的”的水准,最终达到由学生自行创意制作的阶段。因此,内容着重基础知识、基本概念和基本操作技能,强调Photoshop软件的使用,同时兼顾计算机图形设计领域的前沿知识和创意设计。 二、课程教学目标 (一)技能目标: (1) 了解和掌握Photoshop基本理论和基本常识; (2) 熟练掌握Photoshop的使用技巧; (3) 熟练使用Photoshop 操作界面和功能; (4) 理解Photoshop中选择区域、通道、路径、图层等相关概念并能正确使用; (5) 掌握图像合成的基本方法与技巧; (6) 理解计算机中颜色的表示方法和图像的颜色模式; (7) 掌握Photoshop软件使用环境下的创意设计; (8) 培养学生的审美水平和创意设计能力; (9) 能独立完成、自主创意一幅作品; (10) 了解Photoshop 其它相关新版本的的应用常识。 (二)能力目标: (1) 熟练地运用Photoshop制作效果图,并能在实际工作中得到应用。 (2) 培养学生搜集资料、阅读资料和利用资料的能力;

(3) 培养学生的自学能力。 (三)情感目标: (1) 培养学生的团队协作精神; (2) 培养学生的工作、学习的主动性。 (3) 培养学生具有创新意识和创新精神 (4) 提高学生的艺术修养 三、课程内容和教学要求 课程教学知识点 (一)Photoshop基础知识 学习图形图像处理软件的意义,(Photoshop软件的安装、启动和退出,photoshop中的基本概念,软件界面的介绍) (二)Photoshop选区的选取与编辑(选区工具组,套索工具组,使用魔术棒工具建立选区,使用选择颜色范围建立选区,控制选取范围,载入和保存选取范围) (三)Photoshop图像编辑(图像的尺寸和分辨率,基本编辑命令,旋转、翻转和自由变换,还原和重做,填充和描边) (四)Photoshop图像的工具与绘图(画笔的应用,绘图工具,文字处理,历史面板) (五)Photoshop的图像色彩和色调的调整(颜色的基本概念,图像颜色模式之间的转换,控制基本色调,控制特殊色调,控制图像的色彩) (六)Photoshop图层的应用与编辑(图层简要概述,多种类型的图层,图层的编辑操作,设置图层样式,图层混合)

图形图像处理教学计划

图形图像处理教学计划 一、课题分析 该软件是由美国ADOBE公司开发的一个集图像扫描、编辑修改、图像制作、广告创意、图像合成、图像输入/输出于一体的专业图像处理软件。adobe photoshop为美术设计人员提供了无限的创意空间,可以从一个空白的画面或从一幅现成的图像开始,通过各种绘图械具的配合命名用以图像调整方式的组合,在图像中任意调整颜色、明度、彩度、对比、甚至轮廓及图像;通过几十种特殊滤镜的处理,为作品增添变幻无穷的魅力。adobe photoshop设计的所有结果均可以输出到彩色喷墨打印机、激光打印机打印出来。当然也可以软拷贝至任何出版印刷系统。 二、教学目标 通过本课程的学习,要求学生能熟练掌握photoshop各种工具的操作,并且能应用到现实生活与工作中。如:抠图、调效果、搞合成、做特效;进而掌握平面设计、效果图后期与影楼后期等等行业的工作。 三、教学重点和难点 重点:抠图、调图、修图、特效、合成 难点:图层、路径、色彩、通道 四、提高教学质量的方法 1、课前做好充分的准备,对教材、对软件、对专业、对学员要做充分的分析。 2、多以实际结合,生活中的点滴都是我们学习的素材。

3、坚持教学以学为主,教为辅。 4、兴趣是最好的老师,重在培养学生对学习的兴趣。 5、鼓励学生自学,但老师得要监督,不然很可能会“走火入魔”! 五、教学进度和要求 时 间章节 课 次 授课内容教学目标 教学 重点 课 时 数 第一周第一 章 基础 知识 1 软件与课程介绍、界面、 文件管理、视图布局与操 作、选区基础 让学员了解PS 是做什么的、 认识界面并对 其进行布局、 学习文件管 理、选区基础 布局 与控 制视 图、 文件 管 理、 选区 2 2 选区的布尔运算、变换操 作(移动、缩放、旋转、 斜切、扭曲、透视、翻转) 让学员掌握选 区的布尔运算 并运用其抠出 比较复杂的 图;同时掌握 对选出对像的 变换操作与快 选区 的布 尔运 算、 变换 2

