数值分析上机试题(研究生)

数值分析上机试题(研究生)
数值分析上机试题(研究生)

数值分析上机作业

昆明理工大学工科研究生《数值分析》上机实验 学院:材料科学与工程学院 专业:材料物理与化学 学号:2011230024 姓名: 郑录 任课教师:胡杰

P277-E1 1.已知矩阵A= 10787 7565 86109 75910 ?? ?? ?? ?? ?? ??,B= 23456 44567 03678 00289 00010 ?? ?? ?? ?? ?? ?? ?? ?? ,错误!未找到引用源。 = 11/21/31/41/51/6 1/21/31/41/51/61/7 1/31/41/51/61/71/8 1/41/51/61/71/81/9 1/51/61/71/81/91/10 1/61/71/81/91/101/11?????????????????? (1)用MA TLAB函数“eig”求矩阵全部特征值。 (2)用基本QR算法求全部特征值(可用MA TLAB函数“qr”实现矩阵的QR分解)。解:MA TLAB程序如下: 求矩阵A的特征值: clear; A=[10 7 8 7;7 5 6 5;8 6 10 9;7 5 9 10]; E=eig(A) 输出结果: 求矩阵B的特征值: clear; B=[2 3 4 5 6;4 4 5 6 7;0 3 6 7 8;0 0 2 8 9;0 0 0 1 0]; E=eig(B) 输出结果:

求矩阵错误!未找到引用源。的特征值: clear; 错误!未找到引用源。=[1 1/2 1/3 1/4 1/5 1/6; 1/2 1/3 1/4 1/5 1/6 1/7; 1/3 1/4 1/5 1/6 1/7 1/8; 1/4 1/5 1/6 1/7 1/8 1/9;1/5 1/6 1/7 1/8 1/9 1/10; 1/6 1/7 1/8 1/9 1/10 1/11]; E=eig(错误!未找到引用源。) 输出结果: (2)A= 10 7877565861097 5 9 10 第一步:A0=hess(A);[Q0,R0]=qr(A0);A1=R0*Q0 返回得到: 第二部:[Q1,R1]=qr(A1);A2=R1*Q1

2014级硕士研究生数值分析上机实习报告

2014级硕士研究生数值分析上机实习(第一次) 姓名:学号:学院: 实习题目:分别用二分法和Newton迭代法求方程x3■ 2x210x-20=0的根.实习目的:掌握两种解法,体会两种解法的收敛速度. 实习要求:用C程序语言编程上机进行计算,精确到8位有效数字. 报告内容: 1.确定实根的个数以及所在区间 2.将最后两次计算结果填入下表(保留8位数字): 3.实习过程中遇到哪些问题?如何解决?有何心得体会?

4.两种解法的计算程序(此页写不下时可以加页):

2014级硕士研究生数值分析上机实习(第二次)姓名:学号:学院: 实习题目:计算8阶三对角矩阵A=tridiag(0.235, 1.274, 0.235)的行列式.实习目的:掌握计算行列式的方法. 实习要求:首先选择一种算法,然后用C程序语言编程上机进行计算.报告内容: 1.简单描述所采用的算法: 2?计算结果: A 3.实习过程中遇到哪些问题?如何解决?有何心得体会?

4.写出C语言计算程序(此页写不下时可以加页):

2014级硕士研究生数值分析上机实习(第三次) 姓名:学号:学院: 分别用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组实习题目: 2lx + 9.8y+ 3.4z= 6.7 <2.7x + 1.8y+ 7.2z= 2.4 8.6x + 1.5y + 3.4z = 1.9 实习目的:感受两种迭代法的收敛速度. 首先构造收敛的Jacobi迭代法和Gauss-Seidel迭代法,然后用实习要求: C程序语言编程上机进行求解,初始值均取为0,精确到4位小 数. 报告内容: 1.写出收敛的Jacobi迭代法和Gauss-Seidel迭代法:

2009哈工大级研究生《数值分析》试卷

2009级研究生《数值分析》试卷 一.(6分) 已知描述某实际问题的数学模型为x y y x y x u 223),(+=,其中,y x ,由 统计方法得到,分别为4,2==y x ,统计方法的误差限为0.01,试求出u 的误差限 )(u ε和相对误差限)(u r ε. 二.(6分) 已知函数13)(3+=x x f 计算函数)(x f 的2阶均差]2,1,0[f ,和4阶均差]4,3,2,1,0[f . 三.(6分)试确定求积公式: )]1(')0('[12 1 )]1()0([21)(10f f f f dx x f -++≈?的代数精 度. 四.(12分) 已知函数122)(2 3 -++=x x x x f 定义在区间[-1,1]上,在空间 },,1{)(2x x Span x =Φ上求函数)(x f 的最佳平方逼近多项式. 其中,权函数1)(=x ρ,15 4 ))(),((,1532))(),((,34))(),((210-==-=x x f x x f x x f ???. 五.(16分) 设函数)(x f 满足表中条件: (1) 填写均差计算表(标有*号处不填): (2) 分别求出满足条件)2,1,0(),()(),()(22===k x f x N x f x L k k k k 的 2次 Lagrange 和 Newton 差值多项式.

