陀螺仪基本原理

电子陀螺仪工作原理【详述】

电子陀螺仪工作原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 电子陀螺仪其实就是机械式陀螺仪的进化,机械式是利用真实的陀螺等机械制作的,而电子是利用芯片来实现陀螺仪的功能,其工作原理类似(电子只不过是模拟出来的而已)。 所有陀螺仪的工作原理是一样的:广泛应用于航海、航空和航天领域,种类很多,其中陀螺罗盘就是代替罗盘的装置。 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 最基础的陀螺仪的结构:基础的陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内; 历史: 1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转

动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

北京航空航天大学自动化学院导航专业惯性技术实验报告

成绩 陀螺仪理论及应用 实验报告 院(系)名称自动化科学与电气工程学院专业名称自动化 学生学号xxxxxxx 学生姓名xxx 指导教师 2015年6月

实验一陀螺仪基本特性试验 一、实验目的 1.用实验的方法观察并验证陀螺仪的基本特性——定轴性,进动性和陀螺力矩效应。 2.学习使用陀螺实验用主要设备——转台。 3.利用线性回归方法进行数据处理。 二、实验设备 1.TZS-74陀螺仪表综合试验转台。 2.双自由度陀螺仪。 3.砝码。 4.实验用电源:交流220V,50~(转台用)36V,400~三相电源。 三、实验内容和步骤 (一)定轴性实验 1.陀螺马达不转时,开动转台,观察陀螺仪是否有定轴性。 2.接通电源,几下陀螺转子的转速方向,开动转台观察转子转动时陀螺仪的定轴性。 (二)进动性实验 1.外加力矩,观察进动现象。根据进动规律判断角动量H的方向,并和上面记下的 转速方向做一比较。 2.测量进动角速度和外加力矩的关系: (1)在加力杆的前后标尺上分别加不同重量的砝码,记录进动的角度与实践,列 表并计算出对应于每一外加力矩的进动角速度值,画出实验曲线。 (2)根据进动规律 x M H ω= (H J =Ω)计算出对应于每一外加力矩的进动角速 度,画出理论曲线。 (3)将实验曲线与理论曲线进行比较并说明产生误差的原因。 (4)用线性回归的方法进行数据处理,并通过求回归系数的方法求出角动量H的值。 3.测量进动角速度和角动量的关系 在同一外力矩作用下,测量陀螺马达在额定转速下和断电一分钟后的进动角速度(断电一分钟后马达转速低于额定转速)。根据实验结果说明进动角速度和角动量的关系。 (三)陀螺力矩实验 1.开动转台,使双自由度陀螺仪基座转动,观察有无陀螺力矩效应,并说明原因。

自动驾驶行业分析之全球篇

2018年自动驾驶行业分析 之全球篇 撰写时间:2018年6月

目录

第1章概述 自动驾驶驾驶的概念与定义 自动驾驶的定义 目前的自动驾驶可分为两类。一类是目前非常火爆的无人驾驶,更强调的是车的自主驾驶以实现舒适的驾驶体验或人力成本的节省,典型的例子为百度和Google的无人车;一类是ADAS(全称为Advanced Driver Assistance System,即高级辅助驾驶系统),发展历史已久,早在1970年就已进入车厂布局中。两者都是利用安装在车上的各式各样传感器收集数据,并结合地图数据进行系统计算,从而实现对行车路线的规划并控制车辆到达预定目标。随着人们对安全、舒适的驾驶体验的不断追求,自动驾驶成为汽车的新方向。 图表1:ADAS与无人驾驶的区别 不过,ADAS也可以视作无人驾驶汽车的前提,随着ADAS实现的功能越来越多,渐进式可实现无人驾驶。 自动驾驶分级

关于汽车智能化的分级,业界统一采用SAE International的标准,即国际汽车工程师协会制定的标准。 SAE的标准把自动驾驶分为了L0~L5,其中L0指的是人工驾驶。标准具体规定如下: 图表2:自动驾驶分级 数据来源:SAE 目前市场上L3级别的自动驾驶汽车已经准备上路,汽车供应链正在投入下一个阶段L4级别自动驾驶汽车的研发。 自动驾驶产业链 产业链结构图 自动驾驶产业链相对较长,主要分为上中下游。上游主要为原材料,包括锂、钴、铜以及半导体等;中游为各种软硬件产品,包括传感器、自动驾驶平台等;下游为整车集成,以及车队管理系统,车载娱乐、车内办公等附加服务。