工具软件 翻译软件概述

工具软件翻译软件概述 翻译软件的产生是随计算机技术的进步而产生的一种应用软件。早期的翻译软件功能较弱,只能根据固定的词汇或词组进行翻译,仅相当于电子版本的词典。人工智能技术的发展为翻译软件提供了极大的技术支持。现代的翻译软件已经能够识别各种自然语言的简单语法,并根据一定的语义环境进行智能翻译。 1.翻译软件分类 根据翻译软件的功能,可以将翻译软件分为词典软件、屏幕翻译软件以及辅助翻译软件等三大类。 ●词典软件 词典软件是类似实体书词典的软件。其功能是将各种语言的词汇翻译存储到数据库中,供用户调用。当用户输入某个词汇后,即可将该词汇翻译为另一种语言,如图4-1所示。 图4-1 词典软件的原理 由于计算机存储数据和查找数据非常便捷,因此,词典软件的出现,免去了用户在实体书词典中翻找的不便,提高了用户查找词汇的效率。国内常用的词典软件包括金山词霸、东方大典等。 ●屏幕翻译软件 词典软件要翻译的主要是各种词汇和短语等,而屏幕翻译软件则需要对各种语句、段落甚至文章进行翻译。相对词典软件而言,屏幕翻译软件更加智能化,功能也更加强大。屏幕翻译软件的工作原理如图4-2所示。 图4-2 屏幕翻译软件的工作原理 屏幕翻译软件往往可以根据要翻译的内容词汇,自主选择相应的词典,然后根据词典的语义进行智能翻译。虽然屏幕翻译软件可以翻译一些简单的句子和段落,但仍然无法取代人工翻译。仅能在少数领域作为人工翻译的补充而存在。目前国内常用的屏幕翻译软件主要包括金山快译、灵格斯词霸等。 ●辅助翻译软件 辅助翻译软件是辅助人工翻译的软件。其作用是以数据库的方式储存原文和译文,在翻译时以电脑分析与搜寻翻译记忆库,找出相同或类似的句子,共译者参考。使用辅助翻译软

(完整版)导数与函数图像问题

导数与函数图像问题 1.函数()y f x =的图像如右图,那么导函数,()y f x =的图像可能是( ) 2.函数)(x f 的定义域为开区间),(b a ,导函数)(x f ' 在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A. 1个 B.2个 C.3个 D.4个 3.设()f x '是函数()f x 的导函数,将()y f x =和 ()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 4若函数f (x )=x 2+bx+c 的图象的顶点在第四象限,则函数f′(x )的图象是( ) A . B . C . D . 5.设函数f (x )在R 上可导,其导函数为f′(x ),且函数f (x )在x=-2处取得极小值,则函数y=xf′(x )的图象可能是( ) A . B . C . D . a b x y ) (x f y ?=O

6.设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数y=f(x)e x的一个极值点,则下列图象不可能为y=f(x)的图象是() A.B.C.D. 7.若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是() A.B.C.D. 8.已知函数y=xf′(x)的图象如上中图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中y=f(x)的图象大致是() A.B.C.D. 9.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如上右图所示,则下列结论中一定成立的是()

图像处理课程设计报告

图像处理课程设计报告 导语:设计是把一种设想通过合理的规划周密的计划通过各种感觉形式传达出来的过程。以下是XX整理图像处理课程设计报告的资料,欢迎阅读参考。 图像处理课程设计报告1 摘要:图像处理技术从其功能上可以分为两大类:模拟图像处理技术、和数字图像处理技术。数字图像处理技术指的是将图像信号直接转换成为数字信号,并利用计算机进行处理的过程,其主要的特点在于处理的精度高、处理的内容丰富、可以进行复杂、难度较高的处理内容。当其不在于处理的速度比较缓慢。当前图像处理技术主要的是体现在数字处理技术上,本文说阐述的图像处理技术也是以数字图像处理技术为主要介绍对象。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。近年来, 图像处理技术得到了快速发展, 呈现出较为明显的发展趋势, 了解和掌握这些发展趋势对于做好目前的图像处理工作具有前瞻性的指导意义。本文总结了现代图像处理技术的三点发展趋势。 对图像进行处理(或加工、分析)的主要目的有三个方面: (1)提高图像的视感质量,如进行图像的亮度、彩色变换,增强、抑制某些成分,对图像进行几何变换等,以改善图像的质量。(2)提取图像中所包含的某些特征或特殊信息,这些被提

取的特征或信息往往为计算机分析图像提供便利。提取特征或信息的过程是计算机或计算机视觉的预处理。提取的特征可以包括很多方面,如频域特征、灰度或颜色特征、边界特征、区域特征、纹理特征、形状特征、拓扑特征和关系结构等。 (3)图像数据的变换、编码和压缩,以便于图像的存储和传输。不管是 何种目的的图像处理,都需要由计算机和图像专用设备组成的图像处理系统对图像数据进行输入、加工和输出。 数字图像处理主要研究的内容有以下几个方面: 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅里叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。 图像编码压缩图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