(3) 求出一个四次插值多项式)(4x H ,使其满足表中所有条件.并用多项式降幂形式表示. 六.(16分) (1). 用Romberg 方法计算?3 1 dx x ,将计算结果填入下表(*号处不填). (2). 试确定三点 Gauss-Legender 求积公式?∑-=≈1 1 2 )()(k k k x f A dx x f 的Gauss 点k x 与系数 k A ,并用三点 Gauss-Legender 求积公式计算积分: ?3 1dx x . 七.(14分) (1) 证明方程02ln =--x x 在区间(1,∞)有一个单根.并大致估计单根的取值范围. (2) 写出Newton 迭代公式,并计算此单根的近似值.(要求精度满足: 5 110||-+<-k k x x ). 八. (12分) 用追赶法求解方程组: ???? ?? ? ??=??????? ????????? ??022112111131124321x x x x 的解. 九. (12分) 设求解初值问题???==0 0)() ,('y x y y x f y 的计算格式为: )],(),([111--+++=n n n n n n y x bf y x af h y y ,假设11)(,)(--==n n n n y x y y x y ,试确定参数b a ,的值,使该计算格式的局部截断误差为二阶,即截断部分为: )(3h o .

中国农业大学研究生数值分析考试重点及笔记

中国农业大学数值分析研究生课程重点 后面有笔者的笔记!! 第1章 1、 5个概念(绝对误差、绝对误差限、相对误差、相对误差限,有效数字)及其计算,数值运算的误差估计 2、算法稳定性的概念及算法设计的5个原则 第2章 1、牢记拉格朗日插值公式、牛顿插值公式,掌握余项推导 2、了解均差的性质 3、会用基函数和承袭性两种方法构造埃尔米特插值问题,并会推导余项 4、为何要分段低次插值?会构造分段线性和分段三次埃尔米特插值 5、三次样条插值的2种构造思路 第3章 会利用最小二乘法解决具体问题 第4章 1、机械求积公式、代数精度的概念理解和计算

2、插值型求积公式的定义和判断,插值型求积公式中求积系数有何特点?如何证明? 3、求积公式余项的推导 4、什么叫牛顿-柯特斯求积公式?总结其优缺点 5、牢记梯形公式、辛普森公式及其余项(会推导),牢记柯特斯公式 6、复化求积公式的计算 7、高斯型求积公式的定义、判断和使用,高斯型求积公式中求积系数有何特点?如何证明? 8、总结学过的数值求积公式,说明其关系 第5章 1、会用高斯消去法、高斯列主元素法、直接三角分解法、(改进)平方根法、追赶法求解线性方程组 2、会计算矩阵和向量的常用范数 3、线性方程组性态的分析 第6章 1、三种迭代法(雅可比、高斯-赛德尔、松弛法)的构造及其矩阵形式的推导 2、会构造迭代公式求方程组的解,并判断是否收敛 第7章

1、了解不动点迭代法是否收敛的判断方法 2、会判断迭代法收敛的收敛速度(收敛阶) 3、会构造不动点迭代公式求方程的根,并指明收敛阶数 4、牛顿迭代法公式推导,求单根和重根收敛性的证明 5、牛顿迭代法的优缺点及其改进 第9章 1、牢记欧拉的5个公式及其推导 2、会用三种不同方法推导欧拉显式单步公式 3、掌握局部截断误差的概念及其应用

研究生数值分析试卷

2005~2006学年第一学期硕士研究生期末考试试题(A 卷) 科目名称:数值分析 学生所在院: 学号: 姓名: 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。 一、(15分)设求方程 0cos 2312=+-x x 根的迭代法 k k x x cos 3 2 41+=+ (1) 证明对R x ∈?0,均有*lim x x k k =∞ →,其中*x 为方程的根. (2) 此迭代法收敛阶是多少? 证明你的结论. 二、(12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的收敛性。 ??? ??=++-=++=-+. 022,1, 122321 321321x x x x x x x x x 三、(8分)若矩阵??? ? ? ??=a a a a A 000002,说明对任意实数0≠a ,方程组b AX =都是非病态的。(范数用∞?) 四、( 求)(x f 的Hermite 插值多项式)(3x H ,并给出截断误差)()()(3x H x f x R -=。 五、(10分)在某个低温过程中,函数 y 依赖于温度x (℃)的试验数据