陀螺仪传感器分类及原理

【悠牛仪器仪表网】陀螺仪传感器是一个简单易用的基于自由空间移动和手势的定位和控制系统。用来感测和维持方向的装置,它是航空、航海及太空导航系统中判断方位的主要依据,并且在汽车安全,航模,望远镜等领域广泛应用。 主要检测空间某些相位的倾角变化、位置变化,主要用于空间物理领域,特别在航空、航海方面有较多的用途,如:飞机上的陀螺仪,当飞机在做360°翻转的时候,陀螺仪将会保持原始的基准状态不变,从而让驾驶员找到本飞机在空间状态的相位变化,也就是:当时飞机处在什么相位。 陀螺仪传感器原理 一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。 然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。陀螺仪传感器应用领域以及发展方向现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。 传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。 由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。 和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 陀螺仪传感器分类 根据框架的数目和支承的形式以及附件的性质决定陀螺仪的类型有: 二自由度陀螺仪(只有一个框架,使转子自转轴具有一个转动自由度)。 根据二自由度陀螺仪中所使用的反作用力矩的性质,可以把这种陀螺仪分成三种类型: 积分陀螺仪(它使用的反作用力矩是阻尼力矩);速率陀螺仪(它使用的反作力矩是弹性力矩); 无约束陀螺(它仅有惯性反作用力矩); 现在,除了机、电框架式陀螺仪以外,还出现了某些新型陀螺仪,如静电式自由转子陀螺仪,挠性陀螺仪,激光陀螺仪等。 三自由度陀螺仪(具有内、外两个框架,使转子自转轴具有两个转动自由度。在没有任何力矩装置时,它就是一个自由陀螺仪)。 直流电流传感器 https://www.360docs.net/doc/6311984267.html,/subject/zhiliudianliuchuanganqi.html

导航原理实验报告

导航原理实验报告 院系: 班级: 学号: 姓名: 成绩: 指导教师签字: 批改日期:年月日 哈尔滨工业大学航天学院 控制科学实验室

实验1 二自由度陀螺仪基本特性验证实验 一、实验目的 1.了解机械陀螺仪的结构特点; 2.对比验证没有通电和通电后的二自由度陀螺仪基本特性表观; 3.深化课堂讲授的有关二自由度陀螺仪基本特性的内容。 二、思考与分析 1. 定轴性 (1) 设陀螺仪的动量矩为H ,作用在陀螺仪上的干扰力矩为M d ,陀螺仪漂移角 速度为ωd ,写出关系式说明动量矩H 越大,陀螺漂移越小,陀螺仪的定轴性(即稳定性)越高. 答案: d d H M ω=? /sin d d H M θω = 干扰力矩M d 一定时,动量矩H 越大,陀螺仪漂移角速度为ωd 越小,陀螺漂移越小, 陀螺仪的定轴性(即稳定性)越高. (2) 在陀螺仪原理及其机电结构方而简要蜕明如何提高H 的量值? 答案:H J =Ω 由公式2A J dm r = ???可知 提高H 的量值有四种途径: 1. 陀螺转子采用密度大的材料,其质量提高了,转动惯量也就提高了。 2. 改变质量分布特性。在质量相同的情况下,若质量分布的半径距质 心越远,H 越大。因此将陀螺转子的有效质量外移,如动力谐陀螺将转子设计成环状。即在陀螺电机定子环中,可做成质量集中分布在环外边缘的环形结构,切边缘部分材质密度大,可提高转动惯量。 3. 增大r,可有效提高转动惯量。 4. 另外可通过采用外转子电机来改变电机质量分布,增大r 。改变电机定转子结构:采用外转子,内定子结构的转子电机。

4. 增加陀螺转子的旋转速度。 2/602(1)/n s f p ωππ==- ,60(1)/n f s p =- 提高电压周波频率 f ↑——〉n ↑——H ↑ f=400Hz 适当减少极对数 ,如取p=1 适当减少转差率s ,可通过减少转子支承轴承摩擦来实现 2.进动性 (1) 在外框架施加一沿x 轴正方向作用力矩时,画出动量矩H 的进动方 向及矢量M ,ω,H 的关系坐标图。(设定H 沿Z 轴正方向)并在坐标中标出陀螺仪自转轴的旋转方向n 。 b) 在内框架施加一沿Y 轴正方向作用力矩时,画出动量矩H 的进动方向及 矢量M ,ω,H 的关系坐标图。(设定H 沿Z 轴正方向)并在坐标中标出陀螺仪自转轴的旋转方向n 。

中国光纤陀螺仪市场调研报告

中国光纤陀螺仪行业 市场调研投资分析预测报告

正文目录 第一章光纤陀螺仪行业概述 (19) 第一节光纤陀螺仪简述 (19) 一、定义及分类 (19) 二、产品特性 (20) 三、主要应用领域 (21) 第二节光纤陀螺仪的型号及用途 (21) 第三节光纤陀螺仪行业发展现状 (22) 第四节产业链结构分析 (25) 第五节光纤陀螺仪生产技术和工艺分析 (28) 第六节光纤陀螺仪在生产中遇到的问题及其解决方法 (31) 第七节光纤陀螺仪行业的地位分析 (31) 一、行业在第二产业中的地位 (31) 二、行业在GDP中的作用 (31) 第八节2015-2020年光纤陀螺仪行业相关政策发展的影响展望 (32) 一、国家“十三五”产业政策发展的影响展望 (32) 二、相关行业政策的影响展望 (32) 第二章中国光纤陀螺仪行业政策技术环境分析 (34) 第一节光纤陀螺仪行业政策法规环境分析 (34) 一、国家“十三五”规划解读 (34)