导数与函数图像

导数与函数图像问题
1.函数 y ? f (x) 的图像如右图,那么导函数 y ? f , (x) 的图像可能是( )
2.函数 f (x) 的定义域为开区间 (a, b) ,导函数 f ?(x) 在 (a, b) 内的图象如图所示,则函数 f (x) 在开区间 (a, b)
内有极小值点( )
A. 1个 B. 2 个 C. 3 个 D. 4 个
a
3 . 设 f ?(x) 是 函 数 f (x) 的 导 函 数 , 将 y ? f (x) 和
y
y ? f ?(x)
b
O
x
y ? f ?(x) 的图象画在同一个直角坐标系中,不可能正确的是( )
4若 函 数 f( x) =x2+bx+c 的 图 象 的 顶 点 在 第 四 象 限 , 则 函 数 f′ ( x) 的 图 象 是 (

A.
B.
C.
D.
5.设 函 数 f( x) 在 R 上 可 导 , 其 导 函 数 为 f′ ( x), 且 函 数 f( x) 在 x=-2处 取 得 极 小 值,则函数 y=xf′(x)的图象可能是( )
A.
B.
C.
D.
1

6. 设 函 数 f( x) =ax2+bx+c( a, b, c∈ R), 若 x=-1为 函 数 y=f( x) ex 的 一 个 极 值 点 , 则下列图象不可能为 y=f(x)的图象是( )
A.
B.
C.
D.
7.若函数 y=f(x)的导函数在区间[a,b]上是增函数,则函数 y=f(x)在区间[a,b] 上的图象可能是( )
A.
B.
C.
D.
8.已 知 函 数 y=xf′( x)的 图 象 如 上 中 图 所 示( 其 中 f′( x)是 函 数 f( x)的 导 函 数 ),
下面四个图象中 y=f(x)的图象大致是( )
A.
B.
C.
D.
9.设函数 f(x)在 R 上可导,其导函数为 f′(x),且函数 y=(1-x)f′(x)的图象如上
右图所示,则下列结论中一定成立的是( )
A.函数 f(x)有极大值 f(2)和极小值 f(1) 值 f(1) C.函数 f(x)有极大值 f(2)和极小值 f(-2) 值 f(2)
B.函数 f(x)有极大值 f(-2)和极小 D.函数 f(x)有极大值 f(-2)和极小
2

常用工具软件试题库

《常用工具软件》考试题库 一.判断题(每小题1分,共10分) 1. Realone Player不支持多节目连续播放。(X) 2.网际快车可以上传和下载文件。(√) 3. Internet上所有电子邮件用户的E-mail地址都采用同样的格式:用户名@主机名。(√) 4.Adobe Acrobat Reader可以解压缩文件。(X) 5.ACDSee是目前最流行的数字图像处理软件,它能广泛应用于图片的获取、管理、浏览、优化,甚至和他人的分享。(√) 6.天网防火墙的拦截功能是指数据包无法进入或出去。(X) 7.Symantec Ghost可以实现数据修复。(X) 8. 用户可以向金山词霸词库中添加没有收录的中、英文单词。(√) 9.系统长时间使用之后,会留下一堆堆垃圾文件,使系统变得相当臃肿,运行速度大为下降,但是系统不会频繁出错甚至死机。(√) 10.在使用FlashFXP软件下载网络中的FTP资源时,只需掌握FTP服务器的URL地址即可。(√) 11.在安装瑞星防火墙时,旧版本的瑞星防火墙无需卸载。(X) 12.压缩文件管理工具WinRAR只能压缩文件,不能对文件进行解压。(X) 13.在使用Virtual CD时,映像文件是不能被Windows资源管理器直接读取的,必须从Virtual CD中提取。(√) 14.在用Nero - Burning Rom软件制作CD时,可将数据文件从本地资源管理器中拖入了刻录机虚拟资源管理器中。(X) 15. 超级解霸3000能截取当前视频窗口中的图像存为图形文件。(√) 16.用MSN聊天时,可以隐身登录。(√) 17.ACDSee是目前最流行的数字图像处理软件,它能广泛应用于图片的获取、管理、浏览、优化,甚至和他人的分享。(√) 18、病毒不属于计算机软件(×) 19、优化大师就是让系统运行后没有垃圾文件(×) 20、注册表直接影响系统运行的稳定性(√) 21、清理注册表就是删除注册表中无用软件的注册信息(×) 22、360杀毒不能对单个文件进行病毒查杀(×) 23、根据工具软件使用的领域不同,但是一般都包含有标题栏、菜单栏、工具栏、状态栏、工作区。(√) 24、在进行实验操作时,为了不破坏现有的操作系统以及相关设置,我们可以使用虚拟机软件。(√) 25、在使用虚拟机的时候,按键盘右边的ALT可以在虚拟机和宿主机之间切换。(√) 26、CuteFTP是一个基于文件传输协议客户端软件。(√) 27、虚拟光驱是一种模拟CD-ROM工作的工具软件,它能在操作系统中模拟出新的光盘驱动器,是对物理光驱的一种仿真。(√) 28、利用ghost可以备份windows操作系统。(√) 29、常见的压缩格式ZIP格式、RAR格式、CBA格式、ACE格式。(√) 30、利用CuteFTP软件可以上传网站文件。(√) 31、Deamon Tools是一个优秀的虚拟光驱工具。(√)