为 已知经验公式的形式为 2bx ax y += ,试用最小二乘法求出 a ,b 。 六、(12分)确定常数 a ,b 的值,使积分 [ ] dx x b ax b a I 2 1 1 2 ),(?--+= 取得最小值。 七、(14分)已知Legendre(勒让德)正交多项式)(x L n 有递推关系式: ?? ? ? ???=+-++===-+),2,1()(1)(112)()(, 1)(1110 n x L n n x xL n n x L x x L x L n n n 试确定两点的高斯—勒让德(G —L )求积公式 ? -+≈1 1 2211)()()(x f A x f A dx x f 的求积系数和节点,并用此公式近似计算积分 ?=2 11 dx e I x 八、(14分)对于下面求解常微分方程初值问题 ?????==0 0)() ,(y x y y x f dx dy 的单步法: ??? ? ??? ++==++=+) ,() ,()2 121(1 21211 hk y h x f k y x f k k k h y y n n n n n n

研究生数值分析试题

昆明理工大学2010级硕士研究生考试试卷 (注:考试时间150分钟;所有答案,包括填空题答案一律答在答题纸上,否则不予记分。) 一、 填空(每空2分,共24分) 1.近似数490.00的有效数字有 位,其相对误差限为 。 2.设7 4 ()431f x x x x =+++,则017[2,2,......2]f = ,018 [2,2,......2]f = 。 3.设4()2,[1,1]f x x x =∈-,()f x 的三次最佳一致逼近多项式为 。 4.1234A ??=??-??,1A = ,A ∞= ,2A = 。 5.210121012A -????=-????-?? ,其条件数2()Cond A = 。 6.2101202A a a ????=?????? ,为使分解T A L L =?成立(L 是对角线元素为正的下三角阵),a 的取 值范围应是 。 7.给定方程组121 122 ,x ax b a ax x b -=?? -+=?为实数。当a 满足 且02ω 时,SOR 迭代法收敛。 8.对于初值问题/ 2 100()2,(0)1y y x x y =--+=,要使用欧拉法求解的数值计算稳定,应限定步长h 的范围是 。 二、 推导计算 (15分)

(小数点后至少保留5位)。(15分) 3.确定高斯型求积公式 01 1010 ()()(),(0,1)f x d x A f x A f x x x ≈+ ∈? 的节点01,x x 及积分系数01,A A 。(15分) 三、 证明 1. 在线性方程组AX b =中,111a a A a a a a ?? ??=?????? 。证明当112a - 时高斯-塞德尔法 收敛,而雅可比法只在11 22 a - 时才收敛。 (10分) 2. 给定初值02 0, x a ≠以及迭代公式 1(2) ,(0,1,2...., 0) k k k x x a x k a +=-=≠ 证明该迭代公式是二阶收敛的。(7分) 3. 试证明线性二步法 212(1)[(3)(31)]4 n n n n n h y b y by b f b f ++++--=+++ 当1b ≠-时,方法是二阶,当1b =-时,方法是三阶的。(14分)

北航2010-2011年研究生数值分析期末模拟试卷1-3

数值分析模拟试卷1 一、填空(共30分,每空3分) 1 设??? ? ??-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数=________. 2 设 ,2,1,0,,53)(2==+=k kh x x x f k ,则],,[21++n n n x x x f =________, ],,[321+++n n n n x x x x f ,=________. 3 设?????≤≤-++≤≤+=2 1,121 0,)(2 323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________. 4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则 ?=1 )(dx x xq k ________,=)(2 x q ________. 5 设???? ??????=11001a a a a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当 其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的. 二、(14分)设4 9,1,41,)(2102 3 === =x x x x x f , (1)试求)(x f 在]4 9,41[上的三次Hermite 插值多项式)(x H 使满足 2,1,0),()(==i x f x H i i ,)()(11x f x H '='. (2)写出余项)()()(x H x f x R -=的表达式. 三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3 2 41+ =+, (1) 证明R x ∈?0均有? ∞ →=x x n x lim (? x 为方程的根); (2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值; (3)此迭代的收敛阶是多少?证明你的结论. 四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式 有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?

研究生《数值分析》练习题

硕士研究生 《数值分析》练习题 一、判断题 1、用Newton 切线法求解非线性线性方程可以任选初值。 ( ) 2、求解非线性线性方程,Newton 切线法比弦截法迭代次数多。 ( ) 3、若n n A R ?∈非奇异,用Jacobi 迭代法求解线性方程组Ax b =必收敛。( ) 4、Lagrange 插值法与Newton 插值法得到同一个插值多项式。 ( ) 二、填空题 1、近似数 3.14108937a =关于π具 位有效数字。 2、双点弦截法具有 阶收敛速度。 3、求方程x x e =根的单点弦截法迭代公式是 。 4、设2112A ?? = ? ?? ? ,则()A ρ= 。 5、设,0,1,2,3i x i =是插值基点,,0,1,2,3i l i =是对应的三次Lagrange 插值基函数,则()()3 3012i i i x l =-=∑ 。 6、由下数据表确定的代数插值多项式的不超过 次。 7、若()8754321f x x x x =+-+,则差商[]0,1,2,,8f = 。 8、拟合三点()()()0,1,1,3,2,2A B C 的直线是y = 。 三、分析与计算题 1、设()14,2,3515T A x -??==-?? -?? ,求∞=,2,1,,p x A p p 和()1A cond 。

