初中数学竞赛辅导资料(47)

初中数学竞赛辅导资料(47)
初中数学竞赛辅导资料(47)

初中数学竞赛辅导资料(47)

配方法

甲内容提要

1. 配方:这里指的是在代数式恒等变形中,把二次三项式a 2±2ab+b 2写成完全平方式

(a ±b )2. 有时需要在代数式中添项、折项、分组才能写成完全平方式.

常用的有以下三种:

①由a 2+b 2配上2ab , ②由2 ab 配上a 2+b 2, ③由a 2±2ab 配上b 2.

2. 运用配方法解题,初中阶段主要有:

① 用完全平方式来因式分解

例如:把x 4+4 因式分解.

原式=x 4+4+4x 2-4x 2=(x 2+2)2-4x 2=……

这是由a 2+b 2配上2ab.

② 二次根式化简常用公式:a a =2,这就需要把被开方数写成完全平方式. 例如:化简625-.

我们把5-26写成 2-232+3 =2)2(-232+2)3( =(2-3)2.

这是由2 ab 配上a 2+b 2.

③ 求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即∵a 2≥0,

∴当

a=0时, a 2的值为0是最小值.

例如:求代数式a 2+2a -2 的最值.

∵a 2+2a -2= a 2+2a+1-3=(a+1)2-3

当a=-1时, a 2+2a -2有最小值-3.

这是由a 2±2ab 配上b 2

④ 有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方.

例如::求方程x 2+y 2+2x-4y+5=0 的解x, y.

解:方程x 2+y 2+2x-4y+1+4=0.

配方的可化为 (x+1)2+(y -2)2=0.

要使等式成立,必须且只需???=-=+020

1y x .

解得 ???=-=21

y x

此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.

乙例题

例1. 因式分解:a 2b 2-a 2+4ab -b 2+1.

解:a 2b 2-a 2+4ab -b 2+1=a 2b 2+2ab+1+(-a 2+2ab -b 2

) (折项,分组)

=(ab+1)2-(a -b)2 (配方)

=(ab+1+a-b )(ab+1-a+b) (用平方差公式分解)

本题的关鍵是用折项,分组,树立配方的思想.

例2. 化简下列二次根式: ①347+; ②32-; ③223410+-.

解:化简的关键是把被开方数配方 ①347+=33224+?+=2)32(+ =32+=2+3. ②32-=2322-=2

324-=2)13(2

- =2

)13(2-=226-. ③223410+-=2)12(410+- =)

+(12410- =246-=22224+?-=2)22(-

=2-2.

例3. 求下列代数式的最大或最小值:

① x 2+5x+1; ② -2x 2-6x+1 . 解:①x 2+5x+1=x 2+2×2`5x+225??

? ??-425+1 =(x+

25)2-421. ∵(x+2

5)2≥0,其中0是最小值. 即当x=25时,x 2+5x+1有最小值-4

21. ②-2x 2-6x+1 =-2(x 2+3x-2

1) =-2(x 2+2×23x+4949--2

1) =-2(x+23)2+2

11 ∵-2(x+2

3)2≤0,其中0是最大值,

∴当x=-23时,-2x 2-6x+1有最大值2

11. 例4. 解下列方程:

①x 4-x 2+2xy+y 2+1=0 ; ②x 2+2xy+6x+2y 2+4y+10=0.

解:①(x 4-2x 2+1)+(x 2+2xy+y 2)=0 . (折项,分组)

(x 2-1)2+(x+y)2=0. (配方)

根据“几个非负数的和等于零,则每一个非负数都应等于零”.

得 ?????=+=-0012

y x x ∴???-==1,1y x 或 ?

??=-=11y x ②x 2+2xy+y 2+6x+6y+9+y 2-2y+1=0 . (折项,分组)

(x+y)2+6(x+y )+9+y 2-2y+1=0.

(x+y+3)2+(y -1)2=0. (配方)

∴??