《计算机图像处理》课程标准

《计算机图像处理》课程标准 课程类别:专业核心课程 教学时数:56 学分:5 适用专业:电子商务 授课对象:一年级第一学期 制订人: 完成时间:2014-9-5 一、课程标准的制订依据 本课程是图文信息处理专业课程。通过本课程的学习,使学生掌握Photosop这个图像处理软件,该软件功能强大,广泛应用于印刷、广告设计、封面制作、网页图像制作、照片编辑等领域。利用Photosop可以对图像进行各种平面处理。绘制简单的几何图形、给黑白图像上色、进行图像格式和颜色模式的转换。培养学生对图像的处理技术,也为以后学习图像的排版与输出做基础。 二、课程性质与作用 《计算机图像处理》是电子商务专业核心课,也可作为其它移动传媒专业的拓展课。负责互联网电子商务涉及的知识、能力、素质等方面的培养,学生的职业岗位主要是面向视觉营销网页设计岗位的高技能应用型人才,具有知识运用的综合性,技能实做的复合性,理论与实践结合密切性等特点。 通过对Photoshop软件的讲授与学习,能够让学生达到熟练操作图像处理作的方法与灵活运用设计创作的基本要求,从而达到专业学习的基本要求和满足市场与社会发展的需求。 培养学生分析问题和解决问题的能力,培养他们的职业情感、职业态度、职业技能等综合职业能力和创新能力,为学生就业打好基础。 三、本课程与其他课程的关系

四、课程目标 1.课程地位 《计算机图像处理》是移动传媒学院电子商务专业的核心专业课程。 《计算机图像处理》是让学生掌握计算机图像基本知识的基础上,学习图像从到互联网广告设计的全过程相关的基础理论和专业技能。成为实践能力强、具有良好职业道德、可持续发展能力的高素质、高技能人才。《计算机图像处理》实行学习情境教学,把课程内容分解为若干学习情境,每一个学习情境中又含有若干个教学任务,学生在不断完成工作任务的过程中掌握知识并增长实际技能。 通过本课程的学习,训练学生的实际操作能力和工作经验,培养学生的团队合作精神、语言表达能力、决策能力、自学能力、客观评价能力、竞争意识、可持续发展能力等职业综合素质,为以后从事专业工作奠定基础。 2.课程定位 本课程以情景式教学为主体,教师讲授与学生自学结合,项目驱动教学法,仿真教学,案例教学方法,启发式教学方法,直观演示启发,多媒体教学,计算机情景实验教学方法。具备鉴赏设计作品的能力;具备动手设计图的设计能力;具备设计中解决问题的能力;具备设计与商业相结合的能力。重点培养学生分析与解决设计与视觉营销中各种工艺问题的能力。 3.专业能力 (1)鉴赏设计作品设计能力; (2)掌握动手设计网页能力; (3)具备解决设计构图的能力; (4)掌握设计色彩搭配能力; (5)设计与商业相结合的综合能力; (6)视觉营销能力; (7)设计管理协调管理能力。 并通过图像图形设计综合实训,使学生具备从事网页设计、视觉营销的综合应用能力。 4.社会能力 (1)具备符合电子商务图像设计的基本职业道德和职业素质。 (2)具备知识产权意识、质量意识、环境保护意识、节约意识,并能言行一致; (3)善于观察、发现和学习,能与团队成员共同协作、沟通、协商完成相关工作;