2、1001012,20253A x -???? ? ? == ? ? ? ?-???? ,试计算p p x A ,,p=1,2,∞,和1)(A cond 。 3、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中 122111221A -?? ?=-- ? ?--?? 。 4、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中 2-11=11111-2A ?? ???? ???? 。 5、已知函数表如下: ⑴ ()111.75ln11.75L ≈、估计截断误差并说明结果有几位有效数字; ⑵ ()211.75ln11.75N ≈、估计截断误差并说明结果有几位有效数字。 6、已知函数表 如下: ⑴用Lagrange 插值法求ln0.55的近似值()10.55N 、估计截断误差并说明结果的有效数字; ⑵用 Newton 插值法求ln0.55的近似值()20.55N 、估计截断误差并说明结果的有效数字。 7、已知数据如下,求满足条件的Hermite 插值多项式。

2008级研究生数值分析试题

太原科技大学 2008级硕士研究生08/09学年第一学期 《数值分析》考试试卷 说明:1、Legendre 正交多项式)(x L n 有三项递推关系式: ?? ?? ???=+-++===-+ ,2,1)(1)(112)()(,1)(1110n x L n n x xL n n x L x x L x L n n n 2、Chebyshev 多项式)(x T n 有三项递推关系式: ?? ? ??=-===-+ ,2,1)()(2)()(,1)(1110n x T x xT x T x x T x T n n n 一、填空题:(每题4分,共20分) 1、设??? ? ??-=1511A ,则=∞)(A Cond 2、为提高数值计算精度,当x 充分小时,应将 x x sin cos 1-改写为 3、设)5()(2 -+=x a x x ?,要使)(1k k x x ?=+局部收敛到5* = x ,则a 的取值范围为 4、近似数235.0* =x 关于真值229.0=x 有 位有效数字。 5、设,1)(3 -+=x x x f 则差商=]3,2,1,0[f 二、(本题满分10分)用数值积分的方法建立求解初值问题b x a y a y y x f y a ≤≤==',)(),,(的Simpson 公式: )4(3 1111-+-++++=n n n n n f f f h y y 其中1,,1),,(+-==n n n i y x f f i i i ,11-+-=-=n n n n x x x x h . 三、(本题满分15分)设要用Gauss-Seidel 迭代法求解下列线性方程组

研究生《数值分析》教学大纲

研究生《数值分析》教学大纲 课程名称:数值分析 课程编号:S061005 课程学时:64 学时 课程学分: 4 适用专业:工科硕士生 课程性质:学位课 先修课程:高等数学,线性代数,计算方法,Matlab语言及程序设计 一、课程目的与要求 “数值分析”课是理工科各专业硕士研究生的学位课程。主要介绍用计算机解决数学问题的数值计算方法及其理论。内容新颖,起点较高,并加强了数值试验和程序设计环节。通过本课程的学习,使学生熟练掌握各种常用的数值算法的构造原理和过程分析,提高算法设计和理论分析能力,并且能够根据数学模型,提出相应的数值计算方法编制程序在计算机上算出结果。力求使学生掌握应用数值计算方法解决实际问题的常用技巧。 二、教学内容、重点和难点及学时安排: 第一章? 数值计算与误差分析( 4学时) 介绍数值分析的研究对象与特点,算法分析与误差分析的主要内容。 第一节数值问题与数值方法 第二节数值计算的误差分析 第三节数学软件工具----MATLAB 语言简介 重点:误差分析 第二章? 矩阵分析基础( 10学时) 建立线性空间、赋范线性空间、内积空间的概念,为学习以后各章打好基础。矩阵分解是解决数值代数问题的常用方法,掌握矩阵的三角分解、正交分解、奇异值分解,并能够编写算法程序。 第一节? 矩阵代数基础

第二节? 线性空间 第三节? 赋范线性空间 第四节? 内积空间和内积空间中的正交系 第五节矩阵的三角分解 第六节矩阵的正交分解 第七节矩阵的奇异值分解 难点:内积空间中的正交系。矩阵的正交分解。 重点:范数,施密特(Schmidt) 正交化过程,正交多项式,矩阵的三角分解, 矩阵的正交分解。 第三章? 线性代数方程组的数值方法( 12学时) 了解研究求解线性代数方程组的数值方法分类及直接法的应用范围。高斯消元法是解线性代数方程组的最常用的直接法,也是其它类型直接法的基础。在此方法基础上加以改进,可得选主元的高斯消元法、按比例增减的高斯消元法,其数值稳定性更高。掌握用列主元高斯消元法解线性方程组及计算矩阵的行列式及逆,并且能编写算法程序。掌握矩阵的直接三角分解法:列主元LU 分解,Cholesky分解。了解三对角方程组的追赶法的分解形式及数值稳定性的充分条件。掌握矩阵条件数的定义,并能利用条件数判别方程组是否病态以及对方程组的直接方法的误差进行估计。 迭代解法是求解大型稀疏方程组的常用解法。熟练掌握雅可比迭代法、高斯- 塞德尔迭代法及SOR 方法的计算分量形式、矩阵形式,并能在计算机上编出三种方法的程序用于解决实际问题。了解极小化方法:最速下降法、共轭斜量法。迭代法的收敛性分析是研究解线性代数方程组的迭代法时必须考虑的问题。对于上述常用的迭代法,须掌握其收敛的条件。而对一般的迭代法,掌握其收敛性分析的基本方法和主要结果有助于进一步探究新的迭代法。 第一节求解线性代数方程组的基本定理 第二节高斯消元法及其计算机实现 第三节矩阵分解法求解线性代数方程组 第三节? 误差分析和解的精度改进 第四节? 大型稀疏方程组的迭代法 第五节? 极小化方法 难点:列主元高斯消元法,直接矩阵三角分解。迭代法的收敛性,雅可比迭代法,高斯-塞德尔迭代法,SOR 迭代法。