?=-=++0103y y x ∴???=-=14y x 例5. 已知:a, b, c, d 都是整数且m=a 2+b 2, n=c 2+d 2, 则mn 也可以表示为两个整数的平方和,试写出

其形式. (1986年全国初中数学联赛题)

解:mn=( a 2+b 2)( c 2+d 2)= a 2c 2+ +a 2d 2 +b 2 c 2+ b 2 d 2

= a 2c 2+ b 2 d 2+2abcd+ a 2d 2 +b 2 c 2-2abcd (分组,添项)

=(ac+bd)2+(ad-bc)2

例6. 求方程 x 2+y 2-4x+10y+16=0的整数解

解:x 2-4x+16+y 2+10y+25=25 (添项)

(x -4)2+(y+5)2=25 (配方)

∵25折成两个整数的平方和,只能是0和25;9和16.

∴?????=+=-?????=+=-?????=+=-?????=+=-9

)5(16)4(16)5(9)40)5(25)4(25)5(0)422222222y x y x y x y x 或(或或( 由???=+=-5504y x 得?

??==04y x 同理,共有12个解???-==104y x ???==5-9y x ???-=-=5

1y x ……

丙练习47

1. 因式分解:

①x 4+x 2y 2+y 4 ; ②x 2-2xy+y 2-6x+6y+9 ; ③x 4+x 2-2ax-a 2+1.

2. 化简下列二次根式: ①25204912422+-+++x x x x (-23<x<2

5); ②2

234432++-+-+x x x x x (1

③21217-; ④53+; ⑤324411-+; ⑥5353-++;

⑦(14+65)÷(3+5); ⑧(x -3)2+1682+-x x . 3求下列代数式的最大或最小值:

①2x 2+10x+1 ; ②-21

x 2+x-1.

4.已知:a 2+b 2-4a -2b+5 . 求:2

23-+b a 的值.

5.已知:a 2+b 2+c 2=111, ab+bc+ca=29 . 求:a+b+c 的值.

6.已知:实数a, b, c 满足等式a+b+c=0, abc=8 .

试判断代数式c b a 1

1

1

++值的正负. (1987年全国初中数学联赛题)

7.已知:x=3819- .

求:15823

16262234+-++--x x x x x x . (1986年全国初中数学联赛题)

8.已知:a 2+c 2+2(b 2-ab-bc)=0 . 求证:a=b=c.

9. 解方程:

①x 2-4xy+5y 2-6y+9 ; ②x 2y 2+x 2+4xy+y 2+1=0 ;

③5x 2+6xy+2y 2-14x-8y+10=0.

10.求下列方程的整数解:

①(2x-y -2)2+(x+y+2)2=5;

②x 2-6xy+y 2+10y+25=0.

练习47

1. ②(x -y -3)2

2. ①8, ②0.5x , ③3-22, ④22

10+, ⑤2+3, ⑥10

⑦3+5, ⑧7-2x (x ≤3)

3. ①当x=-25时,有最小值-223

②x=1时,有最大值-21

4. a=2, b=1 代数式值是3+22

5. ±13

6.负数。由(a+b+c )2=0 得出ab+ac+bc<0

4. 值为5。 先化简已知为4-3,代入分母值为2, 可知x 2-8x+13=0

分子可化为(x 2+2x+1)(x 2-8x+13)+10 =10

5. 配方(a -b )2+(b -c)2=0

6. ①???==3

6y x ②???-=-=1,11,1y x ③???-==12y x 7. ①???-=-=???-=-=???-==???-==2

1312111y x y x y x y x ②(x-3)2+(y+5)2=9 ……

初中数学竞赛辅导资料

初中数学竞赛专题选讲 识图 一、内容提要 1.几何学是研究物体形状、大小、位置的学科。 2.几何图形就是点,线,面,体的集合。点是组成几何图形的基本元素。《平面几何学》只研究在同一平面内的图形的形状、大小和相互位置。 3.几何里的点、线、面、体实际上是不能脱离物体而单独存在的。因此单独研究点、线、面、体,要靠正确的想像 点:只表示位置,没有大小,不可再分。 线:只有长短,没有粗细。线是由无数多点组成的,即“点动成线”。面:只有长、宽,没有厚薄。面是由无数多线组成的,“线动成面”。4.因为任何复杂的图形,都是由若干基本图形组合而成的,所以识别图形的组合关系是学好几何的重要基础。 识别图形包括静止状态的数一数,量一量,比一比,算一算;运动状态中的位置、数量的变化,图形的旋转,摺叠,割补,并合,比较等。还要注意一般图形和特殊图形的差别。 二、例题 例1.数一数甲图中有几个角(小于平角)?乙图中有几个等腰三角形?丙图中有几全等三角形?丁图中有几对等边三角形? E 解:甲图中有10个角:∠AOB, ∠AOC,∠BOC,∠BOD,∠COD, ∠COE,∠DOE,∠DOA,∠EOA,∠EOB.如果OA和OC成一直线,则少一个∠AOC,余类推。 乙图中有5个等腰三角形:△ABC,△ABD,△BDC,△BDE,△DEC 丙图中有全等三角形4对:(设AC和DB相交于O) △AOB≌△COD,△AOD≌△BOC,△ABC≌△CDA,△BCD≌△DAB。

