2009 ABySS A parallel assembler for short read sequence data

2009 ABySS A parallel assembler for short read sequence data
2009 ABySS A parallel assembler for short read sequence data

10.1101/gr.089532.108Access the most recent version at doi: 2009 19: 1117-1123 originally published online February 27, 2009Genome Res.

Jared T. Simpson, Kim Wong, Shaun D. Jackman, et al.

ABySS: A parallel assembler for short read sequence data

Material Supplemental

https://www.360docs.net/doc/6c11998662.html,/content/suppl/2009/04/27/gr.089532.108.DC1.html References

https://www.360docs.net/doc/6c11998662.html,/content/19/6/1117.full.html#related-urls Article cited in:

https://www.360docs.net/doc/6c11998662.html,/content/19/6/1117.full.html#ref-list-1This article cites 31 articles, 14 of which can be accessed free at:Open Access Freely available online through the Genome Research Open Access option. service

Email alerting

click here top right corner of the article or Receive free email alerts when new articles cite this article - sign up in the box at the

https://www.360docs.net/doc/6c11998662.html,/subscriptions go to: Genome Research To subscribe to Copyright ? 2009 by Cold Spring Harbor Laboratory Press

Resource

ABySS:A parallel assembler for short read sequence data

Jared T.Simpson,1Kim Wong,Shaun D.Jackman,Jacqueline E.Schein,

Steven J.M.Jones,and_Inanc x Birol2

Genome Sciences Centre,British Columbia Cancer Agency,Vancouver,British Columbia V5Z4E6,Canada Widespread adoption of massively parallel deoxyribonucleic acid(DNA)sequencing instruments has prompted the recent development of de novo short read assembly algorithms.A common shortcoming of the available tools is their inability to efficiently assemble vast amounts of data generated from large-scale sequencing projects,such as the sequencing of in-dividual human genomes to catalog natural genetic variation.To address this limitation,we developed ABySS(Assembly By Short Sequences),a parallelized sequence assembler.As a demonstration of the capability of our software,we assembled

3.5billion paired-end reads from the genome of an African male publicly released by Illumina,Inc.Approximately

2.76million contigs$100base pairs(bp)in length were created with an N50size of1499bp,representing68%of the

reference human genome.Analysis of these contigs identified polymorphic and novel sequences not present in the human reference assembly,which were validated by alignment to alternate human assemblies and to other primate genomes.

[Supplemental material is available online at https://www.360docs.net/doc/6c11998662.html,.Software binaries and instructions are available at http:// www.bcgsc.ca/platform/bioinfo/software/abyss.]

Massively parallel sequencing platforms,such as the Illumina,Inc. Genome Analyzer,Applied Biosystems SOLiD System,and454 Life Sciences(Roche)GS FLX,have provided an unprecedented increase in DNA sequencing throughput.Currently,these tech-nologies produce high-quality short reads from25to500bp in length,which is substantially shorter than the capillary-based sequencing technology.However,the total number of base pairs sequenced in a given run is orders of magnitude higher.These two factors introduce a number of new informatics challenges,in-cluding the ability to perform de novo assembly of millions or even billions of short reads.

The field of short read de novo assembly developed from pioneering work on de Bruijn graphs by Pevzner et al.(Pevzner and Tang2001;Pevzner et al.2001).The de Bruijn graph repre-sentation is prevalent in current short read assemblers,with Velvet (Zerbino and Birney2008),ALLPATHS(Butler et al.2008),and EULER-SR(Chaisson and Pevzner2008)all following this ap-proach.As an alternative,a prefix tree-based approach was in-troduced by Warren et al.(2007)with their early work on SSAKE. This paradigm was also followed in the VCAKE algorithm by Jeck et al.(2007),and in the SHARCGS algorithm by Dohm et al. (2007).On a third branch,Edena(Hernandez et al.2008)was an adaptation of the traditional overlap-layout-consensus model to short reads.

These short read de novo assemblers are single-threaded applications designed to run on a single processor.However, computation time and memory constraints limit the practical use of these implementations to genomes on the order of a megabase in size.On the other hand,as the next generation sequencing technologies have matured,and read lengths and throughput increase,the application of these technologies to structural anal-ysis of large,complex genomes has become feasible.Notably,the 1000Genomes Project(https://www.360docs.net/doc/6c11998662.html,)is undertaking the identification and cataloging of human genetic variation by sequencing the genomes of1000individuals from a diverse range of populations using short read platforms.Up to this point how-ever,analysis of short read sequences from mammalian-sized genomes has been limited to alignment-based methods(Korbel et al.2007;Bentley et al.2008;Campbell et al.2008;Wheeler et al. 2008)due to the lack of de novo assembly tools able to handle the vast amount of data generated by these projects.

To assemble the very large data sets produced by sequencing individual human genomes,we have developed ABySS(Assembly By Short Sequencing).The primary innovation in ABySS is a dis-tributed representation of a de Bruijn graph,which allows parallel computation of the assembly algorithm across a network of commodity computers.We demonstrate the ability of our assem-bler to quickly and accurately assemble3.5billion short sequence reads generated from whole-genome sequencing of a Yoruban male(NA18507)on the Illumina Genome Analyzer platform. Results

Algorithmic approach

The ABySS algorithm proceeds in two stages.First,all possible substrings of length k(termed k-mers)are generated from the se-quence reads.The k-mer data set is then processed to remove read errors and initial contigs are built.In the second stage,mate-pair information is used to extend contigs by resolving ambiguities in contig overlaps.Details of the assembly algorithm are provided in the Methods section.

Evaluation of ABySS performance

Simulated data

We assembled two sets of simulated,error-free short reads gener-ated from the human reference genome sequence(NCBI Build

1Present address:Wellcome Trust Sanger Institute,Hinxton,Cam-

bridge CB101SA,United Kingdom.

2Corresponding author.

E-mail ibirol@bcgsc.ca;fax(604)876-3561.

Article published online before print.Article and publication date are at

https://www.360docs.net/doc/6c11998662.html,/cgi/doi/10.1101/gr.089532.108.Freely available

online through the Genome Research Open Access option.

19:1117–1123ó2009by Cold Spring Harbor Laboratory Press;ISSN1088-9051/09;https://www.360docs.net/doc/6c11998662.html, Genome Research1117

https://www.360docs.net/doc/6c11998662.html,

36.1)(International Human Genome Sequencing Consortium 2004)to characterize the performance of the algorithm under ideal conditions and to evaluate the frequency of misassembled contigs.Contigs that have an exact,full-length match to the ref-erence genome,or a full-length match with mismatched bases and no alignment gaps,are considered to be correct.Mismatched bases are an artifact of the single nucleotide polymorphism(SNP)re-moval algorithm,which cannot distinguish sequence‘‘bubbles’’formed by heterozygous SNPs in a diploid genome from distinct paralogous regions that differ by one or a few base pairs(see Methods).Since the alternative sequences are retained in a log file,contigs with mismatched bases are not considered to be misassembled.Contigs with more extensive differences from the reference human genome,such as alignment gaps,partial align-ments,or split alignments to different chromosomes,are consid-ered to be misassembled.

The first synthetic data set represented all possible error-free 36-mer paired sequences,using a fixed fragment size of200bp.We generated simulated reads by sliding a200bp window,with a step size of1bp,along each chromosome of the reference genome and reporting the first36bp and the reverse complement of the last36 bp.This process produced a data set of perfectly tiled72-fold read coverage of the reference genome.This data set was assembled using the assembly parameter k=36(see Supplemental material) and produced1.60million contigs$100bp with an N50size of 3656bp.The assembled contigs are highly accurate with94.4%of the contigs aligning perfectly to the reference human genome and another5.0%aligning full length with internal mismatches.To-gether,these contigs represent80%of the reference genome.The remainder of the genome is represented by contigs<100bp in size, which correspond to repeat structures that cannot be resolved by the short read paired-end data.In addition,a very small portion of the genome is represented by misassembled contigs(see below). This simulation forms a baseline for the proportion of the refer-ence genome that can be assembled into contigs$100bp given36 bp paired-end reads from a200bp fragment.The assembly sta-tistics are summarized in Table1.

The second synthetic data set simulated a random sampling of error-free36-mer paired-end reads.Instead of a fixed fragment size of200bp,we applied a fragment size distribution corre-sponding to the empirical distribution of the experimental data set SRA000271(see the next section and Supplemental Fig.1).We sampled the genome to provide an average of42-fold sequence coverage of the reference genome,again mimicking the experi-mental data,and assembled using the assembly parameter k=27. Similar to the assembly of the perfectly tiled simulated data,95.6% of the contigs$100bp aligned perfectly to the reference genome and3.8%aligned with internal mismatches.These contigs repre-sent71%of the reference genome.These assembly statistics are summarized in Table2.

A small number of contig misassemblies are anticipated to arise during the contig merging process because the merging al-gorithm accommodates imperfect data and a wide distribution of fragment sizes,such as one would expect in experimental data sets.These misassemblies can range in severity from minor,for example,a small indel introduced by incorrectly estimating the copy number of a local repeat(found in0.5%of contigs for the tiled simulation and0.5%for the sampled simulation),to major misassemblies where distinct regions of the genome are in-correctly brought together(found in0.04%and0.1%of the tiled and sampled simulations,respectively).In total,misassembled contigs represent less than1%of the total contigs and less than 1%of the genome in both assemblies using error-free data. Experimental sequence data

We obtained sequence data for the genome of an African male individual(HapMap DNA identifier NA18507)(International HapMap Consortium2003,2007)from the NCBI short read ar-chive(accession no.SRA000271).The sequence was generated by Illumina,https://www.360docs.net/doc/6c11998662.html,ing their Genome Analyzer platform(Bentley et al.2008).

The data set consists of3.5billion paired-end tag reads with read lengths ranging from36to42bp and a median fragment size of;210bp(see Supplemental Fig.1),representing the human genome with an average of42-fold sequence redundancy.An initial quality check of the data was performed by aligning the sequences to the human reference genome using the MAQ aligner (Li et al.2008).Analysis of the alignments revealed that72%of the aligning reads perfectly matched the human reference.The per-base error rate was estimated to be;1.4%based on the number of mismatches in the alignments,however,this includes mismatches that represent polymorphic sites.

The genome assembly was performed using the assembly parameter k=27(see Supplemental material).The first phase of the assembly,which does not use the paired-end information, required15h to complete.An additional3d were required to merge contigs using the paired-end information(see Supplemen-tal material for a description of the cluster architecture).After merging with paired-end data,there were2.76million contigs $100bp in size,with an N50size of1499bp(Table3).