二、行业“十三五”规划解读 (34) 三、行业税收政策分析 (35) 四、行业标准概述 (36) 五、行业环保政策分析 (36) 六、行业政策走势及其影响 (36) 第二节政策法规对光纤陀螺仪产品的影响 (37) 一、2014-2015年中国光纤陀螺仪环保政策执行影响分析 (37) 二、节能环保新政策对光纤陀螺仪市场的影响 (37) 三、新政策对光纤陀螺仪市场的影响 (37) 第三节光纤陀螺仪行业技术环境分析 (38) 一、国内技术水平现状 (38) 二、国际技术发展趋势 (38) 三、科技创新主攻方向 (39) 第三章光纤陀螺仪生产技术分析 (41) 第一节光纤陀螺仪主要生产工艺技术 (41) 一、光纤陀螺仪生产工艺原理 (41) 二、光纤陀螺仪生产工艺流程 (42) 第二节光纤陀螺仪其他生产方法 (43) 第三节光纤陀螺仪生产工艺优劣势比较 (46) 第四节光纤陀螺仪工艺技术的改进与发展趋势 (46) 第五节光纤陀螺仪工艺技术路线的选择 (46) 第六节光纤陀螺仪质量指标 (47)

MEMS陀螺仪工作原理

陀螺仪是用来测量角速率的器件,在加速度功能基础上,可以进一步发展,构建陀螺仪。 陀螺仪的内部原理是这样的:对固定指施加电压,并交替改变电压,让一个质量块做振荡式来回运动,当旋转时,会产生科里奥利加速度,此时就可以对其进行测量;这有点类似于加速度计,解码方法大致相同,都会用到放大器。 角速率由科氏加速度测量结果决定 - 科氏加速度 = 2 × (w ×质量块速度) - w是施加的角速率(w = 2 πf) 通过14 kHz共振结构施加的速度(周期性运动)快速耦合到加速度计框架 - 科氏加速度与谐振器具有相同的频率和相位,因此可以抵消低速外部振动 该机械系统的结构与加速度计相似(微加工多晶硅) 信号调理(电压转换偏移)采用与加速度计类似的技术 施加变化的电压来回移动器件,此时器件只有水平运动没有垂直运动。如果施加旋转,可以看到器件会上下移动,外部指将感知该运动,从而就能拾取到与旋转相关的信号。

上面的动画,只是抽象展示了陀螺仪的工作原理,而真实的陀螺仪内部构造是下面这个样子。

PS:陀螺仪可以三个一起设计,分别对应于所谓滚动、俯仰和偏航。 任何了解航空器的人都知道,俯仰是指航空器的上下方向,偏航是指左右方向,滚动是指向左或向右翻滚。要正确控制任何类型的航空器或导弹,都需要知道这三个参数,这就会用到陀螺仪。它们还常常用于汽车导航,当汽车进入隧道而失去GPS信号时,这些器件会记录您的行踪。 无人机在飞行作业时,获取的无人机影像通常会携带配套的POS数据。从而在处理中可以更加方便的处理影像。而POS数据主要包括GPS数据和

IMU数据,即倾斜摄影测量中的外方位元素:(纬度、经度、高程、航向角(Phi)、俯仰角(Omega)及翻滚角(Kappa))。 GPS数据一般用X、Y、Z表示,代表了飞机在飞行中曝光点时刻的地理位置。 飞控是由主控MCU和惯性测量模块(IMU,Inertial Measurement Unit)组成。IMU提供飞行器在空间姿态的传感器原始数据,一般由陀螺仪传感器/加速度传感器/电子罗盘提供飞行器9DOF数据。 IMU中的传感器用来感知飞行器在空中的姿态和运动状态,这有个专有名词叫做运动感测追踪,英文Motion Tracking。运动感测技术主要有四种基础运动传感器,下面分别说明其进行运动感测追踪的原理。 微机电系统(MEMS) IMU中使用的传感器基本上都是微机电系统(MEMS),是半导体工业中非常重要的一个分支。 微机电系统(MEMS, Micro-Electro-Mechanical System)是一种先进的制造技术平台。微机电系统是微米大小的机械系统,是以半导体制造技术为基础发展起来的。 我们的四轴飞行器上用到的加速度陀螺仪MPU6050,电子罗盘 HMC5883L都是微机电系统,属于传感MEMS分支。传感MEMS技术是指用微电子微机械加工出来的、用敏感元件如电容、压电、压阻、热电耦、谐振、隧道电流等来感受转换电信号的器件和系统。 加速器(G-sensors) 加速器可用来感测线性加速度与倾斜角度,单一或多轴加速器可感应结合线性与重力加速度的幅度与方向。含加速器的产品,可提供有限的运动感测功能。 加速度计的低频特性好,可以测量低速的静态加速度。在我们的飞行器上,就是对重力加速度g(也就是前面说的静态加速度)的测量和分析,其它瞬间加速度可以忽略。记住这一点对姿态解算融合理解非常重要。 当我们把加速度计拿在手上随意转动时,我们看的是重力加速度在三个轴上的分量值。加速度计在自由落体时,其输出为0。为什么会这样呢?这里涉及到加速度计的设计原理:加速度计测量加速度是通过比力来测量,而不是通过加速度。