常用CAT计算机辅助翻译软件

常用CAT计算机辅助翻译软件 1、SDL TRADOS SDL Trados为他们克服了在不同国家地区的文化、语言障碍,从而为他们的全球化铺平了发展道路。因为SDL Trados用户通常能够将完成工作的速度提高50%左右(具体数值依不同文档,项目会有变化),更准确地评估时间和成本,显著减少翻译错误,编写更为一致的翻译(对技术、法律和医学翻译来说,这一点尤其重要)。这正因为其功能强大,在操作性方面就有所不足,在国内来说普及度不高。 2、iCAT iCAT辅助翻译工具免费软件,内嵌到Word工具中,支持最新的Word2013,支持64、32的系统,支持中文、繁体中文、英、日、韩、德、法、俄、西班牙等。它提供独立的术语和翻译记忆库(TM),可以同时挂多个术语库,同时通过火云术语配合使用,实现术语分享和收藏功能,达到云端保存的效果。自带机器翻译,术语批准等功能,同时译员通过使用该工具能及时了解自己最新的翻译字数。对于译后稿,提供3种保存格式,解决了译员对译后稿件的排版麻烦。该公司有兼全职译员3W多名,同时在各高校MTI教学和外语类实验室广泛使用,故在国内知名度很高。 3、passolo Passolo 是一款功能强大的软件本地化工具,它支持以Visual C++ 、Borland C++ 及Delphi 语言编写的软件(.exe、.dll、.ocx)的本地化。以往针对这两种不同语言编写的软件,我们大多是需要分别使用Visual Localize 和Language Localizator 来进行软件的中文化。而现在,Passolo 把二者的功能结合在了一起,并且性能稳定、易于使用,用户即不需要进行专门的训练,也不需要丰富的编程经验,在本地化的过程中可能发生的许多错误也都能由Passolo 识别或自动纠正。所以,passolo是软件本地化不二的选择。 4、Transmate Transmate 提供了独立的翻译操作界面,不依赖、也无需与其他应用程序交互(如MS WORD),在单一的程序界面中集成了翻译记忆库(TM)、术语库和翻译单元列表,界面简洁,操作方便。不像使用老版Trados 那样,需要启动多个不同的应用程序来分别操作记忆库、术语库和相关的文件。因其Transmate其实验室产品在高校广泛应用,故儿成为国内大多数译员比较熟悉的工具,在翻译公司的应用率也相对较高。 5、WordFast Wordfast 是结合Microsoft Word 使用的翻译记忆引擎。它可以在PC 或Mac 操作系统下运行。(请参阅技术规格或支持的操作系统)Wordfast 数据具有易用性和开放性,同时又与Trados 和大多数计算机辅助翻译(CAT) 工具兼容。它不仅可被用来翻译Word, Excel, Powerpoint, Access 文件,还可被用来翻译各种标记文件。此外,Wordfast 还可以与诸如PowerTranslator?,Systran?,Reverso? 等机器翻译(MT) 软件连接使用。另外,它还具有强大的词汇识别功能。所以,个人译员使用的比例相对较高. 6、Logoport Lionbridge 的免费产品,嵌入Word工具中,至于它的RTF文件是怎么做出来的,不得而知。它使用在线的TM服务器,可以很多译员同时翻译一个文件,TM时时共享,这和免费使用可以说是Logoport最大的优势,但是因为使用在线的TM,可能是他们服务器在国外的原因,每打开一个翻译单元格,都要花费一两秒钟的时间,译员怨声不断。初次看到分析出来的Log文件,可能会受到误导,认为那些100%匹配不用翻译,其实Logoport是用本文件将要翻译出来的TM结果分析未曾翻译的文件,乍一看好似很多匹配,实际上都是需要翻译的"新词",不过,匹配部分算钱的办法还算合理,比Trados匹配部分要高很多。所以,CAT爱好者可以玩一玩.

图形图像处理photoshopcs6授课计划清单

珠海城职学院(成教)双证教育中心学期教学授课(实训)计划 2016-2017 年第一学期 课程名称图形图像处理 授课班级16计算机应用 使用教材《中文版Photoshop CS6实例教程》 授课教师 授课计划审批 教务员年月日教务主任年月日 授课计划执行情况检查 检查日期授课计划执行情况检查人年月日 年月日

教学授课(实训)计划说明一、任教课程基本情况 所教学生所学专业计算机应用 课程性质专业课 新开课还是续开课新开课 本期计划布 7次 置 作业次数 二、课程目标(知识目标、能力目标、素质目标) 1.能力目标 ●掌握Photoshop图像处理软件的使用方法; ●能进行数码照片处理、色彩修饰; ●能绘制VI标志、图形等手绘作品; ●能制作图像特效、纹理图案等; ●能够完成广告版式、网页界面的设计制作; ●能够制作图文混排的广告招贴、海报等平面设计作品; ●能制作背景、按钮、标题等网页元素。 2.知识目标 ●熟悉图像文件类型、色彩模式的特点及应用; ●理解图层的概念和功能作用; ●理解选区、通道、蒙版的概念及应用特点,理解三者之间的关系; ●理解路径的概念、掌握路径工具的特点; ●熟悉图像处理工具、命令的功能及作用; ●理解滤镜的功能和应用特点。 3.素质目标 ●培养学生创新思维能力和健康的审美意识,提高作品的艺术鉴赏水平; ●培养学生诚实、守信、按时交付作品的时间观念; ●培养良好人际沟通能力和团队合作精神。