Of these2.76million contigs,94.2%were assembled cor-rectly,with full-length alignments to the reference genome, a minimum of95%sequence identity,and alignment gaps no greater than50kb(see Methods).An additional4.6%of the contigs align to the reference genome with at most four un-matched bases at contig termini.Unmatched bases at the termini

Table1.Assembly statistics for perfectly tiled,fixed200-bp fragment,error-free simulated data

Contig statistics

k=36,Without paired-end information k=36,With paired-end information Contigs$100bp Contigs$1000bp Contigs$100bp Contigs$1000bp

Number of contigs3,211,485654,0001,602,329646,202 Median size(bp)23320127002337 Mean size(bp)762267615723327 Max.size(bp)50,85050,85085,41085,410 N50size(bp)2167321436564410 Number of contigs>N50298,085165,571189,583143,471 Sum(Gbp) 2.45 1.75 2.52 2.15 1118Genome Research

https://www.360docs.net/doc/6c11998662.html,

Simpson et al.

occur where sequence errors are undetected due to poor sequence coverage;therefore,we also consider these contigs to be correct. Together,98.8%of the contigs are deemed correct,covering68.2% of the human reference sequence.These figures are only slightly lower than the results obtained from the stochastic423simula-tion.When the restriction on contig size is removed,we observe that90%of the reference genome is covered by contigs(see Sup-plemental Fig.2).If we only consider uniquely aligning contigs, 81%of the reference genome is covered.

For a small portion of the2.76million contigs(0.08%)we observe significant alignment inconsistencies,where contigs have either both ends aligning to different chromosomes,ends aligning to the same chromosome but on the opposite strand,or with ends aligning over50kb apart;these may represent contigs crossing breakpoints of translocations,inversions,or large deletions,re-spectively.However,the observed frequency of such contigs is within range of the0.04%and0.10%of contigs with these types of anomalous alignments that we observed in the assemblies with simulated perfect-coverage data and simulated sampled data,re-spectively,indicating that the majority of these are likely to be incorrectly assembled contigs.

Polymorphic and novel human sequence identified in the assembled experimental data

Analysis of the alignments of correctly assembled contigs to the NCBI human reference genome revealed110,177deletions and 101,578insertions(see Fig.1).The distribution of deletion sizes has a prominent peak in the280–350bp range,which has been previously observed in other human genome sequencing projects (Levy et al.2007;Bentley et al.2008;Wheeler et al.2008).The peak represents545deletions,95%(517)of which overlap with Alu insertions in the human reference genome.Approximately 24%of these(125)have not been identified as retrotransposon insertion polymorphisms(RIPS)in dbRIP(Wang et al.2006).In addition,we have identified23sites at which;6kb known polymorphic L1retrotransposons are absent in the genome of the Yoruban male.Structural variation in this individual relative to the reference genome has been previously identified(Redon et al. 2006;Bentley et al.2008;Kidd et al.2008);however,comparison with this data is beyond the scope of this paper.

Approximately2%of the contigs assembled by ABySS,con-sisting of32,577contigs totaling22.4Mb,aligned only partially or not at all to the NCBI human reference genome.We evaluated alignments of these‘‘orphaned’’contigs to the HuRef(Levy et al. 2007)and Celera(Venter et al.2001)human assemblies.Of these 32,577contigs,9208comprising5.8Mb of sequence align full length or near full length(with at most four unmatched bases at contig termini)to HuRef(Levy et al.2007)(NCBI accession nos. AC000133–AC000156).An additional1529contigs(664kb) aligned to the Celera assembly(Venter et al.2001)(NCBI accession nos.AC000044–AC000068)or to unassigned Celera contigs.These 10,737contigs,representing known human sequence not present in the NCBI human reference genome,bring the total percentage of contigs considered to be correctly assembled to99.4%.

We attempted to validate the remaining contigs by alignment to the chimpanzee genome.Of the remaining21,840contigs,we identified3431contigs totaling over1.8Mb that align completely or near full length to the chimpanzee reference genome(Chim-panzee Sequencing and Analysis Consortium2005)with at least 95%identity.The majority of these contigs(2231contigs repre-senting750kb)aligns partially or poorly to the human genome and aligns to nonorthologous regions in the chimpanzee genome, and we were therefore unable to identify the genomic location of these novel human sequences.For1200contigs with a partial alignment to the human genome and alignment to an ortholo-gous region in the chimpanzee genome we attempted to identify the insertion sites(see Methods).We were able to identify precise insertion sites from246such contigs,two of which walked into a sequence gap in the NCBI human reference assembly.Approxi-mately one-third of the remaining244insertion sites occur within

Table2.Assembly statistics for423sampled,error-free simulated data

Contig statistics

k=27,Without paired-end information k=27,With paired-end information Contigs$100bp Contigs$1000bp Contigs$100bp Contigs$1000bp

Number of contigs3,541,461639,7621,914,370673,469 Median size(bp)25816605982010 Mean size(bp)610202111742632 Max.size(bp)20,66020,66030,54330,543 N50size(bp)1317216624333131 Number of contigs>N50454,444195,608260,813174,603 Sum(Gbp) 2.16 1.30 2.25 1.77 Table3.Assembly statistics for data from the NA18507Yoruba individual

Contig statistics

k=27,Without paired-end information k=27,With paired-end information Contigs$100bp Contigs$1000bp Contigs$100bp Contigs$1000bp

Number of contigs4,348,132549,5222,762,173680,203 Median size(bp)25314634351696

Mean size(bp)48417037912093 Max.size(bp)15,91115,91118,80018,800

N50size870173114992282 Number of contigs>N50674,953188,171408,890202,166

Sum(Gbp) 2.100.94 2.18 1.42

Parallel assembly of short read sequence data

Genome Research1119

https://www.360docs.net/doc/6c11998662.html,

a larger region of known structural variation annotated in the Database of Genomic Variants (Iafrate et al.2004),and almost half of these are known to include an insertion.

Another 1725contigs,encompassing 630kb,appear to con-tain novel sequence,since no high-quality alignment to the three human assemblies or the chimpanzee genome could be deter-mined.Only 22%of these could be aligned (with a minimum 90%identity spanning at least 50%of the contig)to either the orang-utan genome (ftp://https://www.360docs.net/doc/6c11998662.html,/pub/organism/Primates/Pongo_pygmaeus_abelii)or the rhesus macaque genome (Rhesus Macaque Genome Sequencing and Analysis Consortium et al.2007).The remaining 16,684contigs have partial alignments to the human or chimpanzee genomes,but do not meet our criteria as correctly assembled contigs.

Comparison of short read assemblers

To provide context to the performance of ABySS,we performed a comparison with previously published short read assemblers.We used a data set consisting of 20.8million paired-end 36bp Illu-mina reads from a 200bp insert E.coli library (NCBI Short Read Archive,accession no.SRX000429).We performed assem-blies with ABySS,Velvet (Zerbino and Birney 2008),EULER-SR (Chaisson and Pevzner 2008),SSAKE (Warren et al.2007),and Edena (Hernandez et al.2008).All assemblers were run in paired-end mode with the exception of Edena,which does not support the use of paired-end information in contig construction.Velvet generates scaffolds by joining contigs with a series of ‘‘N’’bases.The scaffolds were split at these junctions into their constituent contigs for analysis.Contigs aligning to the reference genome with fewer than five consecutive base mismatches at the termini and at least 95%identity were considered to be correct.A sum-mary of the assembly comparison is presented in Table 4.All the assemblers were able to accurately reconstruct the majority of the E.coli genome with contigs $100bp.However,there is a wide range in terms of contig size and accuracy.ABySSs performance is competitive with the other short read assemblers.

Discussion

We report here on ABySS,a parallel sequence assembler.With the novel distributed de Bruijn graph approach in ABySS,we are able to parallelize the assembly of billions of short reads over a cluster of commodity hardware.This method allows us to cost effectively increase the amount of memory available to the assembly process,which can scale up to handle genomes of virtually any size.We have used ABySS to assemble billions of short reads from a human resequencing project.While our initial results are promising,the field of de novo assembly of short reads—especially from mam-malian genomes—is still rapidly developing.Improvements to both the underlying sequencing platforms and the assembly algorithms will help increase the quality and utility of the result-ing assemblies.The next generation sequencing platforms are continuing to achieve longer read lengths.This will allow a larger k -mer size to be used,which will improve the assemblies by re-ducing the number of spurious overlaps and consequently de-creasing the complexity of the de Bruijn graph.Paired-end sequencing from longer inserts will be critical to increasing the contiguity of mammalian assemblies as long repeat regions are a significant barrier to contig growth.New assembly techniques,such as a hybrid assembly using the high coverage read depth provided by the Illumina platform with the longer GS FLX reads,is also a promising avenue for improving the contiguity of the as-sembly and resolving repetitive regions.

Unlike alignment-based approaches for analyzing short reads,a de novo assembly allows direct identification and precise localization of insertions and deletions relative to the human reference genome sequence,in addition to identifying novel se-quence.From our short read assembly of a single individual,we have identified ;8.9Mb of sequence not represented in the hu-man reference assembly,2.4Mb of which is also not present in the alternate human assemblies.We believe this unbiased approach will lead to substantial insights into the variation present in hu-man genomes,especially in cases where significant variation is anticipated,such as tumor genomes.ABySS will be particularly useful when sequencing organisms for which no reference se-quence is available.

Methods

Overview

A de Bruijn graph data structure,as first proposed by Pevzner et al.(2001)and subsequently refined by Chaisson and Pevzner (2008),

Table https://www.360docs.net/doc/6c11998662.html,parison of assemblies of E.coli K12MG1655short read data

Assembler Contigs $100

bp

Mean size (bp)N50(bp)Largest contig (bp)Genome coverage (%)

Number of incorrect contigs

(mean size,bp)

ABySS 23320,25845,362173,85299.4413(33,252)Velvet 28615,91054,359164,19498.819(52,356)EULER-SR 21621,07457,497174,04199.7626(37,863)SSAKE 931490611,45050,66899.9938(5881)Edena

680

6687

16,430

67,082

99.08

6(13,270)

For each assembly,only contigs $100bp in length were considered.Genome coverage is based on alignments with at least 95%identity to the reference genome (see

Methods).

Figure 1.Distribution of insertion and deletion sizes,up to 1000bp,plotted using a logarithmic scale.There is a pronounced deletion peak around 320bp,which corresponds to the Alu family of retrotransposons.

Simpson et al.