惯导实验报告——帅哥队

惯性导航实验报告 ——陀螺运动特性的研究 实验小组:111711班第四小组 学号:11171016-11171020 依次对应学号:王瑞捷廖旭博周林高硕赵大年指导老师:

惯导实验——陀螺特性的研究 一、实验目的 1、通过四个不同的小实验了解陀螺仪的运动特性 2、了解什么是陀螺的进动性 3、了解什么是陀螺的定轴性 4、了解什么是陀螺的陀螺力矩 二、实验内容 1、实验一 将高速旋转的陀螺转子放在插座上,观察并记录现象和分析原因。 2、实验二 将高速旋转的陀螺转子竖放在转盘上,观察并记录现象和分析原因。 3、实验三 将高速旋转的陀螺转子放在倾斜导轨上使之下滑,观察并记录现象和分析原因。 4、实验四 将高速旋转的陀螺系统放在插座上,分开内外轨使之相互垂直,再分别转动内外轨,观察并记录现象和分析原因。 三、实验记录及原理说明 实验一 1、看到的现象,体现了什么特性? 现象:可以看见陀螺转子呈锥形左右缓慢转动。 特性:体现了陀螺的进动性。 2、陀螺转速降低后,观察到的现象及原因? 现象:当陀螺的转速逐渐减慢时,锥形的角度开始变大,且其进动角速度变大。 原因:由于陀螺受到摩擦力的作用,其转速会逐渐降低,即陀螺的角动量H变小,而外力矩不变。由M=ω×H······M=ω*H*sin 可知,此时陀螺的进动角速度ω会变大,锥形角度也变大。 3、手提陀螺转子的感受及原因分析? 感受:当我们想把高速旋转的陀螺放到转动插座上时,手明显能感受到陀螺的“力”反作用于我们的手。 原因:这是因为高速旋转的陀螺在受到外力矩的时候,陀螺进动,此时陀螺存在一个反作用力矩(即陀螺力矩),其大小与外力矩相等,方向与之相反,并作用于给陀螺仪施加外力矩的物体上,即我们的手。 实验二 1、转盘与转子的转动方向是否一致?原因? 答:可以看见陀螺转子与转盘一起转动,方向一致。 原因:转盘与转子转动方向一致表现了高速旋转的陀螺有很好的定轴性。另外,在第一段实验中我们说明了陀螺具有陀螺力矩,本实验中竖直放在转盘上的转子与转盘之间存在微小摩擦力,转盘对转子有一个摩擦力矩,因此转子对转盘有一个大小相等方向相反的陀螺力矩。在这个力矩作用下,转盘随着转子有相同的转动方向。(以上是对书本学习后的想法,网上

三维轨迹仪的介绍及实验

三维轨迹仪的实验报告 实验目的:1确定光纤陀螺仪的工作原理; 2熟悉掌握三维轨迹仪实验的操作步骤; 3练习数据处理软件的应用; 4学会绘制三维轨迹图. 实验仪器:光纤陀螺仪,绳子,管道,计算机,数据处理软件,秒表 实验: 一光纤陀螺仪简介 按照最初的定义, 陀螺仪是一个高速旋转的质量。按照牛顿定律, 只要没有外力矩作用于这惯性质量上, 它的角动量矩在惯性空间是恒定的, 因此, 陀螺仪通过自身的惯性能有效地保持初始的姿态,这样在不需要借助外部参照物的情况下均可以测量飞行器的实际角位置和角速率。这种自主式测量角度和角速率就形成了今天的陀螺仪定义的基础。陀螺仪可以如此定义—它是一种这样的装置, 即使采用与角动量守恒定律完全不同的物理原理, 也能自主地测量出相对惯性空间的旋转运动。由于陀螺仪的自动测量和对外界干扰的不敏感性, 不管它是在飞行控制中, 还是在导航中都是极为重要的技术问题.

光纤陀螺仪(FOG)是一种基于Sagnac 效应实现载体相对于惯性空间角速度测量光纤传感器件。最早由美国学者V.Vali 和R.W.Shorthill 于1976 年提出,近几十年来,随着光纤通信技术和光纤传感技术的迅猛发展,光纤陀螺技术得到了快速进步,已成为惯性技术研究领域的主流陀螺,在军事、航海、空间技术和民用等领域都有较高的应用价值。与传统陀螺仪相比,光纤陀螺仪具有许多优点: 无旋转部件, 耐冲击, 使用寿命长; 结构简单, 重量轻, 外形尺寸小; 消耗功率小; 动态量程大等。因此, 它可以应用于更广阔的领域。 二分类与原理 光纤陀螺仪按照不同的分类标准,有不同的分类结果。按结构可分为单轴和多轴光纤陀螺,光纤陀螺的多轴化正是其发展方向之一。按其回路类型可分为开环光纤陀螺和闭环光纤陀螺两类,开环光纤陀螺不带反馈,直接检测光输出,省去许多复杂的光学和电路结构,具有 结构简单、价格便宜、可靠性高、消耗功率低等优点,缺点是靠增加单模光纤的长度来提高陀螺的灵敏度,输入-输出线性度差、动态范围小,主要用作角度传感器。闭环光纤陀螺包含闭环环节,大大降低光源漂移的影响,扩大了光纤陀螺的动态范围,对光源强度变化和元件增益变化不敏感,陀螺漂移非常小,输出线性度和稳定性只与相位变换器有关,主要应用于中等精度的惯导系统,对光纤陀螺的小型化和稳定性有重要作用,是高精度光纤陀螺研究的主要趋势。 根据陀螺仪的使用情况, 以各种不同的精度要求给陀螺仪装置定等级(陀螺仪的精度可以通过陀螺仪轴相对于初始方向的漂移误差