三、学情分析 本课程在“以岗位能力为核心”的计算机技术与应用课程体系中处理于重要地位,本课程培养学生数码照片处理、广告图像处理、VI图形绘制、网页图像处理等技能,达到“会、熟、快、美”岗位要求;培养学生创新思维能力和健康的审美意识,培养学生按时交作业的时间观念和团队合作精神,为其成长为一名合格的广告设计与制作人员奠定良好的基础。 本课程是计算机技术与应用专业必须掌握的职业技能,学完本课程后学生完全能够胜任数码照片处理、广告图像处理、VI图形绘制、网页图像处理等职业岗位,为学生考取广告设计师、图像制作员等职业资格证书打下基础。 四、教学主要任务和要求 教学 项目名称工作任务(模块/单元) 划分 教学要求 知识技能内容学习目标 项目一课程定位与图片赏析任务一 欣赏艺术照片 ●了解本课程的 培养目标; ●了解课程在专 业人才培养方 案中的定位与 作用; ●理解矢量图和 位图的概念; ●熟悉PS的操作 界面。 ●通过对不同岗位、不同的精美图片赏析, 激发学生的学习兴趣,使学生主动参与 到图像处理的工作任务中来; ●能够定制和优化合适的工作环境,适应 自己的工作习惯; ●掌握不同图像文件格式的保存方法; ●能够设置图像文件的分辨率、打印尺寸, 能够调整画布大小; ●掌握图像文件基本操作。 任务二 欣赏广告作品 任务三 欣赏VI作品 任务四 欣赏网页 项目二人物数码照片处理任务五 欣赏儿童相册 ●选框工具和套 索工具 ●图像的移动与 复制 ●度量工具 ●裁剪工具 ●选择区域的运 ●培养学生的创新能力,能够运用美学知 识设计照片版面; ●培养学生认真仔细的工作态度; ●能综合运用选框工具、套索工具、移动 工具和选择命令对数码照片进行合成处 理; ●能运用度量工具、裁剪工上瓮城照片进任务六制作简单儿 童艺术照片 任务七 更换儿童照片背景 任务八

《PS平面设计》学期教学计划

学期教学计划 课程性质、目的与任务: 本课程是本专业学习的专业基础课,是一门理论与实践紧密结合的课程。本课程是学习Photoshop的入门课程,它为今后进一步学习平面设计类课程建立基础理论和基本操作技能。因此本课程对于学生熟练掌握平面设计是十分重要的。 通过对本课程的学习,学生应了解Photoshop的基础知识;掌握Photoshop的基本操作,掌握各项选取工具的使用,从而快速有效地选取图像;掌握图像的色彩和色调调整以及图像的各种编辑方法,并能掌握图像的绘制与修饰方法,同时应掌握文字、图层、路径、通道与蒙版的应用,并能使用滤镜制作各种特效,更要了解并掌握其3D功能的使用。 在学习中,重点培养学生的动手能力、理论与实践紧密结合的能力,使学生学习本课程后掌握Photoshop的基本操作。 一、培养目标 本专业要求掌握计算机图形图像的基本理论知识和相关应用领域知识,熟悉图形图像制作环境,精通国际上流行的1~2种图形图像制作工具,并能运用它们独立地实现创意者的意图,完成图形图像的制作任务。要求学生获取平面设计师相关的认证,成为掌握一定的专业理论、具有较强的实践动手能力、具有较强的市场经济意识和社会适应能力,富有创新精神,具备可持续发展能力的图形图像设计与制作的应用型技术人才。 二、知识结构 1. 熟悉计算机的基础知识,掌握计算机软硬件安装技术; 2. 掌握计算机图形图像的基本理论知识和相关应用领域知识;