1120Genome Research

https://www.360docs.net/doc/6c11998662.html,

and Zerbino and Birney(2008),is used as the basis of our assem-bler.A de Bruijn graph is a directed graph that compactly repre-sents a homogeneous overlap between sequences.The de Bruijn graph is constructed by creating a vertex for every sequence of length k(referred to as a k-mer)in the data set and joining vertices with an edge when they overlap by k-1bases.The assembly pro-cess can then be seen as merging nodes of the graph when they are unambiguously connected.Prior to the concatenation of nodes however,the graph must be cleaned of vertices and edges created by sequencing errors.We have developed a similar process to EULER-SR(Chaisson and Pevzner2008),Velvet(Zerbino and Birney2008),and Edena(Hernandez et al.2008)to handle read errors.First,short‘‘dead-end’’branches are removed by the algo-rithm.More complex errors that form small,divergent bubbles in the graph are then removed and recorded in a subsequent step.We iterate over these two error removal steps to correct read errors that are in close proximity.We have parallelized these processes to al-low our assembler to efficiently scale with genome size. Distributed de Bruijn graph

At the core of the assembly algorithm is our unique representation of a de Bruijn graph.In this representation,adjacent sequences need not be physically located on the same computer,allowing us to distribute the sequences over a cluster of computer nodes.To distribute the de Bruijn graph over a network of computers we need to address two issues.First,the location of a given k-mer must be deterministically and efficiently computable from the sequence of the k-mer.Second,the adjacency information between k-mers must be stored in a manner that is independent of the actual lo-cation of the k-mer.

The location of each k-mer is computed with a simple hash-ing function.A numerical value{0,1,2,3}is assigned to bases{A, C,G,T}to calculate the base-4representation of a given k-mer.A hash value is then computed from this numerical value.We apply the same procedure on the reverse complement of the sequence, and combine the two values by the XOR operation on their bit representations.This value,modulus the number of nodes,K,is the index used to assign the k-mer to one of the nodes.Since the XOR operation is commutative,the assignment is invariant under reverse complementation.To take advantage of this distributed representation,it is desirable to evenly distribute the set of all possible k-mers over the number of available nodes,to the extent possible by the hash function used.

To store the adjacency information between k-mers we have developed a compact representation of the edges.A single k-mer, or vertex,can have up to eight edges—one for every possible one-base extension,{A,C,G,T},in either direction.This information can be efficiently stored in8bits per k-mer,where one bit repre-sents the presence or absence of each edge.The adjacent k-mers are easily generated from this information and their cluster locations can be deterministically computed by the method described above.

Implementation

ABySS is implemented in C++and uses the MPI(Message Passing Interface)protocol for communication between nodes.For the internal hash tables,the Google sparse hash library(http://code. https://www.360docs.net/doc/6c11998662.html,/p/google-sparsehash/)is used.Sequences are hashed using the function developed by B.Jenkins(http://burtleburtle. net/bob/c/lookup3.c).The latency and bandwidth of the cluster network can have a significant impact on the performance of a parallel application and require special consideration.To miti-gate the latency of the communications link,a nonblocking communications model is used.Each communications message is given a unique identifier.The sending process does not wait for an immediate response,but rather saves the current state of the op-eration,keyed by the message ID,and continues to process other operations.When a response is received for a particular message, the saved state information is retrieved by using the message ID and the original task continues.This system allows many simul-taneous operations on each cluster node,effectively hiding the latency of the network link.As the messages passed between cluster nodes tend to be very short,the messages are collected into larger,1kB packets to minimize the impact of communication overhead.

Assembly algorithm

The assembly is performed in two major steps.First,without using the paired-end information,contigs are extended until either they cannot be unambiguously extended or come to a blunt end due to a lack of coverage.In the second step the paired-end information is used to resolve ambiguities and merge contigs.

Building the graph

The data are first loaded into the distributed de Bruijn graph, during which any sequences with unknown bases(‘‘N’’or‘‘.’’for the Illumina reads)are discarded.Each input sequence l-mer is broken into(làk+1)overlapping k-mers by sliding a window of length k along the input sequence.The cluster node index of the k-mer is computed and the k-mer is assigned to this node for storage in a hash table.As a given sequence and its reverse com-plement are considered to be equivalent,a sequence is not added to the hash table if the reverse complement of the sequence is already present.

Once the k-mers have been loaded into the distributed de Bruijn graph,the adjacency of the k-mers is computed.For each k-mer in the sequence collection a message is sent to its eight possible neighbors.If the neighbor exists there must be a k-1 overlap with the originating k-mer and the adjacency information is set accordingly.

Read errors

Before merging vertices into contigs,the graph must be cleaned of vertices and edges created by sequencing errors.The most preva-lent structure caused by sequencing errors is a‘‘dead-end’’branch, formed by reads that are a mixture of correct and incorrect k-mers. The correct k-mers of a read connect the incorrect k-mers of the read to the canonical portion of the graph.As incorrect sequences are likely to be unique and most will not have an extension,one end of the branch will terminate with no extension(see Supple-mental Fig.3).To eliminate these structures,branches that contain a dead-end are identified,traced backward until a point of ambi-guity is reached,and if the branch is shorter than a threshold length,it is removed from the graph.This process is applied iter-atively,increasing the threshold length at each step to remove longer branches that were uncovered by the removal of shorter branches.The branch removal algorithm is sensitive to the choice of the k-mer parameter.If the k-mer parameter is too high,the sequence graph will be broken in many places and it will be dif-ficult to determine if a dead-end branch arises from a read error or from a lack of k-mer coverage.In the latter case,a correct sequence may be removed from the graph resulting in shorter contigs.For further information regarding the choice of the k-mer parameter, see the Supplemental material.

Parallel assembly of short read sequence data

Genome Research1121

https://www.360docs.net/doc/6c11998662.html,

In rare cases,coincident read errors can cause a false branch that is joined on both sides to the canonical portion of the de Bruijn graph.These cases appear in the graph as a path divergence at a single location that converges after k nodes(referred to as a bubble;see Supplemental Fig.4).This structure also occurs as a result of single nucleotide differences representing allelic varia-tion in a diploid genome or nearly perfect duplicated sequences. By removing such bubbles,contigs can be unambiguously ex-tended further.To remove the bubbles,each point of divergence is found in the graph.Each path from the point of divergence is traced forward looking for the paths to join after n nodes,where k#n#2k.If the paths join,the path with lower read coverage is removed and all the paths are stored in a log file.

Bubbles in the sequence graph can also form from highly similar repetitive regions in the genome.In these cases the bubble removal algorithm will simplify the repeat to a single sequence. This effect can be seen in the perfect simulation where;5%of contigs contained mismatched bases resulting from over-simplification of the graph.As the removed path is stored in a log file,it is possible to recover this information after the assembly is complete.

Vertex merging

The final step in the first phase of the assembly is to merge vertices linked by unambiguous edges.To do this,ambiguous edges are removed from the graph,and the vertices are then merged by the remaining unambiguous edges,creating the initial contigs. Contig merging using paired-end information

The second phase of the assembly uses the paired-end in-formation,if available,to resolve ambiguities between contigs. The paired-end information is used to identify contigs that can be linked together.The reads are aligned to the initial contigs to create a set of linked contigs,which is filtered to remove erroneous links caused by mispaired or misaligned reads.Two contigs are considered to be linked if at least p pairs(by default p=5)join the contigs.For each contig C i,the set of contigs P i is generated from the list of contigs that are paired to C i.A graph search is then performed to look for a single unique path(a sequence of contigs) from C i through the de Bruijn graph,that visits each contig in P i. As the de Bruijn graph can be extremely dense in repetitive areas, we use a heuristic rule to limit the number of vertices visited in the search and hence keep an upper limit on the computational cost to perform this search.Prior to the search,we infer a distance between C i and each contig in P i using a maximum likelihood estimator based on the read pairs aligned to the contigs(see Sup-plemental material).By constraining the search by these distance estimates,we can cull entire branches of the search tree when it can no longer yield a valid solution.This process is repeated for each contig C i and the final step stitches together the consistent paths to generate the contigs of the final assembly.

Assembly analysis

For all data sets,only contigs$100bp in length were evaluated. Contigs aligning to the reference genome with fewer than five consecutive base mismatches at the termini and at least95% identity are considered to be correct,except in the case where an alignment contains a gap greater than50kb.

The contigs from the simulated data set were aligned to the reference human genome(NCBI Build36.1).Contigs assembled from experimental data were initially screened for Epstein-Barr virus(EBV)genomic sequences,which were used to establish the NA18507cell line,using a BLASTN(Zhang et al.2000)search against a local database consisting of two EBV strains(GenBank accession nos.AJ507799and DQ279927)(Deininger et al.1982; Dolan et al.2006).The remaining contigs were then aligned to the human reference genome(NCBI Build36.1)using Exonerate2.0.0 (Slater and Birney2005).These contigs were also aligned to HuRef (Levy et al.2007)and the chimpanzee genome(Chimpanzee Se-quencing and Analysis Consortium2005)(sequence downloaded from UCSC;https://www.360docs.net/doc/6c11998662.html,/downloads.html# chimp panTro2assembly).Contigs that did not align to the ref-erence human genome were aligned to the Celera assembly (Venter et al.2001).The Celera assembly is composed of DNA sequences from five individuals,primarily from J.C.Venter(Levy et al.2007).Although HuRef is an improvement of the Celera genome in terms of the number of sequence gaps and bases as-sembled overall(Levy et al.2007),HuRef represents a single in-dividual and thus we are still able to identify contigs that align to the Celera assembly and not HuRef.The NCBI Blast server has additional unassigned sequences from Celera.The contigs were aligned by BLAST using‘‘blastcl3’’(ftp://https://www.360docs.net/doc/6c11998662.html,/ blast/executables/LATEST/),a BLAST client.

The UCSC‘‘liftOver’’tool(Karolchik et al.2008)was used to map the human coordinates of partially or poorly aligning contigs to orthologous regions in the chimp genome(McConkey2004).If a contig aligns full length or near full length to the chimpanzee genome,and the converted coordinates of the alignment to the human genome were found to map within this orthologous re-gion,the contig was considered to contain a sequence insertion site.Where the span of the alignment to chimpanzee was>20bp longer than the alignment to the human reference genome(true for246contigs)we were able to identify the location of the in-sertion site.This was determined from the human genome alignment by taking the coordinate proximal to the unaligned novel sequence.For858contigs,the difference in the span of the alignments between human and chimp is#20bp,and for96 contigs we were unable to determine the precise insertion point due to difficulty in converting alignment coordinates between the human reference and the chimpanzee reference.

Structural variation

Insertions and deletions were identified from alignment of the assembled contigs to the human reference genome(NCBI Build 36.1).Only contigs considered correct(as outlined in Assembly Analysis above)were used.Insertions and deletions were identified by parsing gapped Exonerate alignments.In some cases,Exonerate alignments are split into two alignments when an alignment gap is flanked by the exact sequence at either end.These broken alignments were‘‘stitched’’together to form a single alignment with a large gap,allowing us to identify contigs with large inser-tions or deletions.