丁图中共有等边三角形48个: 边长1个单位:顶点在上▲的个数有 1+2+3+4+5=15 顶点在下▼的个数有 1+2+3+4=10 边长2个单位:顶点在上▲的个数有 1+2+3+4=10 顶点在下▼的个数有 1+2=3 边长3个单位:顶点在上▲的个数有 1+2+3=6 边长4个单位:顶点在上▲的个数有 1+2=3 边长5个单位:顶点在上▲的个数有 1 以上要注意数一数的规律 例2.设平面内有6个点A 1,A 2,A 3,A 4,A 5,A 6,其中任意3个点都不在同 一直线上,如果每两点都连成一条线,那么共有线段几条?如果要使图形不 出现有4个点的两两连线,那么最多可连成几条线段?试画出图形。 (1989年全国初中数学联赛题) 解:从点A 1与其他5点连线有5条,从点A 2与其他4点(A 1除外)连线 有4条,从A 3与其他3点连线有3条(A 1,A 2除外)……以此类推,6个 点两两连线共有线段1+2+3+4+5=15(条),或用每点都与其他5点 连线共5×6再除以2(因重复计算)。 要使图形不出现有4个点的两两连线,那么每点只能与其他4个点连线, 共有(6×4)÷2=12(条)如下图:其中有3对点不连线:A 1A 4,A 2A 5, A 3A 6 A 3 1 2 例3.如图水平线与铅垂线相交于O ,某甲沿水平线,某乙铅垂线同时匀速 前进,当甲在O 点时,乙离点O 为500米,2分钟后,甲、乙离点O 相 等;又过8分钟,甲、乙再次离点O 相等。求甲和乙的速度比。 解:如图设甲0,乙0为开始位置,甲1,乙1为前进2分钟后位置,甲2,乙2 乙2 为再前进8分钟的位置。再设甲,乙的速度分别为每分钟x,y 米,根据题意得 ? ??-=-=500101025002y x y x 甲 O 甲1 甲2 解得12x=8y 乙1 ∴x ∶y=2∶3

全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

全国初中数学竞赛辅导(八年级)教学案全集第二十六讲含参数的一元二次方程的整数根问题 对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法. 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x+72=0 有两个不相等的正整数根. 解法1首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得 由于x1,x2是正整数,所以 m-1=1,2,3,6,m+1=1,2,3,4,6,12, 解得m=2.这时x1=6,x2=4. 解法2首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知 所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即 m2=3,4,5,7,9,10,13,19,25,37,73, 只有m2=4,9,25才有可能,即m=±2,±3,±5. 经检验,只有m=2时方程才有两个不同的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是

这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2 已知关于x的方程 a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数根,求a的值. 分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a≠0,所以 所以 所以只要a是3或5的约数即可,即a=1,3,5. 例3设m是不为零的整数,关于x的二次方程 mx2-(m-1)x+1=0 有有理根,求m的值. 解一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令 Δ=(m-1)2-4m=n2, 其中n是非负整数,于是 m2-6m+1=n2,

初中数学竞赛辅导资料(12)