3. 了解平面设计、民间美术;掌握平面构成规则与技巧,掌握美术(素描、色彩及构成)等基本理论知识; 4. 掌握广告的基本知识,能熟练地使用平面设计软件完成平面设计与制作; 5. 掌握平面广告设计、标志设计、网页设计与制作方法; 6. 掌握三维软件的使用和相关设计工作; 7. 掌握多媒体元素的构成与使用技巧,掌握多媒体产品的设计与制作; 8. 掌握二维、三维动画设计与制作,掌握音频编辑与制作; 9. 熟悉国家有关图形图像设计的设计规范、设计标准等; 10. 了解国内外图形图像设计与制作的发展动态。 三、能力结构 1. 具有计算机软件应用基本技能; 2. 具有图形图像、设计、制作的基本能力; 3. 具有电脑美术设计和实际操作的技能和技巧; 4. 具有图形、图像、音频处理、视频处理及多媒体应用系统制作的能力; 5. 具有运用各种媒体进行学习、获取新知识、掌握新技术、新设备、新系统的能力; 6. 具有按工作任务要求,运用所学知识提出工作方案、完成工作任务的能力; 7. 具有按照并满足用户要求,提出创意的能力; 8. 具有获取图形图像技术领域的职业资格证书的能力。 四、课程考核方式(建议) 考核:理论考试占30%;上机考试占50%;平时成绩20%; 1.上机考试、理论考试、平时成绩总分低于60分,总评为不及格;

导数的切线方程和图像知识点与习题

导 数 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时, 1-=??x y ,故x y x ??→?0lim 不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则:

《PhotoShop》教学计划

《PhotoShop》教学计划 一、指导思想 1、以国家职业标准为依据,培养合格的中级技能人才。 2、坚持理论与实践相结合,突出职业技能训练,注重对学生分析问题、解决问题能力的培养。 3、体现现代科学技术的发展,突出教学的科学性和先进性,注意学生素质的全面提高。 二、培养目标 通过本课程的实训,要求学生基本掌握制作广告招贴、婚纱艺术照片、书籍装帧、网络底纹和特效文字等方面的技术。初步熟悉广告设计和图像合成的设计理念和开发技巧。 建议能通过OSTA计算机图形图像处理(Photoshop)中级技能鉴定三、实习教学计划表

说明: 1、软件菜单和命令的讲解要少而精,重点要结合实际应用技巧来讲,每一项功能都要结合案例来讲,即采用案例教学法。教师应选择一些经典的案例做示

范操作,引导学生举一反三,重视课内的实际操作练习和辅导,使学生逐渐养成应用快捷键的操作习惯。注意调动学生的学习兴趣和创造性。 2、对本实习教学计划的课题,可根据实际情况适当调整上课所在的学期。 四、实习装备及师资要求 (一)实习装备 硬件设备要求:本课程要求上课时每生一台计算机,该计算机能满足中文Windows98以上系统及Photoshop6.0系统的运行要求,要求机房配置投影仪。软件设备要求:本课程要求的软件为中文Windows98以上的操作系统及Photoshop6.0以上的系统;准备与课程案例相关的素材。 (二)师资 实习指导教师要具备《Photoshop7.0》中级以上技能水平,有一定平面设计经验。 每20名学生应配备一名实习指导教师。

《PhotoShop》教学计划 张兰云

导数探讨函数图像的交点问题

由2006年高考看如何用导数探讨函数图象的交点问题 2006年高考数学导数命题的方向基本没变, 主要从五个方面(①与切线有关的问题②函数的单调性和单调区间问题③函数的极值和最值问题④不等式证明问题⑤与函数的单调性、极值、最值有关的参数问题)考查了学生对导数的掌握水平。 但是,2006年高考数学导数命题在方向基本没变的基础上,又有所创新。福建理科卷第21题研究两个函数的交点个数问题, 福建文科卷第19题研究分式方程的根的分布问题,湖南卷第19题研究函数的交点问题,四川卷第21题研究函数图象的交点个数问题。从以上试卷我们可以发现导数命题创新的两个方面:一是研究对象的多元化,由研究单一函数转向研究两个函数或多个函数,二是研究内容的多元化,由用导数研究函数的性质(单调性、最值、极值)转向运用导数进行函数的性质、函数图象的交点和方程根的分布等的综合研究,实际上就是运用导数考查函数图象的交点个数问题。 试题“以能力立意”的意图表现明显,试题注重了创新、开放、探究性,以所学数学知识为基础,对数学问题进行深入探讨,从数学角度对问题进行探究。考查了学生综合与灵活地应用所学的数学思想方法,进行独立的思考、探索和研究,创造性地解决问题的能力。 如何运用导数的知识研究函数图象的交点问题呢?下面我们先看一看今年的高考题。 例1(福建理科第 21题)已知函数f(x)=-x 2+8x,g(x)=6lnx+m (Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t); (Ⅱ)是否存在实数 m ,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出 m 的取值范围;,若不存在,说明理由。解:(Ⅰ)略 (II )∵函数y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点, ∴令f(x)= g(x) ∴g(x)-f(x)=0 ∵x>0 ∴函数(x)=g(x)-f(x) = 2x -8x+6ln x+m 的图象与x 轴的正半轴有且只有三个不同的交点。 ∵26 2862(1)(3)'()28(0),x x x x x x x x x x 当x ∈(0,1)时, )(1x 〉0,)(x 是增函数;当x ∈(1,3)时,)(1x 〈0,)(x 是减函数;当x ∈(3,+∞)时,)(1x 〉0,)(x 是增函数;当x=1或x=3时, )(1x =0。∴x 极大值1m -7,x 极小值 3m+6ln 3-15.∵当x →0时, (x)→,当x 时,(x)∴要使(x)=0有三个不同的正实数根,必须且只须 ,0153ln 6)(,07)(+极小值 极大值 m x m x ∴7