Escherichia coli K12assembly and analysis

E.coli K12substrain MG1655Illumina reads were downloaded from the NCBI short read archive(accession no.SRX000429)and assembled with ABySS,Velvet,SSAKE,EULER-SR,and Edena.For each assembler,the assembly parameters were tuned to provide the highest value of N50.The version number for each assembler, and the parameters used in the assembly,are given in the Sup-plemental material.The contigs from the assemblies were aligned to the E.coli K12MG1655reference genome(RefSeq accession no. NC_000913).The criteria stated above in Assembly Analysis were used to evaluate the contigs from various assemblers and classify a contig as correct.Since rearrangements are not expected,contigs

Simpson et al.

1122Genome Research

https://www.360docs.net/doc/6c11998662.html,

with broken alignments were not considered to be correct in this case.Genomic coverage was calculated from full-length,partial, and broken alignments with at least95%identity to the reference genome.Contigs that aligned with less than95%identity were considered to be incorrect.

Additional methods

Further details of the assembly algorithm and analysis can be found in the Supplemental material.

Software availability

Software binaries and instructions are available at http://www. bcgsc.ca/platform/bioinfo/software/abyss. Acknowledgments

We thank M.A.Marra for his support,and Illumina,Inc.for pub-licly releasing the SRA000271sequence data.The draft Pongo pygmaeus abelii sequence assembly was provided by the Genome Sequencing Center at Washington University School of Medicine in St.Louis.S.J.M.J.is a senior scholar of the Michael Smith Foundation for Health Research.Funding was provided by Ge-nome Canada,Genome British Columbia,and the British Co-lumbia Cancer Foundation.

References

Bentley,D.R.,Balasubramanian,S.,Swerdlow,H.P.,Smith,G.P.,Milton,J., Brown,C.G.,Hall,K.P.,Evers,D.J.,Barnes,C.L.,Bignell,H.R.,et al.

2008.Accurate whole human genome sequencing using reversible

terminator chemistry.Nature456:53–59.

Butler,J.,MacCallum,I.,Kleber,M.,Shlyakhter,I.A.,Belmonte,M.K., Lander,E.S.,Nusbaum,C.,and Jaffe,D.B.2008.ALLPATHS:De novo assembly of whole-genome shotgun microreads.Genome Res.18:810–820.

Campbell,P.J.,Stephens,P.J.,Pleasance,E.D.,O’Meara,S.,Li,H.,Santarius, T.,Stebbings,L.A.,Leroy,C.,Edkins,S.,Hardy,C.,et al.2008.

Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing.Nat.Genet.40: 722–729.

Chaisson,M.J.and Pevzner,P.A.2008.Short read fragment assembly of bacterial genomes.Genome Res.18:324–330.

Chimpanzee Sequencing and Analysis Consortium.2005.Initial sequence of the chimpanzee genome and comparison with the human genome.

Nature437:69–87.

Deininger,P.L.,Bankier,A.,Farrell,P.,Baer,R.,and Barrell,B.1982.

Sequence analysis and in vitro transcription of portions of the Epstein-Barr virus genome.J.Cell.Biochem.19:267–274.

Dohm,J.C.,Lottaz,C.,Borodina,T.,and Himmelbauer,H.2007.SHARCGS,

a fast and highly accurate short-read assembly algorithm for de novo

genomic sequencing.Genome Res.17:1697–1706.

Dolan,A.,Addison,C.,Gatherer,D.,Davison,A.J.,and McGeoch,D.J.2006.

The genome of Epstein-Barr virus type2strain AG876.Virology350: 164–170.

Hernandez,D.,Francois,P.,Farinelli,L.,Osteras,M.,and Schrenzel,J.2008.

De novo bacterial genome sequencing:Millions of very short reads assembled on a desktop computer.Genome Res.18:802–809. Iafrate,A.J.,Feuk,L.,Rivera,M.N.,Listewnik,M.L.,Donahoe,P.K.,Qi,Y., Scherer,S.W.,and Lee,C.2004.Detection of large-scale variation in the human genome.Nat.Genet.36:949–951.The International HapMap Consortium.2003.The International HapMap Project.Nature426:789–796.

International HapMap Consortium,2007.A second generation human haplotype map of over3.1million SNPs.Nature449:851–861. International Human Genome Sequencing Consortium.2004.Finishing the euchromatic sequence of the human genome.Nature431:931–945. Jeck,W.R.,Reinhardt,J.A.,Baltrus,D.A.,Hickenbotham,M.T.,Magrini,V., Mardis,E.R.,Dangl,J.L.,and Jones,C.D.2007.Extending assembly of short DNA sequences to handle error.Bioinformatics23:2942–

2944.

Karolchik,D.,Kuhn,R.M.,Baertsch,R.,Barber,G.P.,Clawson,H.,Diekhans, M.,Giardine,B.,Harte,R.A.,Hinrichs,A.S.,Hsu,F.,et al.2008.The UCSC Genome Browser Database:2008update.Nucleic Acids Res.36: D773–D779.

Kidd,J.M.,Cooper,G.M.,Donahue,W.F.,Hayden,H.S.,Sampas,N.,Graves, T.,Hansen,N.,Teague,B.,Alkan,C.,Antonacci,F.,et al.2008.Mapping and sequencing of structural variation from eight human genomes.

Nature453:56–64.

Korbel,J.O.,Urban,A.E.,Affourtit,J.P.,Godwin,B.,Grubert,F.,Simons,J.F., Kim,P.M.,Palejev,D.,Carriero,N.J.,Du,L.,et al.2007.Paired-end

mapping reveals extensive structural variation in the human genome.

Science318:420–426.

Levy,S.,Sutton,G.,Ng,P.C.,Feuk,L.,Halpern,A.L.,Walenz,B.P.,Axelrod, N.,Huang,J.,Kirkness,E.F.,Denisov,G.,et al.2007.The diploid

genome sequence of an individual human.PLoS Biol.5:e254.doi:

10.1371/journal.pbio.0050254.

Li,H.,Ruan,J.,and Durbin,R.2008.Mapping short DNA sequencing reads and calling variants using mapping quality scores.Genome Res.18:

1851–1858.

McConkey,E.H.2004.Orthologous numbering of great ape and human chromosomes is essential for comparative genomics.Cytogenet.Genome Res.105:157–158.

Pevzner,P.A.and Tang,H.2001.Fragment assembly with double-barreled data.Bioinformatics(Suppl.1)17:S225–S233.

Pevzner,P.A.,Tang,H.,and Waterman,M.S.2001.An Eulerian path approach to DNA fragment assembly.Proc.Natl.Acad.Sci.98:9748–9753.

Redon,R.,Ishikawa,S.,Fitch,K.R.,Feuk,L.,Perry,G.H.,Andrews,T.D., Fiegler,H.,Shapero,M.H.,Carson,A.R.,Chen,W.,et al.2006.

Global variation in copy number in the human genome.Nature444: 444–454.

Rhesus Macaque Genome Sequencing and Analysis Consortium,Gibbs, R.A.,Rogers,J.,Katze,M.G.,Bumgarner,R.,Weinstock,G.M.,Mardis,

E.R.,Remington,K.A.,Strausberg,R.L.,Venter,J.C.,et al.2007.

Evolutionary and biomedical insights from the rhesus macaque

genome.Science316:222–234.

Slater,G.S.and Birney,E.2005.Automated generation of heuristics for biological sequence comparison.BMC Bioinformatics6:31.doi:

10.1186/1471-2105-6-31.

Venter,J.C.,Adams,M.D.,Myers,E.W.,Li,P.W.,Mural,R.J.,Sutton,G.G., Smith,H.O.,Yandell,M.,Evans,C.A.,Holt,R.A.,et al.2001.The

sequence of the human genome.Science291:1304–1351.

Wang,J.,Song,L.,Grover,D.,Azrak,S.,Batzer,M.A.,and Liang,P.2006.

dbRIP:A highly integrated database of retrotransposon insertion

polymorphisms in humans.Hum.Mutat.27:323–329.

Warren,R.L.,Sutton,G.G.,Jones,S.J.,and Holt,R.A.2007.Assembling millions of short DNA sequences using SSAKE.Bioinformatics23:500–501.

Wheeler,D.A.,Srinivasan,M.,Egholm,M.,Shen,Y.,Chen,L.,McGuire,A., He,W.,Chen,Y.J.,Makhijani,V.,Roth,G.T.,et al.2008.The complete genome of an individual by massively parallel DNA sequencing.Nature 452:872–876.

Zerbino,D.R.and Birney,E.2008.Velvet:Algorithms for de novo short read assembly using de Bruijn graphs.Genome Res.18:821–829.

Zhang,Z.,Schwartz,S.,Wagner,L.,and Miller,W.2000.A greedy algorithm for aligning DNA https://www.360docs.net/doc/6c11998662.html,put.Biol.7:203–214.

Received November26,2008;accepted in revised form February24,2009.

Parallel assembly of short read sequence data

Genome Research1123

https://www.360docs.net/doc/6c11998662.html,

化学选修三物质结构与性质 综合测试题及答案

化学选修三 物质结构与性质综合测试题及答案 1、 选择题(每小题3分,共54分。每小题只有一个选项符合题意 ) 1.有关乙炔(H-C=C-H)分子中的化学键描述不正确的是A.两个碳原子采用sp杂化方式 B.两个碳原子采用sp2杂化方式 C.每个碳原子都有两个未杂化的2p轨道形成π键D.两个碳原子形成两个π键 2.下列物质中,难溶于CCl4的是 A.碘单质 B.水C.苯酚 D.己烷 3.下列分子或离子中,含有孤对电子的是 A.H2O B.CH4 C.SiH4 D.NH4+ 4.氨气分子空间构型是三角锥形,而甲烷是正四面体形,这是因为 A .氨气分子是极性分子而甲烷是非极性分子。 B.两种分子的中心原子杂化轨道类型不同,NH3为sp2型杂化,而CH4是sp3型杂化。 C.NH3分子中N原子形成三个杂化轨道,CH4分子中C原子形成4个杂化轨道。 D.NH3分子中有一对未成键的孤对电子,它对成键电子的排斥作用较强。 5.对充有氖气的霓虹灯管通电,灯管发出红色光。产生这一现象的主 要原因 A.电子由激发态向基态跃迁时以光的形式释放能量 B.在电流的作用下,氖原子与构成灯管的物质发生反应 C.电子由基态向激发态跃迁时吸收除红光以外的光线 D.氖原子获得电子后转变成发出红光的物质 6.若某原子在处于能量最低状态时,外围电子排布为4d15s2,则下列说法正确的是 A.该元素原子处于能量最低状态时,原子中共有3个未成对电子B.该元素原子核外共有6个电子层 C.该元素原子的M能层共有8