初中数学竞赛辅导资料(12) 用交集解题 甲内容提要 1. 某种对象的全体组成一个集合.组成集合的各个对象叫这个集合的元素.例如6的正约数集合记作{6的正约数}={1,2,3,6},它有4个元素1,2,3,6;除以3余1的正整数集合是个无限集,记作{除以3余1的正整数}={1,4,7,10……},它的个元素有无数多个. 2. 由两个集合的所有公共元素组成的一个集合,叫做这两个集合的交集 例如6的正约数集合A ={1,2,3,6},10的正约数集合B ={1,2,5,10},6与10的公约数集合C ={1,2},集合C 是集合A 和集合B 的交集. 3. 几个集合的交集可用图形形象地表示, 右图中左边的椭圆表示正数集合, 右边的椭圆表示整数集合,中间两个椭圆 的公共部分,是它们的交集――正整数集. 不等式组的解集是不等式组中各个不等式解集的交集. 例如 不等式组? ??<->)2(2)1(62 x x 解的集合就是( ) 不等式(1)的解集x >3和不等式(2)的解集x >2的交集,x >3. 4.一类问题,它的答案要同时符合几个条件,一般可用交集来解答.把符合每个条件的所有的解(即解的集合)分别求出来,它们的公共部分(即交集)就是所求的答案. 有时可以先求出其中的一个(一般是元素最多)的解集,再按其他条件逐一筛选、剔除,求得答案.(如例2) 乙例题 例1. 一个自然数除以3余2,除以5余3,除以7余2,求这个自然数的最小值. 解:除以3余2的自然数集合A ={2,5,8,11,14,17,20,23,26,……} 除以5余3的自然数集B ={3,8,13,18,23,28,……} 除以7余2自然数集合C ={2,9,16,23,30,……} 集合A 、B 、C 的公共元素的最小值23就是所求的自然数. 例2. 有两个二位的质数,它们的差等于6,并且平方数的个位数字相同,求这两个数. 解: 二位的质数共21个,它们的个位数字只有1,3,7,9,即符合条件的质数它们的个位数的集合是{1,3,7,9}; 其中差等于6的有:1和7;3和9;13和7,三组; 平方数的个位数字相同的只有3和7;1和9二组. 同时符合三个条件的个位数字是3和7这一组 故所求质数是:23,17; 43,37; 53,47; 73,67共四组. 例3. 数学兴趣小组中订阅A 种刊物的有28人,订阅B 种刊物的有21人,其中6人两种都订,只有一人两种都没有订,问只订A 种、只订B 种的各几人?数学兴趣小组共有几人? 解:如图左、右两椭圆分别表示订阅A 种、B 种刊物的人数集合,则两圆重叠部分就是它们

初二数学竞赛辅导资料(共12讲)

初二数学竞赛辅导资料(共12讲) 目录 本内容适合八年级学生竞赛拔高使用重点落实在奥赛方面的基础知识和基本技能培训和提高本内容难度适中讲练结合由浅入深讲解与练习同步重在提高学生的数学分析能力与解题能力另外在本次培训中内容的编排和讲解可以根据学生的具体状况由任课教师适当的调整顺序和增删内容其中《因式分解》为初二下册内容但是考虑到它的重要性和工具性将在本次培训进行具体解读注有标注的为选做内容 本次培训具体计划如下以供参考 第一讲实数一 第二讲实数二 第三讲平面直角坐标系函数 第四讲一次函数一 第五讲一次函数二 第六讲全等三角形 第七讲直角三角形与勾股定理 第八讲株洲市初二数学竞赛模拟卷未装订在内另发 第九讲竞赛中整数性质的运用 第十讲不定方程与应用 第十一讲因式分解的方法

第十二讲因式分解的应用 第十三讲考试未装订在内另发 第十四讲试卷讲评 第1讲实数一 知识梳理 一非负数正数和零统称为非负数 1几种常见的非负数 1实数的绝对值是非负数即a≥0 在数轴上表示实数a的点到原点的距离叫做实数a的绝对值用a来表示设a为实数则 绝对值的性质 ①绝对值最小的实数是0 ②若a与b互为相反数则a=ba=ba=b ③对任意实数a则a≥a a≥-a ④a·b=ab b≠0 ⑤a-b≤a±b≤a+b 2实数的偶次幂是非负数 如果a为任意实数则≥0n为自然数当n=1≥0 3算术平方根是非负数即≥0其中a≥0 算术平方根的性质 a≥0 = 2非负数的性质 1有限个非负数的和积商除数不为零是非负数