陀螺仪的工作原理

陀螺仪的工作原理 陀螺仪的原理 一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 现代陀螺仪 一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪 包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:6183

陀螺仪工作原理与应用

陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:3235 为了求得测量的基准方位和日照时间的方位,必须使用磁针罗盘仪进行天体观测。然而,磁针罗盘仪的精度有限,在天体观测中还要受到确保通视、天气、场所和时间等观测条件的影响。为了解决这些问题,可采用利用了力学原理求得真北的陀螺经纬仪。陀螺经纬仪在隧道测量以及由于不能和已知点通视而无法确定方位、方向角的情况下都能发挥很大的作用。 (图1:陀螺工作站) 1、陀螺工作站的原理 高速旋转的物体的旋转轴,对于改变其方向的外力作用有趋向于铅直方向的倾向。而且,旋转物体在横向倾斜时,重力会向增加倾斜的方向作用,而轴则向垂直方向运动,就产生了摇头的

运动(岁差运动)。当陀螺经纬仪的陀螺旋转轴以水平轴旋转时,由于地球的旋转而受到铅直方向旋转力,陀螺的旋转体向水平面内的子午线方向产生岁差运动。当轴平行于子午线而静止 时可加以应用。 2、陀螺工作站的构造 (图4:陀螺经纬仪的构造 0点调整螺丝,吊线,照明灯,陀螺转子、指针、供电用馈线、反 射镜、陀螺马达、刻度线、目镜)。

陀螺经纬仪的陀螺装置由陀螺部分和电源部分组成。此陀螺装置与全站仪结合而成。陀螺本体在装置内用丝线吊起使旋转轴处于水平。当陀螺旋转时,由于地球的自转,旋转轴在水平面内以真北为中心产生缓慢的岁差运动。旋转轴的方向由装置外的目镜可以进行观测,陀螺指针的振动中心方向指向真北。利用陀螺经纬仪的真北测定方法有“追尾测定”和“时间测定”等。 追尾测定[反转法] 利用全站仪的水平微动螺丝对陀螺经纬仪显示岁差运动的刻度盘进行追尾。在震动方向反转的点上(此时运动停止)读取水平角。如此继续测定之,求得其平均震动的中心角。用此方法进行20分钟的观测可以求得+/-0。5分的真北方向。 时间测定[通过法] 用追尾测定观测真北方向后,陀螺经纬仪指向了真北方向,其指针由于岁差运动而左右摆动。用全站仪的水平微动螺丝对指针的摆动进行追尾,当指针通过0点时反复记录水平角,可以提高时间测定的精度,并以+/-20秒的精度求得真北方向。 (图2:摇头运动) (图3:向子午线的岁差运动)

陀螺仪基本原理

陀螺仪介绍2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

2013-1-28 1850年法国的物理学家莱昂·傅科(J.Foucault )为了研究地球自转,首先发现高速转动中的转子 (rotor ),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro (旋转)和skopein (看)两字合为gyro scopei 一字来命名这种仪表。

?最初的陀螺仪主要用于航海,起稳定船体的作用,此时主要是二维陀螺仪; ?后在航空、航天领域开始广泛的应用。用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示 陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。在这些应用中都是三维陀螺仪; ?另外,在军事领域,陀螺仪也发挥着重要作用,例如炮弹的旋转、导弹的惯性导航系统,以提高击中-杀伤比 ?最开始用于航海、航空、航天的陀螺仪都是机械式的,到了现代,主要可以分为压电陀螺仪、微机械陀螺仪、光纤陀螺仪、激 光陀螺仪,现代陀螺仪在结构上已不具备“陀螺”,只是在功能上 与传统的机械陀螺仪同样罢了 2013-1-28

2013-1-28 现在广泛使用的MEMS (微机械)陀螺可应用于航空、航天、航海、兵器、汽车、生物医学、环境监控等领域。并且MEMS 陀螺相比传统的陀螺有明显的优势: 1、体积小、重量轻,适合于对安装空间和重量要求苛刻的场合,例如弹载测量等; 2、低成本; 3、更高可靠性,内部无转动部件,全固

同济汽车操纵稳定性实验报告新

《汽车平顺性和操作稳定性》实验报告 学院(系)汽车学院 专业车辆工程(汽车) 学生姓名同小车学号 000001 同济大学汽车学院实验室 2014年11月 1.转向轻便性实验