个电子 D.该元素原子最外层共有2个电子 7.σ键可由两个原子的s轨道、一个原子的s轨道和另一个原子的p轨 道以及一个原子的p轨道和另一个原子的p轨道以“头碰头”方式重叠而成。则下列分子中的σ键是由一个原子的s轨道和另一个原子的p轨道以“头碰头”方式重叠构建而成的是 A.H2 B.HF C.Cl2 D.F2 8. 下列原子或离子原子核外电子排布不属于基态排布的是 A. S2-: 1s22s22p63s23p6 B. N: 1s22s22p3 C. Si: 1s22s22p63s23p2 D. Na: 1s22s22p53s2 9.元素电负性随原子序数的递增而增强的是 A.C,Si,Ge B.N, P, As C.Si, P, Cl D. F, S, Cl 10.某元素质量数51,中子数28,其基态原子未成对电子数为 A.3 B.1 C. 2 D.0 11,只有阳离子而没有阴离子的晶体是 ( )。 A.金属晶体 B.分子晶体 C.离子晶体 D.原子晶体 12,下列关于物质熔点的排列顺序,不正确的 是 ( )。 A.HI>HBr>HCl>HF B.CI4>CBr4>CCl4>CF4 C.KCl>KBr>KI D.金刚石>碳化硅>晶体硅 13、下列数据是对应物质的熔点,有关的判断错误的是() Na2O Na AlF3AlCl3Al2O3BCl3CO2SiO2 920℃97.8℃1291℃190℃2073℃-107℃-57℃1723℃ A.只要含有金属阳离子的晶体就一定是离子晶体 B.在上述共价化合物分子中各原子都形成8电子结构 C.同族元素的氧化物可形成不同类型的晶体 D.金属晶体的熔点不一定比离子晶体的高

物质结构专题测试卷

《物质结构》专题测试卷 1、若在现代原子结构理论中,假定每个原子轨道只能容纳一个电子,则原子序数为42的元素的核外电子排布式将是怎样的(请写出完整的电子排布式)?按这种假设而设计出的元素周期表,该元素将属于第几周期、第几族?该元素的中性原子在化学反应中得失电子情况又将怎样? 2、已知苯具有六角形对称性,萘结构包含着两个连接在一块的共面六边形碳骨架。此外,只能是相邻原子成键。试画出下列物质所有的八隅体共振结构图; (1)苯C6H6;(2)萘C l0H8 3、氮化硅是一种高温陶瓷材料,它的硬度大、熔点高、化学性质稳定。工业上曾普遍采用高纯硅与纯氮在1300℃反应获得。 (1)氨化硅晶体属于______________晶体;(填晶体类型) (2)已知氮化硅的晶体结构中,原子间都以单键相连,且N原子和N原子、Si原子和Si 原子不直接相连,同时每个原子都满足8电子稳定结构。请写出氮化硅的化学式; (3)现用四氯化硅和氮气在氢气气氛保护下,加强热发生反应,可得到较高纯度的氮化硅。反应的化学方程式为___________________________________________。 4、Lewis结构中至少有一个原子周围多余8个电子的化合物叫超价化合物。出现超价化合物对于第三至第六周期而言是个相当普遍的现象,例如PCl3和SF6结构中的P和S原子。传统的解释认为这些元素的低能级未满d轨道能够容纳额外的电子,如果利用3d轨道,P 的价层电子数就能超过8,PCl5中至少必须利用一个3d轨道,第二周期较少出现超价是由于这些元素没有2d轨道。然而,新近的计算表明传统的解释方法过分强调了3d轨道在超价化合物中所起的作用,空轨道并不是形成超价化合物的主要原因。超价SF6分子中的成键作用不必用d轨道扩大S原子的八隅体就能做出解释。 (1)试说明第二周期元素很少出现超价化合物的主要原因;(2’) (2)用第1问得出的结论解释为什么可以稳定存在SF6和PCl5;(2’) (3)S2F10也为超价化合物,试画出其Lewis结构;(2’) (4)已知SF6不容易水解,其原因可归结于其结构的稳定性及S已达到最高配位等因素,但TeF6却可在水中明显的水解,请说明理由;(3’) (5)写出TeF6水解的反应方程式。(1’) 5、H2O2是一种绿色氧化剂,应用十分广泛。1979年化学家将H2O2滴入到SbF5的HF溶液中,获得了一种白色固体A。经分析,A的阴离子呈八面体结构,阳离子与羟胺NH2OH是等电子体,而且此反应未发生电子转移。 (1)确定A的结构简式。写出生成A的化学反应方程式。 (2)在室温或高于室温的条件下,A能定量地分解,产生B和C。已知B的阳离子的价电子总数比C的价电子总数少4。试确定B的结构简式,写出B中阴、阳离子各中心原子的杂化形态。 (3)若将H2O2投入到液氨中,可得到白色固体D。红外光谱显示,固态D存在阴、阳两种离子,其中一种离子呈现正四面体。试确定D的结构简式。 (4)上述实验事实说明H2O2的什么性质? 6、根据下列数据,设计玻恩-哈伯循环计算溴化镁的晶格能(6’) 溴化镁的生成热-523.4 kJ/mol 镁的原子化热147 kJ/mol 镁的第一电离能738 kJ/mol

化学选修三物质结构与性质综合测试题及答案

化学选修三物质结构与性质综合测试题及答案 一、选择题(每小题3分,共54分。每小题只有一个 ....选项符合题意 ) 1.有关乙炔(H-C=C-H)分子中的化学键描述不正确的是 A.两个碳原子采用sp杂化方式 B.两个碳原子采用sp2杂化方式C.每个碳原子都有两个未杂化的2p轨道形成π键D.两个碳原子形成两个π键 2.下列物质中,难溶于CCl4的是 A.碘单质 B.水C.苯酚 D.己烷 3.下列分子或离子中,含有孤对电子的是 A.H2O B.CH4 C.SiH4 D.NH4+ 4.氨气分子空间构型是三角锥形,而甲烷是正四面体形,这是因为 A .氨气分子是极性分子而甲烷是非极性分子。 B.两种分子的中心原子杂化轨道类型不同,NH3为sp2型杂化,而CH4是sp3型杂化。 C.NH3分子中N原子形成三个杂化轨道,CH4分子中C原子形成4个杂化轨道。 D.NH3分子中有一对未成键的孤对电子,它对成键电子的排斥作用较强。 5.对充有氖气的霓虹灯管通电,灯管发出红色光。产生这一现象的主要原因 A.电子由激发态向基态跃迁时以光的形式释放能量 B.在电流的作用下,氖原子与构成灯管的物质发生反应 C.电子由基态向激发态跃迁时吸收除红光以外的光线 D.氖原子获得电子后转变成发出红光的物质 6.若某原子在处于能量最低状态时,外围电子排布为4d15s2,则下列说法正确的是 A.该元素原子处于能量最低状态时,原子中共有3个未成对电子 B.该元素原子核外共有6个电子层 C.该元素原子的M能层共有8个电子 D.该元素原子最外层共有2个电子 7.σ键可由两个原子的s轨道、一个原子的s轨道和另一个原子的p轨道以及一个原子的p轨道和另一个原子的p轨道以“头碰头”方式重叠而成。则下列分子中的σ键是由一个原子的s轨道和另一个原子的p轨道以“头碰头”方式重叠构建而成的是 A.H2 B.HF C.Cl2 D.F2

高中化学选修3《物质结构与性质》综合测试5

选修三《物质结构与性质》综合测试(5) 本试卷分第I卷(选择题)和第II卷(非选择题)两部分。 分值:120分考试时间为90分钟。 第I卷(选择题共60分) 可能用到的相对原子原子质量:H─1 C─12 N─14 O─16 Na─23 Mg─24 Al─27 Cl─35.5 一.选择题(本题包括20小题,每小题3分,共60分。每小题只有一个 ....选项符合题意。) 1.在物质结构研究的历史上,首先提出原子内有电子学说的是() A.道尔顿 B.卢瑟福 C.汤姆生 D.波尔 2.一个电子排布为1s22s22p63s23p1的元素最可能的价态是( ) A +1 B +2 C +3 D -1 3. 以下能级符号不正确 ...的是() A.3s B.3p C .3d D.3f 4. 下列能跟氢原子形成最强极性键的原子是() A.F B.Cl C.Br D.I 5. 关于晶体的下列说法正确的是() A. 任何晶体中,若含有阳离子就一定有阴离子。 B. 原子晶体中只含有共价键。 C. 原子晶体的熔点一定比金属晶体的高。 D.离子晶体中只含有离子键,不含有共价键。 6.下列说法中,不符合 ...ⅦA族元素性质特征的是() A.易形成-1价离子 B.从上到下原子半径逐渐减小 C.从上到下单质的氧化性逐渐减弱 D.从上到下氢化物的稳定性依次减弱 7. 下列晶体熔化时不需破坏化学键的是() A. 晶体硅 B .食盐 C .干冰 D .金属钾 8. 向盛有硫酸铜水溶液的试管里加入氨水,首先形成难溶物,继续添加氨水,难溶物溶解得到深蓝色的透明溶液。下列对此现象说法正确的是() A. 反应后溶液中不存在任何沉淀,所以反应前后Cu2+的浓度不变。 B. 沉淀溶解后,将生成深蓝色的配合离子[Cu(NH3)4] 2+。 C. 向反应后的溶液加入乙醇,溶液没有发生变化。 D. 在[Cu(NH3)4] 2+离子中,Cu2+给出孤对电子,NH3提供空轨道。 9. 关于CO2说法正确的是() A. 碳原子采取sp杂化。 B. CO2是正四面体型结构。

选修3《物质结构与性质》综合测试1

1) 咼中化学同步训练(人教版) 选修3《物质结构与性质》试题( 说明:1.本试卷分第I 卷(选择题)和第 II 卷(非选择题)两部分。考试时间 2.可能用到的原子量:H 1 C 12 N 14 O 16 Na 23 Cl 35.5 第I 卷(共54 分) 1.下列叙述中,正确的是 B .凡单原子形成的离子,一定具有稀有气体元素原子的核外电子排布式 C ?两原子,如果核外电子排布相同,则一定属于同种元素 D .阴离子的核外电子排布与上一周期稀有气体元素原子核外电子排布相同 2.具有下列电子排布式的原子中,半径最小的是 …2c 2c 6c 2c 3 r , 2c 2c 3 A. ls 2s 2p 3s 3p B.1s 2s 2p 3?下面的排序不正确的是( D.熔点由高到低:NaF> NaCI> NaBr>Nal 4?下列各组中的两种固态物质熔化或升华时,克服的微粒间相互作用力属于同种类型的是 5?下列各组元素属于 P 区的是 D . Na , Li , Mg 6.短周期元素的原子,处于基态时可能具有的电子是 40分钟,满分100分。 、选择题(本题包括9小题,每小题 2分,共18分。每小题只有一个选项符合题意。) A ?两种粒子,若核外电子排布完全相同, 则其化学性质一定相同 , 2c 2 2 C.1s 2s sp r , 2c 2c 6c 2c 4 D.1s 2s 2p 3s 3p A.晶体熔点由低到高: CF 4碳化硅>晶体硅 C.熔点由高到低:Na>Mg>AI A ?碘和氯化钾 B .金刚石和重晶石 C .二氧化硅和干冰 D .软脂酸甘油酯和冰醋酸 A .原子序数为1 , 2, 7的元素 B . 0, S , P C . Fe , Ar , Cl A.只有s 和P 电子 B.只有s 电子 C.只有P 电子 D.有S 、P 和d 电子 7.向盛有硫酸铜水溶液的试管里加入氨水,首先形成难溶物,继续添加氨水,难溶物溶解得到深 蓝色的透明溶液。下列对此现象说法正确的是 A .反应后溶液中不存在任何沉淀,所以反应前后 B .沉淀溶解后,将生成深蓝色的配离子 [Cu(NH ( ) Cu 2+的浓度不变 2+ 3)4] C .向反应后的溶液加入乙醇,溶液没有发生变化 D .在[Cu (NH 3)4] 2+离子中,Cu 2+给出孤对电子, 8.萤石(CaF 2)晶体属于立方晶 系,萤石中每个Ca 2+被8个F 所包围,则每个F — 周围最近距离的 Ca 2+数目为 NH 3提供空轨道