PS教学计划

一、指导思想 职高计算机教学应立足于学生的专业发展,为他们的终身学习、生活和工作奠定基础。让学生学习计算机系统的日常维护工作日趋重要,掌握相关软件的使用方法是非常必要的。我们所学学科PhotoshopCS6是Adobe公司最新推出的一款图形图像制作软件。PhotoshopCS6是对数字图形编辑和创作专业工业标准的一次重要更新,在原有强大功能基础上又新增了可视化复制、填色和转换图片的功能,支持非破坏性编辑,可创建嵌入式链接复制图片等功能。PhotoshopCS6是平面广告设计、企业形象设计、产品包装设计、网页设计和印刷制版等多种平面设计领域首选工具软件之一。 二、基本情况 本学期教学的图像处理软件有一个班级,2013级计算机三班。该班共有在校学生57人,课时是每周四节。虽然图像处理软件不是高考内容,但是对于职高学生也是必学科目。班上大部分学生对学习计算机较为感兴趣。而且在上期时学生已经学习过类似的软件,所以对于该软件的学习,学起来就会容易许多。当然职高学生的学习基础相对较差,学习习惯不是很好,但该班的学生在职高学生中综合素质算不错的。然而就是专业技能还较欠缺,所以应该要加强学生的专业技能,多些实践活动课程。三、教学目标 通过本学期《图像处理软件》的学习,主要要求同学们掌握

图像处理软件的相关功能和操作,为以后的一些学习和以后的工作打下较好的基础。 通过学习该图像处理软件后,要求同学达到以下要求: 1.学习和掌握PSCS6软件的一些基本操作。 2.学习照片的美化、图片的合成,学习和掌握修复工具的使 用及不规则选框工具的用法及作用。 3.学习和掌握“图像”菜单中“调整”命令的使用方法。 4.学习制作立体字、边框字、亮丽的编织字以及反相字,文 字制作特效方法。 5.运用蒙板和通道知识,将手中的素材图像在想象力的驱动 下进行合成。 6.介绍图层样式效果制作,以及通过图层混合模式进行图像 合成的技巧。 7.通过“苹果”商标、企业标志的制作介绍路径和“路径” 面板。 8.学习滤镜功能,并掌握滤镜的使用和操作方法。 四、教材分析 该教材是任务引领课程改革系列教材,本书按照“以服务为宗旨、以就业为导向”的指导思想,采用“行动导向、任务驱动”的方法,将学习PScs6软件与实际平面美术设计工作密切结合。通过本教材的学习,不仅可以了解和掌握PScs6软件强大的绘图和图像处理功能,同时体验了真实工作案例的设计与制

导函数图像与原函数图像关系

导函数图像类型题 类型一:已知原函数图像,判断导函数图像。 1. (福建卷11)如果函数)(x f y =的图象如右图,那么导函数的图象可能是 ( ) 2. 设函数f (x )在定义域内可导,y=f (x )的图象如下左图所示,则导函数y=f (x )的图象可能 为( ) 3. 函数的图像如下右图所示,则的图像可能是 ( ) 4. 若函数2 ()f x x bx c =++的图象的顶点在第四象限,则其导函数'()f x 的图象是( ) 类型二:已知导函数图像,判断原函数图像。 5. (2007年广东佛山)设)(x f '是函数)(x f 的导函数,)(x f y '=的图 象如右图所示,则)(x f y =的图象最有可能的是( ) O 1 2 x y x y y O 1 2 y O 1 2 x O 1 2 x D O 1 2 x y

6. (2010年3月广东省深圳市高三年级第一次调研考试文科)已 知函数的导函数的图象如右图,则的图象可能是( ) 7. 函数的定义域为开区间3(,3)2- ,导函数在3 (,3)2 -内的图象如图所示,则函数的单调增区间是_____________ 类型三:利用导数的几何意义判断图像。 8. (2009湖南卷文)若函数的导函数... 在区间上是增函数,则函数在区间上的图象可能是 ( ) A . B . C . D . 9.若函数)(' x f y =在区间),(21x x 内是单调递减函数,则函数)(x f y =在区间),(21x x 内的图像可以是( ) y y y )(x f y '=

相关文档
最新文档