硕士研究生数值分析试卷

数值分析(研究生,2008-12-15) 1.(10分)求函数???≤≤++<≤-+=1 0,101,1sin )(2x x x x x x f 在区间[-1,1]上的最佳平方逼近式 x e a x a a x 210)(++=φ。 2.(15分)利用乘幂法计算下列矩阵的主特征值和相应的特征向量 ???? ??????----110141012,初始向量为T x ]0,0,1[0=(要求结果有三位有效数字)。同时计算该矩阵的1-条件数和谱条件数。

3.(15分)已知函数x x f sin )(=在36.0,3 4.0,32.0210===x x x 处的值分别为352274.0,333487.0,314567.0210===y y y 。用Lagrange 插值多项式对3167.0=x 的函数值进行近似计算,并估计近似计算的误差界。

4.(15分)用Newton 迭代法求方程0ln 2=+x x 在区间(0,2 π)内的解,选择你认为合适的初始点,计算方程的根,使得近似解具有四位有效数字。请从理论上估计达到所需精度所需的迭代次数。

5.(15分)用Gauss-Seidel 迭代法解方程组 ?????? ????-=????????????????????---542834*********x x x 取初始近似向量0[0,0,0]T x =,估计达到4位有效数字需要的迭代次数,并实际计算之。就该具体问题分析计算过程中总的乘除法计算量。

6. (10分)应用拟牛顿法解非线性方程组 ?????=-+=-+. 12,2322112221x x x x x x 取T x ]1,0[)0(= ,终止容限210-=ε。 7.(10分) 求解矛盾方程组 ???????=++=++=++=++2 32328.12221321321 321321x x x x x x x x x x x x

研究生“数值分析”课后题(上机编程部分)答案

2009级研究生《数值分析》上机作业 院系电气工程学院 专业控制理论与控制工程 姓名马凯 指导教师代新敏 2009年12月29日

第一题(二问):超松弛法求方程组根 1.解题理论依据或方法应用条件: 超松弛算法是在GS 方法已求出x (m),x (m-1)的基础上,经过重新组合得到新序列。如能恰当选择松弛因子ω,收敛速度会比较快。当ω>1时,称为超松弛法,可以用来加速收敛。其具体算法为: )( )1(1 )1(1 1 ) () 1() (i n i j m j ij i j m j ij m i m i g x b x b x x ++ +-= ∑∑ +=--=-ωω 2.计算程序(使用软件:VC ): #include #define w 1.4 main() {float a[10][10]={ {0,0,0,0,0,0,0,0,0,0}, {0,12.38412,2.115237,-1.061074,1.112336,-0.113584,0.718719,1.742382,3.067813,-2.031743}, {0,2.115237,19.141823,-3.125432,-1.012345,2.189736,1.563849,-0.784165,1.112348,3.123124}, {0,-1.061074,-3.125432,15.567914,3.123848,2.031454,1.836742,-1.056781,0.336993,-1.010103}, {0,1.112336,-1.012345,3.123848,27.108437,4.101011,-3.741856,2.101023,-0.71828,-0.037585}, {0,-0.113584,2.189736,2.031454,4.101011,19.897918,0.431637,-3.111223,2.121314,1.784317}, 0,0.718719,1.563849,1.836742,-3.741856,0.431637,9.789365,-0.103458,-1.103456,0.238417}, {0,1.742382,-0.784165,-1.056781,2.101023,-3.111223,-0.103458,14.7138465,3.123789,-2.213474}, {0,3.067813,1.112348,0.336993,-0.71828,2.121314,-1.103456,3.123789,30.719334,4.446782}, {0,-2.031743,3.123124,-1.010103,-0.037585,1.784317,0.238417,-2.213474,4.446782,40.00001}}; float b[10][1]= {{0},{2.1874369},{33.992318},{-25.173417},{0.84671695},{1.784317},{-86.612343},{1.1101230},{4.719345},{-5.6784392}}; float x[10][10]={{0},{0},{0},{0},{0},{0},{0},{0},{0},{0}}; /*由x(0)=0得到其第一列全为零*/ float sum1=0,sum2=0; int i,m,j; for(m=1;m<=9;m++) for(i=1;i<=9;i++) {sum1=0; for(j=1;j<=(i-1);j++)sum1+=(-a[i][j]/a[i][i])*x[j][m]; /*计算第一个累加和*/ sum2=0; for(j=(i+1);j<=9;j++)sum2+=(-a[i][j]/a[i][i])*x[j][m-1]; /*计算第二个累加和*/ x[i][m]=(1-w)*x[i][m-1]+w*(sum1+sum2+b[i][0]/a[i][i]); /*用SOR 方法计算*/ } printf("x1为:%lf\n",x[1][9]); printf("x2为:%lf\n",x[2][9]); printf("x3为:%lf\n",x[3][9]); printf("x4为:%lf\n",x[4][9]); printf("x5为:%lf\n",x[5][9]); printf("x6为:%lf\n",x[6][9]);