2若干个非负数的和等于零则每个加数都为零 3若非负数不大于零则此非负数必为零 3对于形如的式子被开方数必须为非负数 4推广到的化简 5利用配方法来解题开平方或开立方时将被开方数配成完全平方式或完全立方 例题精讲 ◆专题一利用非负数的性质解题 例1已知实数xyz满足求x+y+z的平方根 巩固 1已知则的值为______________ 2若 的值 拓展 设abc是实数若求abc的值 ◆专题二对于的应用 例2已知xy是实数且 例3 已知适合关系式求的值 巩固 1已知b=且的算术平方根是的立方根是试求的平方根和立方根 2已知则

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

初中数学竞赛辅导资料之因式分解附答案

初中数学竞赛辅导资料之因式分解 甲内容提要和例题 我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。下面再介紹两种方法 1.添项拆项。是.为了分组后,能运用公式(包括配方)或提公因式 例1因式分解:①x4+x2+1②a3+b3+c3-3abc ①分析:x4+1若添上2x2可配成完全平方公式 解:x4+x2+1=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x) ②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2 解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2 =(a+b)3+c3-3ab(a+b+c) =(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-ac-bc) 例2因式分解:①x3-11x+20②a5+a+1 ①分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。(注意这里 16是完全平方数) ②解:x3-11x+20=x3-16x+5x+20=x(x2-16)+5(x+4) =x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5) ③分析:添上-a2和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式 解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1 =a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1) 2.运用因式定理和待定系数法 定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a ⑵若两个多项式相等,则它们同类项的系数相等。 例3因式分解:①x3-5x2+9x-6②2x3-13x2+3

初中数学竞赛辅导讲义

初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1?化简x^4r^ +厂只+ 厂九 1 + 1— (x 2)(x 3) (x 3)(x 4)1 1,1 --- — ---------- ---- 十 x 1 x 2 x 2 1,1 1 ----- 十 ------ — ----- x 3 x 3 x 4 例2. 解:原式二 i (x 1)(x 2)

x y kz(1) 解:易知:-一-= -―z= -一z = k 贝y x z ky(2) 亠z y x =2 或x+y+z=O y z kx(3) (1)+(2) +(3) 得: (k -2)(x+y+z)=0 k 若k =2贝9原式=k 3 = 8 若x + y + z =0,则原式二 k 3 =-1 例3.设 2 1, 求 x mx 1ft x 1 4 2 2 x m x 的值。 1 解:显然2 X 0,由已知x mx 1 “ =1 , x 贝y x +丄= x m + 1 4 2 2 .x m x 1 (2) x + 1) 2-2 x -m 2 2 ???原式二 一 2m 1 =(m +1) 2-2- m 2 = 2 m -1 例4.已知多项式3x3 +ax 2 +3x +1能被x2+1整除,求a的值

解: 1- a =0 二a =1 例5:设n为正整数,求证 1111 ++ …....+v 1 3 15(2n1)( 2 n 1) 2 证:左边=1(1 - 1 1-1 + ??…? +1-1 ) 23352n 12n 1 1(1-1) 22n1 1

全国初中数学竞赛辅导(八年级)教学案全集第21讲 分类与讨论

全国初中数学竞赛辅导(八年级)教学案全集 第二十一讲分类与讨论 分类在数学中是常见的,让我们先从一个简单的例子开始. 有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数? 因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论. 任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个. 上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论. 分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论. 例1求方程 x2-│2x-1│-4=0 的实根. x2+2x-1-4=0,

x 2-2x +1-4=0, x 1=3,x 2=-1. 说明 在去绝对值时,常常要分类讨论. 例2 解方程x 2-[x]=2,其中[x]是不超过x 的最大整数. 解 由[x]的定义,可得 x ≥[x]=x 2-2, 所以 x 2-x -2≤0, 解此不等式得 -1≤x ≤2. 现把x 的取值范围分成4个小区间(分类)来进行求解. (1)当-1≤x ≤0时,原方程为 x 2-(-1)=2, 所以x=-1(因x=1不满足-1≤x <0). (2)当0≤x <1时,原方程为 x 2=2. (3)当1≤x <2时,原方程为 x 2-1=2, 所以 (4)当x=2时,满足原方程.

【精品】全国初中数学竞赛辅导(初三分册全套

全国初中数学竞赛辅导(初三分册)全套

第一讲分式方程(组)的解法 分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根. 例1 解方程 解令y=x2+2x-8,那么原方程为 去分母得 y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0, y2-4xy-45x2=0, (y+5x)(y-9x)=0, 所以 y=9x或y=-5x.