实验目的 驾驶员通过操纵方向盘来控制汽车的行驶方向,操纵方向盘过重,会增加驾驶员的劳动强度,驾驶员容易疲劳;操纵方向盘过轻,驾驶员会失去路感,难以控制汽车的形式方向。操纵方向盘的轻重,是评价汽车操纵稳定性的基本条件之一。转向轻便性实验的目的在于通过测量驾驶员操纵方向盘力的大小,与其他实验仪器评价汽车操纵稳定性的好处。 实验仪器设备 实验条件 试验车:依维柯 实验场地与环境 于圆形试车场,实验时按照桩桶圈出的双扭线,以10Km/h的车速行驶。双扭线的极坐标方程见下,形状如下图 实验当天天气晴好,无风,气温20度 在ψ=0时,双扭线顶点处的曲率半径最小,相应数值为Rmin=1/3d,双扭线的最小曲率半径应按照实验汽车的最小转弯半径乘以1,1倍,并圆整到比此乘积大的一个整数来确定。 试验中记录转向盘转交及转向盘转矩,并按双扭线路经过每一周整理出转向盘转矩转向盘转矩曲线。通常以转向盘最大转矩,转向盘最大作用力以及转向盘作用功等来评价转向轻便性。 转向轻便型实验数据记录

方向盘转角-转矩曲线 2. 蛇形试验 实验目的 本项试验是包括车辆-驾驶员-环境在内的闭路试验的一种,用来综合评价汽车行驶的稳定性及乘坐的舒适性,与其他操纵试验项目一起,共同评价汽车的操纵稳定性。也可以用来考核汽车在接近侧滑或侧翻工况下的操纵性能,在若干汽车操纵稳定性对比试验时,作为主观评价的一种感性试验。 实验原理 将试验车辆以不同车速行驶于规定的蛇形试验中,通过实验仪器可以得到行驶时的车速,方向盘转角,横摆角速度,车身侧倾角。 试验方法遵照GB/T 6323.1-94汽车操纵稳定性试验方法 蛇形试验

最全的陀螺仪基础知识详解

最全的陀螺仪基础知识详解 陀螺仪,又叫角速度传感器,是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置,同时,利用其他原理制成的角运动检测装置起同样功能的装置也称陀螺仪。 一、陀螺仪的名字由来 陀螺仪名字的来源具有悠久的历史。据考证,1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中地的转子(rotor),由于它具有惯性,它的旋转轴永远指向一固定方向,因此傅科用希腊字gyro(旋转)和skopein(看)两字合为“gyroscopei”一字来命名该仪器仪表。 最早的陀螺仪的简易制作方式如下:即将一个高速旋转的陀螺放到一个万向支架上,靠陀螺的方向来计算角速度。 其中,中间金色的转子即为陀螺,它因为惯性作用是不会受到影响的,周边的三个“钢圈”则会因为设备的改变姿态而跟着改变,通过这样来检测设备当前的状态,而这三个“钢圈”所在的轴,也就是三轴陀螺仪里面的“三轴”,即X轴、y轴、Z轴,三个轴围成的立体空间联合检测各种动作,然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。因此一开始,陀螺仪的最主要的作用在于可以测量角速度。 二、陀螺仪的基本组成 当前,从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点,而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运动,更确切地说,一个绕对称轴高速旋转的飞轮转子叫陀螺。将陀螺安装在框架装置上,使陀螺的自转轴有角转动的自由度,这种装置的总体叫做陀螺仪。 陀螺仪的基本部件有:陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴高速旋转,并见其转速近似为常值);内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构);附件(是指力矩马达、信号传感器等)。 三、陀螺仪的工作原理 陀螺仪侦测的是角速度。其工作原理基于科里奥利力的原理:当一个物体在坐标系中直线移动时,假设坐标系做一个旋转,那么在旋转的过程中,物体会感受到一个垂直的力和垂直方向的加速度。 台风的形成就是基于这个原理,地球转动带动大气转动,如果大气转动时受到一个切向力,便容易形成台风,而北半球和南半球台风转动的方向是不一样的。用一个形象的比喻解释了科里奥利力的原理。

导航技术基础实验报告汇总

《导航技术基础》实验报告 学号: 姓名: 南京理工大学自动化学院

目录 实验一全球定位系统(GPS)实验 (2) 实验二陀螺仪原理实验 (4) 实验三 HMR3300传感器实验........................... (7) 实验四C100航向传感器实验... ... ... . (9)

实验一全球定位系统(GPS)实验 一. 实验目的 1、熟悉GPS的结构和工作原理; 2、熟悉GPS信号串口传输技术; 3、掌握GRMIN公司GPS25LP OEM板实验系统。 二. 设备清单 (1) GPS25LP OEM板1套 (2) 开关电源 1个 (3) 五金工具 1套 (4) 万用表 1只 (5) 《GRMIN公司GPS25LP OEM板技术资料》 1本 *上课期间,实验设备由组长保管,上课期间遗失或损坏的器件须按原价赔偿。 三、课堂要求 (1) 课前认真预习,精心准备; (2) 在不损坏器件或愿意赔偿的情况下自由使用器件; (3) 不同小组的器件不要混用; (4) 课后整理桌面; (5) 不在课堂做任何与学习无关的事; (6) 课后认真填写实验报告。 四、注意事项 (1) 轻拿轻放加GPS实验系统,防止摔落地面; (2) 避免直接接触GPS实验系统电路板; (3) 禁止带电插拔; (4) 常见问题的处理,参见技术手册。 五、实验内容与步骤 1、GPS实验系统电路连接 (1) 将GPS天线接入电路板;