高考化学练习题物质结构与性质-word

高考化学练习题物质结构与性质物质结构与性质 考点1 原子结构与元素的性质 1.了解原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布。了解原子核外电子的运动状态。 2.了解元素电离能的含义,并能用以说明元素的某些性质。 3.了解原子核外电子在一定条件下会发生跃迁,了解其简单应用。 4.了解电负性的概念,知道元素的性质与电负性的关系。 高频考点1 原子核外电子的排布规律 【样题1】下列各组原子中,彼此化学性质一定相似的是() A.原子核外电子排布式为1s2的X原子与原子核外电子排布式为1s22s2的Y原子 B.原子核外M层上仅有两个电子的X原子与原子核外N层上仅有两个电子的Y原子 C.2p轨道上有一个空轨道的X原子与3p轨道上只有一个空轨道的Y原子 D.最外层都只有一个电子的X、Y原子 【解题指导】A中1s2结构的He,1s22s2结构为Be,两者性质不相似。B项X原子为Mg,Y原子N层上有2个电子的有多种元素,如第四周期中Ca、Fe等都符合,化学性质不一

定相似。C项为同主族的元素,化学性质一定相似。D项最外层只有1个电子可能是第ⅠA族元素,过渡元素中也有很多最外层只有1个电子的,故性质不一定相似。 【答案】 C 【命题解读】原子核外电子的排布规律是中学化学原子结构的重点内容,也是元素周期律的基础。原子轨能级是决定核外电子排布和构型的重要因素,原子的外层电子构型是随原子序数的增加呈现周期性变化,而原子的外层电子构型的周期性变化又引起元素性质的周期性变化,元素性质周期性变化的规律称元素周期律,反映元素周期律的元素排布称元素周期表。 考点2 化学键与物质的性质 1.理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。 2.了解共价键的主要类型键和键,能用键能、键长、键角等说明简单分子的某些性质。 3.了解简单配合物的成键情况。 4.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。 5.理解金属键的含义,能用金属键理论解释金属的一些物理性质。 6.了解杂化轨道理论及常见的杂化轨道类型(sp,sp2,sp3),

物质结构与性质模块测试题

《物质结构与性质》模块测试题 一、选择题(本题包括9小题,每小题3分,共27分。每小题只有一个选项符合题意。) 1.核磁共振(NMR )技术已广泛应用于复杂分子结构的测定和医学诊断等高科技领域。已知只有质子数或中子数为奇数的原子核有NMR 现象。试判断下列哪种原子不能..产生NMR 现象 A .13 6C B .147N C .168O D .31 15P 2.有关化学用语正确的是 A .Cl - 的电子排布式:1s 22s 22p 63s 23p 6 B.乙醇的结构简式:C 2H 6O C .硫离子的结构示意图: D.四氯化碳的电子式: 3. 膦(PH 3)又称磷化氢,在常温下是一种无色有大蒜臭味的有毒气体,电石气的杂质中常有磷化氢。它的分子构型是三角锥形。以下关于PH 3的叙述正确的是 A.PH 3分子中有未成键的孤对电子 B .PH 3是非极性分子 C .PH 3是一种强氧化剂 D .PH 3分子的P -H 键是非极性键 4.下列关于元素第一电离能的说法不正确...的是 A .钾元素的第一电离能小于钠元素的第一电离能,故钾的活泼性强于钠 B .因同周期元素的原子半径从左到右逐渐减小,故第一电离能必定依次增大 C .最外层电子排布为n s 2n p 6(若只有K 层时为1s 2)的原子,第一电离能较大 D .对于同一元素而言,原子的逐级电离能越来越大 5.具有下列电子排布式的原子中,半径最大的是 A .ls 22s 22p 63s 23p 3 B .1s 22s 22p 3 C .1s 22s 22p 4 D .1s 22s 22p 63s 23p 4 6.下列分子中,所有原子都满足8电子结构的是 A .六氟化硫 B .光气(COCl 2) C .二氟化氙 D .三氟化硼 7.下列说法中正确的是 A .处于最低能量的原子叫做基态原子 B .3p 2表示3p 能级有两个轨道 C .同一原子中,1s 、2s 、3s 电子的能量逐渐减小 D .同一原子中,2p 、3p 、4p 能级的轨道数依次增多 8.下列关于丙烯(CH 3—CH =CH 2)的说法正确的是 2 8 6 +16

关于物质结构与性质测试题及答案

物质结构与性质测试题 (满分100分,时间90分钟) 相对原子质量:H 1 Li 7 Be9 C 12 O 16 Na 23 Mg 24 一.选择题(本题包括10小题,每小题2分,共20分。每小题只有一个选项符合题意。)1.13C—NMR(核磁共振)、15N—NMR可用于测定蛋白质、核酸等生物大分子的空间结构,KurtW üthrich等人为此获得2002年诺贝尔化学奖。下面有关13C、15N叙述正确的是() A .13C与15N有相同的中子数 B .13C与C60互为同素异形体 C .15N与14N互为同位素 D .15N的核外电子数与中子数相同 2.下列性质中,可以证明某化合物内一定存在离子键的是()A.可溶于水B.具有较高的熔点C.水溶液能导电D.熔融状态能导电 3.某元素的两种同位素,它们的原子具有不同 ..的()A.质子数B.质量数C.原子序数D.电子数 4.下列分子的电子式书写正确的是()A.氨B.四氯化碳 C.氮D.二氧化碳 5.下列叙述正确的是() A .P4和NO2都是共价化合物 B .CCl4和NH3都是以极性键结合的极性分子 C.在CaO和SiO2晶体中,都不存在单个小分子 D.甲烷的分子是对称的平面结构,所以是非极性分子 6.某主族元素的原子,M层上有一个半充满的亚层(即该亚层的每个轨道只有1个电子, 这种原子的质子数() A.只能是7 B.只能是15 C.是11或15 D.是11或13 7.某元素X最高价含氧酸的分子量为98,且X的氢化物的分子式不是H2X,则下列说法正确的是() A .X的最高价含氧酸的分子式可表示为H3XO4 B .X是第二周期V A族元素 C .X是第二周VIA族元素 D .X的最高化合价为+4 8.某元素的原子最外电子层排布是5s25p1,该元素或其化合物不可能具有的性质是() A.该元素单质是导体B.该元素单质在一定条件下能与盐酸反应C.该元素的氧化物的水合物显碱性D.该元素的最高化合价呈+5价 9. 下列叙述中正确的是() A.在冰(固态水)中,既有极性键、非极性键,又有氢键 B.二氧化碳分子是由极性键形成的非极性分子 C.含有金属阳离子的晶体一定是离子晶体 D.金属晶体的熔、沸点一定比分子晶体的高

物质结构与性质 测试题

物质结构与性质测试题(一) (满分100分,时间90分钟) 相对原子质量:H 1 Li 7 Be9 C 12 O 16 Na 23 Mg 24 一.选择题(本题包括10小题,每小题2分,共20分。每小题只有一个选项符合题意。) 1.有人认为在元素周期表中,位于ⅠA族的氢元素,也可以放在ⅦA族,下列物质能支持这种观点的是 A.HF B .H3O+ C .NaH D .H2O2 2. 据最新科技报道:美国夏威夷联合天文中心的科学家发现了新型氢微粒,它是由3个氢原子核和两个电子构成,对这种微粒的下列说法中正确的是 A.是氢的一种新的同素异形体B.是氢的一种新的同位素 C.它的组成可用H3表示D.它比普通的氢分子多一个氢原子核3.C60与现代足球有很相似的结构,它与石墨互为 A.同位素B.同素异形体 C.同分异构体 D .同系物 4.某元素的原子最外层电子排布是5s1,下列描述中正确的是 A.其单质常温下跟水反应不如钠剧烈 B.其原子半径比钾原子半径小 C.其碳酸盐易溶于水 D.其氢氧化物不能使氢氧化铝溶解 5.右图是氯化钠晶体的结构示意图,其中,与每个Na+距离最近且等距离的几个Cl-所围成的空间的构形为() A.正四面体形 B.正六面体形 C.正八面体形 D.三角锥形 6.在下列有关晶体的叙述中错误的是 A.离子晶体中,一定存在离子键B.原子晶体中,只存在共价键C.金属晶体的熔沸点均很高D.稀有气体的原子能形成分子晶体 7. 下列叙述中正确的是 A. 在冰(固态水)中,既有极性键、非极性键,又有氢键 B. 二氧化碳分子是由极性键形成的非极性分子 C. 含有金属阳离子的晶体一定是离子晶体 D. 金属晶体的熔、沸点一定比分子晶体的高 8.对于多电子原子来说,下列说法正确的是( ) A. 主量子数n决定原子轨道的能量; B. 主量子数n是决定原子轨道能量的次要因素; C. 主量子数n值愈大,轨道能量正值愈大 ;