由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1. 经检验,它们都是原方程的根. 例2 解方程 y2-18y+72=0, 所以 y1=6或y2=12. x2-2x+6=0.此方程无实数根. x2-8x+12=0,

所以 x1=2或x2=6. 经检验,x1=2,x2=6是原方程的实数根. 例3 解方程 分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为 整理得 去分母、整理得 x+9=0,x=-9. 经检验知,x=-9是原方程的根. 例4 解方程

分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为 即 所以 ((x+6)(x+7)=(x+2)(x+3). 例5 解方程 分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为

-初中数学竞赛辅导讲座19讲(全套)

初中数学竞赛辅导讲座19讲(全套) 第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

全国初中数学竞赛辅导(初2)第11讲 勾股定理与应用

第十一讲勾股定理与应用 在课内我们学过了勾股定理及它的逆定理. 勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即 a2+b2=c2. 勾股定理逆定理如果三角形三边长a,b,c有下面关系: a2+b2=c2 那么这个三角形是直角三角形. 早在3000年前,我国已有“勾广三,股修四,径阳五”的说法. 关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法. 证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和. 过C引CM∥BD,交AB于L,连接BG,CE.因为 AB=AE,AC=AG,∠CAE=∠BAG, 所以△ACE≌△AGB(SAS).而 所以 S AEML=b2.①

同理可证 S BLMD=a2.② ①+②得 S ABDE=S AEML+S BLMD=b2+a2, 即 c2=a2+b2. 证法2 如图2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知 △ADG≌△GEH≌△HFB≌△ABC, 所以 AG=GH=HB=AB=c, ∠BAG=∠AGH=∠GHB=∠HBA=90°, 因此,AGHB为边长是c的正方形.显然,正方形CDEF的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即 化简得 a2+b2=c2.

初中数学竞赛辅导讲义及习题解答 第1讲 走进追问求根公式

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。而公式法是解一元二次方程的最普遍、最具有一般性的方法。 求根公式a ac b b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个。 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=。 【例3】 解关于x 的方程02)1(2=+--a ax x a 。 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论。 【例4】 设方程04122=---x x ,求满足该方程的所有根之和。 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+1111, 试求x 的值。 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值。 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x 。 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==。

全国初中数学竞赛辅导(初1)上

全国初中数学竞赛辅导(初一) (上) 目录 第一讲有理数的巧算 (1) 第二讲绝对值 (10) 第三讲求代数式的值 (17) 第四讲一元一次方程 (24) 第五讲方程组的解法 (32) 第六讲一次不等式(不等式组)的解法 (40) 第七讲含绝对值的方程及不等式 (47) 第八讲不等式的应用 (56) 第九讲“设而不求”的未知数 (64) 第十讲整式的乘法与除法 (73) 第十一讲线段与角 (79) 第十二讲平行线问题 (88)

第一讲有理数的巧算 有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性. 1.括号的使用 在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单. 例1计算: 分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.

注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算. 例2计算下式的值: 211×555+445×789+555×789+211×445. 分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算. 解原式=(211×555+211×445)+(445×789+555×789) =211×(555+445)+(445+555)×789 =211×1000+1000×789 =1000×(211+789) =1 000 000. 说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧. 例3计算:S=1-2+3-4+…+(-1)n+1·n. 分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法. 解S=(1-2)+(3-4)+…+(-1)n+1·n. 下面需对n的奇偶性进行讨论: 当n为偶数时,上式是n/2个(-1)的和,所以有 当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有

初中数学竞赛辅导资料(1)

初中数学竟赛辅导资料(1) 数的整除(一) 甲内容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 乙例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2己知五位数x 1234能被12整除, 求X 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+X 能被3整除时,x=2,5,8