(2) 检查电路连接是否正确; (3) 将GPS天线放至窗外; (4) 接通外接开关电源; (5) 记录所在位置的经纬度、高度、星数。 六、实验报告内容 1、记录从GPS接收到数据 2、数据分析 当前时间:3时23分40秒 实验室经度:11851.4462E 实验室纬度:3201.6107N 卫星编号:12 21 31 卫星数量:3 其他信息: GPS状态:正在估算;水平精确度:4.2;海拔高度:87.3米;大地水准面高度:2.3;GPGGA校验和是43; 定位模式:手动自动2D/3D;定位类型:2D定位;HDOP水平精度因子:4.2;VDOP垂直精度因子:4.2;

2018年惯性导航行业深度分析报告

2018年惯性导航行业深度分析报告

目录 一、惯性导航:惯性仪表系统集成,军民领域应用前景广阔 (6) 1.1 自助式导航系统,应用场景涉及军民两大市场 (6) 1.2 捷联式惯导是发展主流,组合导航系统提升性能 (7) 二、惯性器件:陀螺仪和加速度计是核心器件 (10) 2.1陀螺仪:经历四个时期发展,应用场景划分测量精度要求 (10) 2.2加速度计:测量物体线性加速度,技术成熟种类较多 (17) 三、世界惯性导航市场 (19) 3.1全球市场格局:美国处于绝对领先地位,中国尚属第三梯队 (19) 3.2激光陀螺仪竞争格局 (20) 3.3光纤陀螺仪竞争格局 (21) 3.4 MEMS陀螺仪竞争格局 (23) 四、国内惯性导航产业格局及下游应用市场 (25) 4.1军用市场:各军种装备广泛应用,每年市场空间超过百亿 (26) 4.2民用市场:应用场景丰富,需求渗透逐步提升 (34) 五、投资分析和重点公司推荐 (41) 5.1 投资分析:军用惯导市场规模超百亿,领域分工产业格局较为集中 (41) 5.2 航天电子:惯性导航龙头企业,军民融合潜力巨大 (44) 5.3 星网宇达:惯性技术领先企业,产品覆盖军民领域 (47) 5.3 晨曦航空:深耕军航惯导领域,战略布局光学陀螺惯导产业 (50) 图表目录 图1:惯性导航工作原理 (6) 图2:陀螺仪 (6) 图3:加速度计 (6) 图4:惯性导航系统应用场景 (7) 图5:捷联式惯导系统工作原理 (8) 图6:惯性组合导航工作原理 (9) 图7:机械陀螺仪基本构架 (11) 图8:机械陀螺仪 (11) 图9:液浮陀螺仪结构图 (11) 图10:液浮陀螺仪 (11) 图11:挠性陀螺仪结构图 (12) 图12:静电陀螺仪结构图 (12) 图13:环形激光陀螺仪 (13) 图14:激光陀螺仪原理示意图 (13) 图15:环形激光陀螺仪 (14) 图16:光纤陀螺仪原理示意图 (14)

一文读懂三轴陀螺仪工作原理和应用

一文读懂三轴陀螺仪工作原理和应用 Iphone 4手机采用了意法半导体的MEMS(微电机系统)陀螺仪芯片,芯片内部包含有一块微型磁性体,可以在手机进行旋转运动时产生的科里奥力作用下向X,Y,Z三个方向发生位移,利用这个原理便可以测出手机的运动方向。而芯片核心中的另外一部分则可以将有关的传感 一、三轴陀螺仪工作原理三轴陀螺仪:同时测定6个方向的位置,移动轨迹,加速。单轴的只能测量一个方向的量,也就是一个系统需要三个陀螺仪,而3轴的一个就能替代三个单轴的。3轴的体积小、重量轻、结构简单、可靠性好,是激光陀螺的发展趋势。 在最新款的iPhone 4手机中内置三轴陀螺仪,它可以与加速器和指南针一起工作,可以实现6轴方向感应,三轴陀螺仪更多的用途会体现在GPS和游戏效果上。一般来说,使用三轴陀螺仪后,导航软件就可以加入精准的速度显示,对于现有的GPS导航来说是个强大的冲击,同时游戏方面的重力感应特性更加强悍和直观,游戏效果将大大提升。这个功能可以让手机在进入隧道丢失GPS信号的时候,凭借陀螺仪感知的加速度方向和大小继续为用户导航。而三轴陀螺仪将会与iPhone原有的距离感应器、光线感应器、方向感应器结合起来让iPhone 4的人机交互功能达到了一个新的高度。 二、三轴陀螺仪的应用在工程上,陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年美国Utah大学的Vali和Shorthill提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的