硕士研究生数值分析试卷

数值分析(研究生,2008-12-15) ( 分)求函数???≤≤++<≤-+=1 0,101,1sin )(2x x x x x x f 在区间?? , 上的最佳平方逼近式 x e a x a a x 210)(++=φ。 .( 分)利用乘幂法计算下列矩阵的主特征值和相应的特征向量 ???? ??????----110141012,初始向量为T x ]0,0,1[0=(要求结果有三位有效数字)。同时计算该矩阵的 条件数和谱条件数。

( 分)已知函数x x f sin )(=在36.0,34.0,32.0210===x x x 处的值分别为352274.0,333487.0,314567.0210===y y y 。用????????插值多项式对3167.0=x 的函数值进行近似计算,并估计近似计算的误差界。

( 分)用??????迭代法求方程0ln 2=+x x 在区间( ,2 π)内的解,选择你认为合适的初始点,计算方程的根,使得近似解具有四位有效数字。请从理论上估计达到所需精度所需的迭代次数。

?( 分)用??◆????????●迭代法解方程组 ?????? ????-=????????????????????---542834*********x x x 取初始近似向量0[0,0,0]T x =,估计达到 位有效数字需要的迭代次数,并实际计算之。就该具体问题分析计算过程中总的乘除法计算量。

? ( 分)应用拟牛顿法解非线性方程组 ?????=-+=-+. 12,2322112221x x x x x x 取T x ]1,0[)0(= ,终止容限210 -=ε。 ( 分) 求解矛盾方程组 ???????=++=++=++=++2 32328 .12221 321321321321x x x x x x x x x x x x

研究生数值分析试卷

1 I(a,b) 2 ax 2 b x dx 2005~2006学年第一学期硕士研究生期末考试试题(A 卷) 科目名称:数值分析 学生所在院: ________ 学号: ________ 姓名: ______ 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。 一、 (15分)设求方程12 3x 2cosx 0根的迭代法 / 2 X ki 4 cosx k 3 (1) 证明对X o R ,均有lim X k x *,其中X *为方程的根. k (2) 此迭代法收敛阶是多少?证明你的结论. 二、 (12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的 收敛性。 x 1 2x 2 2x 3 1, X 1 X 2 X 3 1, 2x 1 2x 2 x 3 0. 0 0a 非病态的。(范数用HI ) 求f (X )的Hermite 插值多项式H 3(x ),并给出截断误差R (x ) f (x ) H 3(x ) 五、(10分)在某个低温过程中,函数 y 依赖于温度x (T )的试验数据为 已知经验公式的形式为 y ax bx 2,试用最小二乘法求出 a , b 、(8分)若矩阵A 2a a 0 0 a 0,说明对任意实数a 0,方程组AX b 都是 四、(15六、(12分)确定常数 a ,b 的值,使积分

、(15分)设求方程 12 3x 2cosx 0根的迭代法 取得最小值。 七、(14分)已知Legendre 勒让德)正交多项式L n (x )有递推关系式: L o (x) 1, L i (x) x (n 1, 2,) 试确定两点的咼斯一勒让德(G — L )求积公式 1 1 f (x )dx 入仁花)A 2f (x 2) 的求积系数和节点,并用此公式近似计算积分 1 2 一 e x dx 1 八、(14分)对于下面求解常微分方程初值冋题 dx f (x,y )的单步法: y (x 。) y 。 1 1 y n 1 y n h(?k 1 - k 2) k 1 f(X n ,y n ) k 2 f(X n h, y n hkj (1) 验证它是二阶方法; (2) 确定此单步法的绝对稳定域。 2005~2006学年第一学期硕士研究生期末考试试题(B 卷) 科目名称:数值分析 学生所在院: _______ 学号: _________ 姓名: ______ 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。 一、(12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的 收敛性。 X 1 2x 2 2x 3 1, X 1 X 2 X 3 1, 2x 1 2x 2 x 3 0. L n 1(X ) 2n 1 n 1 xL n (x) L n 1(X )