4能被4整除时,X=0,4,8 当末两位X ∴X=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 丙练习 1分解质因数:(写成质因数为底的幂的連乘积) ①593②1859③1287④3276⑤10101⑥10296 987能被3整除,那么a=_______________ 2若四位数a 12X能被11整除,那么X=__________- 3若五位数34 35m能被25整除 4当m=_________时,5 9610能被7整除 5当n=__________时,n 6能被11整除的最小五位数是________,最大五位数是_________ 7能被4整除的最大四位数是____________,能被8整除的最小四位数是_________ 88个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152, ⑧70972中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除但不是5的倍数的共______个。 10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3整除的数共有几个?为什么? 1234能被15整除,试求A的值。 11己知五位数A 12求能被9整除且各位数字都不相同的最小五位数。 13在十进制中,各位数码是0或1,并能被225整除的最小正整数是____(1989年全国初中联赛题)

初中数学竞赛辅导资料

第一篇 一元一次方程的讨论 第一部分 基本方法 1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。一元方程的解也叫做根。 例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。 2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =a b ; 当a =0且b ≠0时,无解; 当a =0且b =0时,有无数多解。(∵不论x 取什么值,0x =0都成立) 3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解 当a |b 时,方程有整数解; 当a |b ,且a 、b 同号时,方程有正整数解; 当a 、b 同号时,方程的解是正数。 综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b 第二部分 典例精析 例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解?②无解? ③有无数多解?④是正数解?

例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数? 例3己知方程a(x-2)=b(x+1)-2a无解。问a和b应满足什么关系? 例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解? 第三部分典题精练

1. 根据方程的解的定义,写出下列方程的解: ① (x +1)=0, ②x 2 =9, ③|x |=9, ④|x |=-3, ⑤3x +1=3x -1, ⑥x +2=2+x 2. 关于x 的方程ax =x +2无解,那么a __________ 3. 在方程a (a -3)x =a 中, 当a 取值为____时,有唯一的解; 当a ___时无解; 当a _____时,有无数多解; 当a ____时,解是负数。 4. k 取什么整数值时,下列等式中的x 是整数? ① x = k 4 ②x =16-k ③x =k k 32+ ④x =123+-k k 5. k 取什么值时,方程x -k =6x 的解是 ①正数? ②是非负数? 6. m 取什么值时,方程3(m +x )=2m -1的解 ①是零? ②是正数? 7. 己知方程 2 2 1463+= +-a x 的根是正数,那么a 、b 应满足什么关系?

初一(上)数学竞赛辅导资料(含答案)-初中6

初中数学竞赛辅导资料(6) 数学符号 甲内容提要 数学符号是表达数学语言的特殊文字。每一个符号都有确定的意义,即 当我们把它规定为某种意义后,就不再表示其他意义。 数学符号一般可分为: 1, 元素符号:通常用小写字母表示数,用大写字母表示点,用⊙和△ 表示园和三角形等。 2, 关系符号:如等号,不等号,相似∽,全等≌,平行∥,垂直⊥等。 3, 运算符号:如加、减、乘、除、乘方、开方、绝对值等。 4, 逻辑符号:略 5, 约定符号和辅助符号:例如我们约定正整数a 和b 中,如果a 除 以b 的商的整数部份记作Z ( b a ),而它的余数记作R (b a ), 那么 Z (310)=3,R (3 10)=1;又如设[]x 表示不大于x 的最大整数,那么[]2.5=5,[]2.5-=-6,?? ????32=0,[]3-=-3。 正确使用符号的关健是明确它所表示的意义(即定义) 对题设中临时约定的符号,一定要扣紧定义,由简到繁,由浅入深, 由具体到抽象,逐步加深理解。 在解题过程中为了简明表述,需要临时引用辅助符号时,必须先作 出明确的定义,所用符号不要与常规符号混淆。 乙例题 例1设[]Z 表示不大于Z 的最大整数,<n>为正整数n 除以3的余数 计算: ①〔4.07〕+〔-7 32 〕-〈13;〉+〈2004〉 ②〈〔14.7〕〉+〔234><〕。 解:①原式=4+(-3)-1+0=0 ②原式=<14>+〔2 1〕=2+0=2 例2①求19871988的个位数 ②说明19871989-19931991能被10整除的理由 解:设N (x )表示整数x 的个位数, ① N (19871988)=N (74×497)=N (74)=1 ②∵N (19871989)-N (19931991)=N (74×497+1)-N (34×497+3) =N (71)-N (33)=7-7=0 ∴19871989-19931991能被10整除 由于引入辅助符号,解答问题显得简要明瞭。

相关文档
最新文档