物质结构与性质检测卷

《物质结构与性质》检测卷 考试时间:100分钟分值:120分 本试卷分第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两部分。 可能用到得相对原子质量:H 1 C 12 O16 S 32 Cl 35、5Na 23 Br80 Au197 第Ⅰ卷(选择题共60分) 一、选择题(本题包括10小题,每小题3分,共30分。每小题只有一个选项符合题意) 1、下列各原子或离子得电子排布式错误得就是 A、Al1s22s22p63s23p1B、O2-1s22s22p6 C、Na+1s22s22p6 D、Si1s22s22p2 2、已知[Co(NH3)6]3+呈正八面体结构,若其中有两个NH3分子分别 被H2O取代,所形成得[Co(NH3)4(H2O)2]3+得几何异构体种数有 (不考虑光学异构)几种 A、2种B、3种C、4种D、6种 3、以下各分子中,所有原子都满足最外层为8电子结构得就是 A、H3O+B、BF3C、CCl4D、PCl5 4、下图中每条折线表示周期表ⅣA~ⅦA中得某一族元素氢化物得沸点变化,每个小黑点代表 一种氢化物,其中a点代表得就是 A、H2SB、HClC、PH3D、SiH4 5、同主族两种元素原子得核外电子数得差值可能为 A、6 B.12 C、26 D、30? 6、下列说法正确得就是 A、ⅠA族元素得金属性比ⅡA族元素得金属性强 B、ⅥA族元素得氢化物中,稳定性最好得其沸点也最高 C、同周期非金属氧化物对应得水化物得酸性从左到右依次增强 D、第三周期元素得离子半径从左到右逐渐减小 7、下列叙述正确得就是 A、NH3就是极性分子,分子中N原子就是在3个H原子所组成得三角形得中心 B、CCl4就是非极性分子,分子中C原子处在4个Cl原子所组成得正方形得中心 C、H2O就是极性分子,分子中O原子不处在2个H原子所连成得直线得中央 D、CO2就是非极性分子,分子中C原子不处在2个O原子所连成得直线得中央

物质结构与性质测试题

普通高中课程标准实验教科书-化学选修3[苏教版] 2006-2007学年度第一学期 高二化学期中试卷 可能用到的相对原子量:H-1 C-12 N-14 O-16 Na-23 S-32 Br-80 一、选择题(本题包括5小题,每小题2分,共10分。每题只有一个 ....选项符合题意,请将答案写在试卷第三页的表格中) 1.下列有关电子云和原子轨道的说法正确的是()A.原子核外的电子象云雾一样笼罩在原子核周围,故称电子云 B.s能级的原子轨道呈球形,处在该轨道上的电子只能在球壳内运动 C.p能级的原子轨道呈纺锤形,随着电子层的增加,p能级原子轨道也在增多 D.与s原子轨道的电子相同,p原子轨道电子的平均能量随能层的增大而增加 2.现有四种元素的基态原子的电子排布式如下:①1s22s22p63s23p4;②1s22s22p63s23p3; ③1s22s22p3;④1s22s22p5。则下列有关比较中正确的是() A.第一电离能:④>③>②>①B.原子半径:④>③>②>① C.电负性:④>③>②>①D.最高正化合价:④>③=②>① 3.磷酸的结构式如下图所示,三分子磷酸可脱去两分子水生成三聚磷酸。含磷洗衣粉中含有三聚磷酸,则该钠盐的化学式及1mol此钠盐中P-O单键的物质的量分别是()A.Na5P3O10 7mol B.Na3H2P3O10 8mol C.Na5P3O10 9mol D.Na2H3P3O10 12mol 4.当硅原子由1s22s22p63s23p2→1s22s22p63s13p3时,以下认识正确的是 A.硅原子由基态转化成激发态,这一过程中吸收能量 B.硅原子由激发态转化成基态,这一过程中释放能量 C.转化后位于p能级上的两个电子处于同一轨道,且自旋方向相反 D.转化后硅原子与磷原子电子层结构相同,化学性质相似 5.2001年报道硼和镁形成的化合物刷新了金属化合物超导温度的最高记录。如右图是该化合物的晶体结构单元:镁原子间形成正六棱柱,且棱柱的上下面还各有一个镁原子;6个硼原子位于棱柱的侧棱上,则该化合物的化学式可表示为() A.MgB B.Mg3B2 C.MgB2D.Mg2B3 二、选择题(本题包括10小题,第6 ~15小题每小题3分,共30分。每小题有一个或两个 选项符合题意。若正确答案只包括一个选项,多选时,该题为0分;若正确答案包括两个选项,只选一个且正确的得1分,选两个且都正确的得满分,但只要选错一个,该小题就为0分) 6.按能量由低到高的顺序排列,正确的一组是()A.1s、2p、3d、4s B.1s、2s、3s、2p C.2s、2p、3s、3p D.4p、3d、4s、3p

人教版高中化学选修三物质结构与性质综合练习题

《物质结构与性质》专题练习 一 选择题 1. 卤素单质及化合物在许多性质上都存在着递变规律。下列有关说法正确的是 A .卤化银的颜色按AgCl 、AgBr 、AgI 的顺序依次加深 B .卤化氢的键长按H —F 、H —C1、H —Br 、H —I 的顺序依次减小 C .卤化氢的还原性按HF 、HCl 、HBr 、HI 的顺序依次减弱 D .卤素单质与氢气化合按2F 、2Cl 、2Br 、2I 的顺序由难变易 2. 石墨烯是由碳原子构成的单层片状结构的新材料(结构示意图如下),可由石墨剥离而成, 具有极好的应用前景。下列说法正确的是 A. 石墨烯与石墨互为同位素 B. 0.12g 石墨烯中含有6.02×1022 个碳原子 C. 石墨烯是一种有机物 D. 石墨烯中的碳原子间以共价键结合 3. 下列说法中错误.. 的是: A .CH 4、H 2O 都是极性分子 B .在NH 4+ 和[Cu(NH 3)4]2+中都存在配位键 C .元素电负性越大的原子,吸引电子的能力越强 D .原子晶体中原子以共价键结合,具有键能大、熔点高、硬度大的特性 4.下列化合物,按其晶体的熔点由高到低排列正确的是 A .SiO 2 CsCl CBr 4 CF 4 B .SiO 2 CsCl CF 4 CBr 4 C .CsCl SiO 2 CBr 4 CF 4 D .CF 4 CBr 4 CsCl SiO 2 5. 在基态多电子原子中,关于核外电子能量的叙述错误的是 A. 最易失去的电子能量最高 B. 电离能最小的电子能量最高 C . p 轨道电子能量一定高于s 轨道电子能量 D. 在离核最近区域内运动的电子能量最低 6.下列叙述中正确的是 A .NH 3、CO 、CO 2都是极性分子 B .CH 4、CCl 4都是含有极性键的非极性分子 C .HF 、HCl 、HBr 、Hl 的稳定性依次增强 D .CS 2、H 2O 、C 2H 2都是直线型分子 7.下列叙述正确的是 A .原子晶体中各相邻原子之间都以共价键结合 B .分子晶体中都存在范德华力,分子内都存在共价键 C .HF 、HCl 、HBr 、HI 四种物质的沸点依次升高 D .干冰和氯化铵分别受热变为气体所克服的粒子间相互作用力属于同种类型 8. X 、Y 、Z 、M 是元素周期表中前20号元素,其原子序数依次增大,且X 、Y 、Z 相邻。X 的核电荷数是Y 的核外电子数的一半,Y 与M 可形成化合物M 2Y 。下列说法正确的是 A .还原性:X 的氢化物>Y 的氢化物>Z 的氢化物

物质结构练习题

物质结构练习题 一、选择 1.在一个多电子原子中,具有下列各套量子数(n,l,m,m s )的电子,能量最大的电子具有的量子数是-------- ( ) (A) 3,2,+1,+1/2 (B) 2,1,+1,-1/2 (C) 3,1,0, -1/2 (D) 3,1, -1,+1/2 2. 原子序数为19 的元素的价电子的四个量子数为----------- ( ) (A) n=1,l=0,m=0,m s =+1/2 (B) n=2,l=1,m=0,m s =+1/2 (C) n=3,l=2,m=1,m s =+1/2 (D) n=4,l=0,m=0,m s =+1/2 3. 氢原子中的原子轨道的个数是----------- ( ) (A) 1个(B) 2个(C) 3个(D) 无穷多个 4. 对于原子的s轨道,下列说法中正确的是----------- ( ) (A) 距原子核最近(B) 必有成对电子(C) 球形对称(D) 具有方向性 5. 下列各组量子数中,合理的一组是---------- ( ) (A) n=3,l=1,m1 =+1,m s=+1/2 (B) n=4,l=5,m1 =-1,m s= +1/2 (C) n=3,l=3,m1 =+1,m s=-1/2 (D) n=4,l=2,m1 =+3,m s= -1/2 6. 在能量简并的d轨道中电子排布成,而不排布成,其最直接的根据是---------- ( ) (A) 能量最低原理(B) 保里原理(C) 原子轨道能级图(D) 洪特规则 7. 若将N 原子的基态电子构型写成1s2 2 s 2 2p x2 2p y1,这违背了---- ( ) (A) Pauli 原理(B) Hund 规则(C) 对称性一致的原则(D) Bohr 理论 8. 在分子中衡量原子吸引成键电子的能力用------------ ( ) (A) 电离能(B) 电子亲合能(C) 电负性(D) 解离能 9. 能和钠形成最强离子键的单质是----------------- ( ) (A) H2 (B) O2 (C) F2 (D) Cl2 10. 下列物质中,既有离子键又有共价键的是--------( ) (A) KCl (B) CO (C) Na2SO4 (D) NH4+ 11. 下列说法中正确的是-----------( ) (A) 共价键仅存在于共价型化合物中(B)由极性键形成的分子一定是极性分子 (C) 由非极性键形成的分子一定是非极性分子(D) 离子键没有极性 12. 下列化学键中,极性最弱的是------------ ( ) (A) H-F (B) H-O (C) O-F (D) C-F 13. 下列分子中属极性分子的是------------------- ( ) (A) SiCl4(g) (B) SnCl2 (g) (C) CO2 (D) BF3 14. BF3 分子的偶极矩数值( D )为-------------- ( ) (A) 2 (B) 1 (C) 0.5 (D) 0 15. 下列各组判断中正确的是-------------------- ( ) (A) CH4,CO2非极性分子(B) CHCl3,BCl3,H2S,HCl极性分子 (C) CH4,H2S,CO2非极性分子(D) CHCl3 ,BCl3 ,HCl极性分子 16. 为确定分子式为XY2 的共价化合物是直线型还是弯曲型的,最好要测定它的----( ) (A)与另一个化合物的反应性能(B)偶极矩(C)键能(D) 离子性百分数 17. 下列说法中正确的是---------------- ( ) (A) BCl3分子中B—Cl键是非极性的(B) BCl3分子和B—Cl键都是极性的 (C) BCl3分子是极性分子,而B—Cl键是非极性键 (D) BCl3分子是非极性分子,而B—Cl键是极性键 18. 下列物质中,含极性键的非极性分子是------------------------- ( ) (A) H2O (B) HCl (C) S O3 (D) NO2 19. 在单质碘的四氯化碳溶液中,溶质和溶剂分子之间存在着------------ ( ) (A) 取向力(B) 诱导力(C) 色散力(D) 诱导力和色散力 20. 下列液态物质中只需克服色散力就能使之沸腾的是: -----------( ) (A) H2O (B) CO (C) HF (D) Xe