2014级硕士研究生数值分析期末考试试卷A卷

2014级硕士研究生试卷 科目: 数值分析 考试时间: 出题教师: 集体 考生姓名: 专业: 学号: 不予计分;可带计算器。 一、 填空题(每空2分,共30分) 1.设14.30=x 是准确值21.30=* x 的近似值,则近似值x 有 位有效数字,近 似值x 的相对误差为 。 2.函数)(x f 过点(0,1), (1,3)和(2,9),对应的基函数分别为)(),(),(210x l x l x l ,过这三个节点的二次拉格朗日插值多项式为 ,余项为 。 3. 已知0)1(,3)1(,0)2(=-==f f f ,二阶均差]1,1,2[-f = 。 4.方程012 3 =--x x 在5.10 =x 附近有个根,构造不动点迭代收敛的格式 为 ,若用牛顿法迭代求根,其收敛阶是 。 5.设???? ? ??=2021012a a A ,为了使A 可分解成T LL A =,其中L 是对角元素为正的下三角矩阵, 则a 的取值范围 。 6. 设????? ??-----=232221413A ,??? ? ? ??-=111x ,则∞||||Ax ,1||||A = , 2||||A = 。 7.设U L D A --=,b Ax =的Gauss-Seidel 迭代的矩阵形式b Ux Lx Dx k k k ++=++)()1() 1(, 其迭代矩阵为 ,该迭代格式收敛的充要条件__________________。 8.求解一阶常微分方程初值问题?? ???=<<-=1)0(1 0,2' y x y x y y ,取步长1.0=h 的Euler 法公式为 ,其截断误差的首项为 。

合肥工业大学2014级研究生《数值分析》试卷(A)评分标准(可编辑修改word版)

3 97 3 97 3 97 * * 1 x 合肥工业大学研究生考试试卷(A) 课程名称 数值分析 考试日期 学院 2014 级研究生 姓名 年级 班级 学号 得分 一、填空题 (每空 2 分,满分 20 分) 1. 设 f ( x ) = 6 x 2014 - 5x 2012 + 7 ,则差商 f [1, 2, , 2015] = 6 . ≤ 1 2a 1 ?10-l +1 = 1 2 ? 4 ?10-l +1 ≤ 0.01% = 10-4 , 6 分 2. 设函数 f (0.9) = -1.2178, f (1) = -1, f (1.1) = -0.6018 , 用三点数值微分公式计算 f '(1) 的近似值为 3.08 , f ' (1) 的近似值为 18.04 . 解得l ≥ 5 - lg8 ≈ 5 - 0.903 = 4.097 . 故取l = 5 ,即 x * 至少应具有 5 位有效 T ?-2 3 ? 3. 设 x = (2, 5, - 7, 3) , A = ? ? ,则 2 , Cond( A )1 = 36 . 数字。 8 分 ? 4 -5? ?-10 x - 4 x + x = -1, ? 1 2 3 4. 函数 f ( x ) 以 0, 1, 2 为节点的二次 Lagrange 插值多项式 p ( x ) = 三、(本题满分 12 分) 已知线性方程组?2 x 1 + 10 x 2 - 7 x 3 = 2, (x -1)(x - 2) (x - 0)(x - 2) (x - 0)(x -1) . ??3x + 2 x + 10 x = 3. f (0) + f (1) + f (2) 1 2 3 (0 - 1)(0 - 2) (1 - 0)(1 - 2) (2 - 0)(2 - 1) 5. 设 S 是函数 f 在区间[0, 2] 上的三次样条: (1) 写出求解上述方程组的 Gauss –Seidel 迭代格式。 (2) 写出求解上述方程组的 Jacobi 迭代格式的迭代矩阵 B J . ?1 + 2 x - x 3 , 0 ≤ x ≤ 1, S ( x ) = ? (3) 计算范数 B J ∞ ,判断上述 Jacobi 迭代格式是否收敛?若收敛,试估计要达到 ?2 + b ( x - 1) + c ( x - 1) 2 + ( x - 1)3 , 1 ≤ x ≤ 2, 精度 = 10 ,Jacobi 迭代法所需的迭代步数;取初值 x 0 = (0, 0, 0)T . 则 b = -1 , c = -3 . 6. 四阶 Runge-Kutta 方法的局部截断误差是 O (h 4 ) ,其整体截断误差是 O (h 5 ) . 解 (1) 求解上述方程组的 Gauss –Seidel 迭代格式为 ?x (k +1) = 1 (-4x (k ) + x (k ) - 1) , ? 1 10 2 3 ?x (k +1) = 1 -2x (k +1) + 7x (k ) + 2 , 4 分 二、(本题满分 8 分) 要使 的近似值 x 的相对误差的绝对值不超过 0.01% ,求 x 至 ? 2 10 ( 1 3 ) ? ?x (k +1) = 1 ( -3x (k +1) - 2x (k +1) + 3) . 少应具有几位有效数字? 解 设 x * 至少应具有 l 位有效数字. 因为 4 < < 5 , 所以 的第一个 ? 3 10 1 2 (2) 因为原方程组的系数矩阵 非零数字是 4,即 x * 的第一位有效数字a = 4 , 2 分 ?-10 -4 1 ? ?0 0 0? ?-10 0 0 ? ?0 -4 1 ? 根据题意及定理 1.2.1 知, A = ? 2 10 -7? = ?2 0 0? + ? 0 10 0 ? + ?0 0 -7? = L + D + U , ? ? ? ? ? ? ? ? ?? 3 2 10 ?? ??3 2 0?? ?? 0 0 10?? ??0 0 0 ?? - 4 2 87 3 97 - x x * * 装订线 =