步态分析实验报告

步态分析方案设计 报告说明:我看了五篇关于步态分析的文献,并对其具体实验方法进行归纳。五篇文献的原文在文件夹中。最后为我的方案设计。 一、A practical gait analysis system using gyroscopes陀螺仪分析步态 本研究是为了调查使用单轴陀螺仪来研制简单便携步态分析系统的可行性。陀螺仪绑在小腿和大腿的皮肤表面,记录小腿和大腿角速度。这两部分的倾斜度和膝关节角度都来自角速度。使用从运动分析系统得到的信号来评估角速度和陀螺仪传来的信号,发现这些信号有不错的相关性。当转身时,腿部倾斜度和角度信号会发生漂移,有两种方法来解决这个问题:(1)自动复位系统,重新初始化每个步态周期的角度;(2)高通滤波。两种方法都能很好的纠正漂移。小腿部的单陀螺仪可以提供以下信息:腿部倾斜度、摆动频率、步数以及步幅和步速的估计。 具体方法: 受试者在步态实验室沿直线行走进行陀螺仪数据收集,陀螺仪用绳子固定在大腿和小腿部,感测轴沿中间-横向方向,以测量矢状平面中的角度。 两个人加入测试,一个是不完整的脊髓损伤,一个没有损伤。一运动分析系统使用各部分解剖学位置的回射标记物来评估腿部的偏移、腿部的角速度和膝角度。实验开始前5s,受试者直立站立以初始化倾斜角度和陀螺仪的偏置,随后,对象以一个自己喜欢的速度沿预定路径行走。进行了三组实验来分析陀螺仪的性能,并计算步幅、步态周期时间和每次行走期间的速度。第一个实验,数据来自两小腿上陀螺仪的信号,并与未损伤者进行比较。后两个实验是陀螺仪的数据与运动分析系统进行比较。第一个实验是比较小腿不同位置的陀螺仪信号,对于同一小腿上的两个点,先站立后倾斜,两个点的角速度、角度应该是相同的,陀螺仪一个放在胫骨关节处,一个放在胫骨靠近踝关节10cm处。第二个实验一个放置在大腿髌骨上方10cm处,一个在胫骨靠近踝关节10cm处,记录的是陀螺仪的角速度。第三个实验,陀螺仪放置于第二个相同,受试者直行4.5m然后转身180°。 二、Acoustic Gaits: Gait Analysis With Footstep Sounds 声步态 我们描述的是声步态——从人正常行走时的脚步声推导人的自然步态特征。我们引入了步态轮廓,这是从通过麦克风收集的脚步声时间信号得到的,可以说明某些时空步态参数,这些参数是通过对声步态轮廓的三个时间信号分析方法提取,三个时间信号分别是平方能量估计、希尔伯特变量和Teager–Kaiser能量。通过对这些参数估计的统计学分析,我们发现从步态轮廓获得的时空参数和步态特征可以连续可靠地评估目前用于标准化步态评估的临床和生物测定步态参数信息。我们的结论是Teager–Kaiser能量可以在不同时间、地点提供最稳定的步态参数估计。相对于目前实验室步态分析中使用的昂贵侵入式系统,如测力台、压力垫、可穿戴传感器,声步态使用便宜的麦克风和计算设备制成了准确非侵入式的步态分析系统,而且实验室的一些系统会改变正在测量的步态参数。

微机械陀螺仪的工作原理及其应用

本文详细介绍了意法半导体公司的电容式微机械陀螺仪的基本工作原理,其采用对称双质量块结构,驱动质量块由静电力驱动产生可控的运动速度,而检测质量块则由哥氏力推动运动。振荡驱动电路采用了双闭环的控制结构,有效地减小了温度或其它缺陷对振幅的影响,显著提高了陀螺仪的分辨率和稳定性。最后,以单轴偏航陀螺仪LY530AL为例,详细介绍其关键参数及其应用,并配合三轴加速度传感器LIS3LV02DL,实现了新型无线遥控器和鼠标,验证了LY530AL的性能参数。 微机械陀螺仪 陀螺仪又称角速度计可以用来检测旋转的角速度和角度。正如我们所熟知,传统的机械式陀螺、精密光纤陀螺和激光陀螺等已经在航空、航天或其它军事领域得到了广泛地应用。然而,这些陀螺仪由于成本太高和体积太大而不适合应用于消费电子中。微机械陀螺仪由于内部无需集成旋转部件,而是通过一个由硅制成的振动的微机械部件来检测角速度,因此微机械陀螺仪非常容易小型化和批量生产,具有成本低和体积小等特点。近年来,微机械陀螺仪在很多应用中受到密切地关注,例如,陀螺仪配合微机械加速度传感器用于惯性导航、在数码相机中用于稳定图像、用于电脑的无线惯性鼠标等等[1]。 微机械工艺的发展和成熟,使得微机械陀螺仪在消费电子中的广泛应用成为可能,并且已有相应的产品面世,如罗技的空中鼠标。这些都使业界相信微机械陀螺仪很快就会成为继微机械加速计之后用于动作感测的另一重要元件。鉴于此,意法半导体公司基于其先进的Thelma工艺先后开发并量产了超小型单轴偏航陀螺仪LISY300AL和LY530AL。LY530AL具有两种接口:模拟和数字接口,提高了设计的灵活性,简化了设计难度,可测角速率达到±300度/秒。本文以LY530AL为例讨论意法半导体微机械陀螺仪的工作原理及其应用。

相关文档
最新文档