2019-2020学年人教版高中化学物质结构与性质第二章《分子结构与性质》测试卷

第二章《分子结构与性质》测试卷 一、单选题(共15小题) 1.对配合物[Cu(NH3)4]SO4的叙述,错误的是() A. Cu2+和NH3之间以配位键结合 B. [Cu(NH3)4]2+和SO42-之间以离子键结合 C. Cu2+和NH3之间以离子键结合 D. [Cu(NH3)4]SO4在水中全部电离成[Cu(NH3)4]2+和SO42- 2.碘单质在水溶液中溶解度很小,但在CCl4中溶解度很大,这是因为() A. CCl4与I2相对分子质量相差较小,而H2O与I2相对分子质量相差较大 B. CCl4与I2都是直线型分子,而H2O不是直线型分子 C. CCl4和I2都不含氢元素,而H2O中含有氢元素 D. CCl4和I2都是非极性分子,而H2O是极性分子 3.向含有1mol配合物[Co(NH3)5Cl]Cl2的溶液中加入足量的AgNO3溶液,生成氯化银沉淀的物质的量为() A. 0mol B. 1mol C. 2mol D. 3mol 4.用萃取法从碘水中分离碘,所用萃取剂应具有的性质是() ①不和碘或水起化学反应②能溶于水③不溶于水④应是极性溶剂⑤应是非极性溶剂A.①②⑤ B.②③④ C.①③⑤ D.①③④ 5.下列分子中,所有原子的最外层均为8电子结构的是() A. BeCl2 B. H2S C. NCl3 D. SF4 6.下列分子中,属于含有极性键的非极性分子的是() A. H2O B. N2

C. NH3 D. CH4 7.Co(Ⅲ)的八面体配合物CoCl m?nNH3,若1mol配合物与AgNO3作用生成1molAgCl沉淀,则m、n的值是() A. m=3 n=6 B. m=3 n=4 C. m=4 n=1 D. m=4 n=5 8.下列反应中无配合物生成的是() A.向氨水中加入过量硝酸银 B.含氟牙膏中加入氯化铝并充分搅拌 C.锌与过量氢氧化钠溶液反应 D.向氯化铁溶液中依次加入氟化钠溶液、硫氰化钾溶液,无血红色出现 9.已知在CH4中,C—H键间的键角为109°28′,NH3中,N—H 键间的键角为107°,H2O中O—H 键间的键角为105°,则下列说法中正确的是() A.孤电子对与成键电子对间的斥力大于成键电子对与成键电子对间的斥力 B.孤电子对与成键电子对间的斥力小于成键电子对与成键电子对间的斥力 C.孤电子对与成键电子对间的斥力等于成键电子对与成键电子对间的斥力 D.题干中的数据不能说明孤电子对与成键电子对间的斥力与成键电子对与成键电子对间的斥力之间的大小关系 10.通常把原子总数和价电子总数相同的分子或离子称为等电子体。人们发现等电子体的空间结构相同,则下列有关说法中正确的是() A. CH4和是等电子体,键角均为60° B.和是等电子体,均为平面正三角形结构 C. H3O+和PCl3是等电子体,均为三角锥形结构 D. B3N3H6和苯是等电子体,B3N3H6分子中不存在“肩并肩”式重叠的轨道 11.COCl2分子的结构式为,COCl2分子内含有() A. 4个σ键 B. 2个σ键,2个π键 C. 2个σ键、1个π键

物质结构元素周期律单元测试题

第一章物质结构元素周期律单元检测试题 一、单项选择题 (本题包括20小题,每小题只有一个选项符合题意,1-10每个2分,11-20每个3分,共50分) 1.根据元素在周期表中的位置判断,下列元素中原子半径最小的是 A.氧 B.氟 C.碳 D.氮 2.X元素最高氧化物对应的水化物为H3XO4,则它对应的气态氢化物为()A.HX B.H2X C.XH4 D. XH3 3.下列物质中,含有非极性共价键的是 A.N2 B.CO2 C.NaOH D.CH4 4.下列关于3 2 He的说法正确的是 A.3 2He原子核内含有2个中子 B.3 2 He原子核内含有3个质子 C.3 2He原子核外有3个电子 D.3 2 He和4 2 He是两种不同的核素 5.已知同周期X、Y、Z三种元素的最高价氧化物对应水化物酸性由强到弱的顺序为HXO4>H2YO4>H3ZO4,则下列判断中正确的是 A.元素非金属性按X、Y、Z的顺序减弱 B.阴离子的还原性按X、Y、Z的顺序减弱 C.气态氢化物的稳定性按X、Y、Z的顺序增强 D.单质的氧化性按X、Y、Z的顺序增强 6.含硒(Se)的保健品已开始进入市场。已知硒与氧、硫同主族,与溴同周期,则下列关于硒的叙述中,正确的是() A.非金属性比硫强 B.氢化物比HBr稳定 C.原子序数为34 D.最高价氧化物的水化物显碱性 7.元素周期表里金属元素和非金属元素分界线附近能找到 A.新制农药元素 B.制催化剂元素 C.制半导体元素 D.制耐高温合金元素 8.下列说法正确的是 A.形成离子键的阴阳离子间只存在静电吸引力 B.HF、HCl、HBr、HI的热稳定性和还原性从左到右依次减弱 C.第三周期非金属元素含氧酸的酸性从左到右依次增强 D.元素周期律是元素原子核外电子排布周期性变化的结果 9.下列说法正确的是 A.第ⅠA族元素的金属性比第ⅡA族元素的金属性强 B.第ⅥA族元素的氢化物中,稳定性最好的其沸点也最高 C.同周期非金属氧化物对应的水化物的酸性从左到右依次增强 D.第三周期元素的离子半径从左到右逐渐减小

物质结构元素周期律单元测试题

第一章 物质结构 元素周期律 单元检测试题 一、 单项选择题 (本题包括20小题,每小题只有一个选项符合题意,1-10每个2分,11-20每个3分,共50分) 1.根据元素在周期表中的位置判断,下列元素中原子半径最小的是 A .氧 B .氟 C .碳 D . 氮 2.X 元素最高氧化物对应的水化物为H 3XO 4,则它对应的气态氢化物为( ) A .HX B .H 2X C .XH 4 D . XH 3 3.下列物质中,含有非极性共价键的是 A .N 2 B .CO 2 C .NaOH D .CH 4 4.下列关于3 2He 的说法正确的是 A .3 2He 原子核内含有2个中子 B .3 2He 原子核内含有3个质子 C .3 2He 原子核外有3个电子 D .3 2He 和4 2He 是两种不同的核素 5.已知同周期X 、Y 、Z 三种元素的最高价氧化物对应水化物酸性由强到弱的顺序为HXO 4>H 2YO 4>H 3ZO 4,则下列判断中正确的是 A .元素非金属性按X 、Y 、Z 的顺序减弱 B .阴离子的还原性按X 、Y 、Z 的顺序减弱 C .气态氢化物的稳定性按X 、Y 、Z 的顺序增强 D .单质的氧化性按X 、Y 、Z 的顺序增强 6.含硒(Se )的保健品已开始进入市场。已知硒与氧、硫同主族,与溴同周期,则下列关于硒的叙述中,正确的是( ) A .非金属性比硫强 B .氢化物比HBr 稳定 C .原子序数为34 D .最高价氧化物的水化物显碱性 7.元素周期表里金属元素和非金属元素分界线附近能找到 A .新制农药元素 B .制催化剂元素 C .制半导体元素 D .制耐高温合金元素 8.下列说法正确的是 A .形成离子键的阴阳离子间只存在静电吸引力 B .HF 、HCl 、HBr 、HI 的热稳定性和还原性从左到右依次减弱 C .第三周期非金属元素含氧酸的酸性从左到右依次增强 D .元素周期律是元素原子核外电子排布周期性变化的结果 9.下列说法正确的是 A .第ⅠA 族元素的金属性比第ⅡA 族元素的金属性强 B .第ⅥA 族元素的氢化物中,稳定性最好的其沸点也最高 C .同周期非金属氧化物对应的水化物的酸性从左到右依次增强 D .第三周期元素的离子半径从左到右逐渐减小

2016物质结构与性质模块测试题一

《物质结构与性质》模块测试题(一) 一、选择题(本题包括15小题,每小题3分,共45分。每小题只有一个选项符合题意) 阅读下列短文,完成1~3题。 物质是由分子和原子组成,原子是由带负电的电子和带正电的原子核组成,如果由带正电的电子与带负电的原子核组成原子,那么就是反原子,由反原子就可组成反物质。 2002年世界十大科技新闻之一:在世界各地9个研究所、39位科学家的通力合作下,欧洲核子中心成功制造出约5万个低能量状态的反氢原子,这是人类首次在受控条件下大批量制造反物质。科学家认为,能够大量地制造反氢原子,对准确比较物质与反物质的差别、解答宇宙构成等问题有重要意义。 1.反氢原子的结构示意图中,正确的是( )。 A . B . C . D . 2.如果制得了反氮原子(相对原子质量为14),则下列说法正确的是( )。 A .该原子对应元素与氮元素在现行周期表中同一位置 B .反氮原子的核内有7个质子,核外有7个电子 C .反氮原子的核内有7个电子,核外有7个质子 D .反氮原子的核内有7个带负电的质子,核外有7个带正电的电子 3.如果制得了反水,则下列有关推断一定正确的是( )。 A .反水和水的化学性质完全一样 B .反水和水的相对分子质量相同 C .自然界中的水有一半是反水 D .反水和水互为同素异形体 4.我国的“神舟六号”载人飞船已发射成功,“嫦娥”探月工程也已正式启动。据科学家预测,月球的土壤中吸附着数百万吨的He 3 2,每百吨He 3 2核聚变所释放出的能量相当于目前人类一年消耗的能量。在地球上,氦元素主要以He 4 2的形式存在。下列说法正确的是( )。 A .He 4 2原子核内含有4个质子 B .He 32和He 4 2互为同位素 C .He 3 2原子核内含有3个中子 D .He 42的最外层电子数为2,所以He 4 2具有较强的金属性 5.“结构决定性质,性质反映结构”,这是中学化学的基本观点之一。下列是有关物质结构与性质的几种说法:①元素原子核外电子排布决定元素的化学性质;②通过范德华力形成的分子晶体的熔点一定低于通过金属键形成的金属晶体的熔点;③由极性键构成的分子一定是极性分子;④存在不饱和碳原子的烃一定能使酸性高锰酸钾溶液褪色。其中正确的是( )。 A .①②④ B .①③ C .①②③④ D .只有① 6.已知元素X 、Y 的核电荷数分别是a 和b ,它们的离子X m + 和Y n - 的核外电子排布相同,则下列关系中正确的 是( )。 A .X 、Y 位于同一周期 B .X 的电负性大于Y C .原子序数:X

相关文档
最新文档