河海大学2015-2016学年硕士生 《数值分析》试题

河海大学2015-2016学年硕士生 《数值分析》试题(A) 任课教师姓名 姓名 专业 学号 成绩 一、填空题 (每空2分, 共20分) 1、若1>>x ,改变计算式( ) =-- 1ln 2x x ,使计算结果更为准确。 2、设???≤≤-++≤≤+=2 1,121 0,)(2 323x cx bx x x x x x s ,是以2,1,0为节点的三次样条函数,则 =b ,=c 。 3、已知契比雪夫多项式x x x T 34)(33-=, 则122)(2 3 -++=x x x x f 在]1,1[-上的二次最佳一致逼近多项式是 。 4、已知离散数据()),,2,1(,n k y x k k Λ=,用直线bx a y +=拟合这n 个点,则参数a 、b 满足的法方程组是 。 5、给定矩阵?? ? ???--=3121A , 则A 的谱半径=)(A ρ ,A 的条件数=∞)(A Cond 。 6、设0)133)(2()(2 3 =-+-+=x x x x x f ,用牛顿迭代法解此方程的根21-=x 具有二阶收敛的迭代格式为 ,求根12=x 具有二阶收敛的迭代格式为 。 7、如果求解常微分方程初值问题的显式单步法局部截断误差是 ()()4111h O y x y T n n n =-=+++,则称此单步法具有 阶精度。 《数值分析》2015级(A) 第1页 共6页

已知数据表 (1) 求f (x )的三次Lagrange (拉格朗日)插值多项式; (2) 计算差商表,并写出三次Newton (牛顿)插值多项式。 三、(本题8分) 在区间]1,1[-上给定函数14)(3 +=x x f ,求其在},,1{2 x x Span =Φ中关于权函数 1)(=x ρ的二次最佳平方逼近多项式。(可用勒让德多项式1)(0=x p ,x x p =)(1, ))13(2 1 )(22-=x x P 《数值分析》2015级(A) 第2页 共6页

数值计算(数值分析)试题与答案

++中的待定系数 A f (1)(0)

武汉理工大学研究生课程考试标准答案 用纸 课程名称:数值计算(A)任课教师: 一. 简答题,请简要写出答题过程(每小题5分,共30分) 3.14159265358979的近似值 绝对误差和相对误差分别是多少? 3分)

2分) 2.已知()8532f x x x =+-,求01 83,3, ,3f ????,019 3,3,,3f ????. (5分) 3.确定求积公式 1 0120 ()(0)(1)(0)f x dx A f A f A f '≈++? 中的待定系数,使其代 数精度尽量高,并指明该求积公式所具有的代数精度。 解:要使其代数精度尽可能的高,只需令()1,, , m f x x x =使积分公式对尽可能 大的正整数m 准确成立。由于有三个待定系数,可以满足三个方程,即2m =。 由()1f x =数值积分准确成立得:011A A += 由()f x x =数值积分准确成立得:121/2A A += 由2()f x x =数值积分准确成立得:11/3A = 解得1201/3,1/6,2/3.A A A === (3分) 此时,取3()f x x =积分准确值为1/4,而数值积分为11/31/4,A =≠所以该求

积公式的最高代数精度为2次。 (2分) 4.求矩阵101010202A -?? ??=?? ??-?? 的谱半径。 解 ()()1 01 01 0132 2 I A λλλλλλλ--= -=--- 矩阵A 的特征值为1230,1,3λλλ=== 所以谱半径(){}max 0,1,33A ρ== (5分) 5. 设10099,9998A ?? = ??? 计算A 的条件数()(),2,p cond A P =∞. 解:** 1 9899-98999910099-100A A A A --????=?== ? ?-?? ?? 矩阵A 的较大特征值为198.00505035,较小的特征值为-0.00505035,则 1222 ()198.00505035/0.0050503539206cond A A A -=?==(2分) 1 ()199******** cond A A A -∞∞ ∞ = ?=?= (3分) 二.计算题,请写出主要计算过程(每小题10分,共50分)

相关文档
最新文档