风能风切变指数计算方法的比选研究

风能风切变指数计算方法的比选研究
风能风切变指数计算方法的比选研究

剪切力的计算方法

第3章 剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部力,而只是给出了主要的受力和力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2 F F Q =

台风_云娜_2004_的数值模拟_眼墙对流与环境风切变的关系

第46卷 第3期2010年5月 南京大学学报(自然科学) JOU RNAL OF NANJING UNIVERSIT Y (NA TU RA L SCIENCES) Vo l.46,No.3 May,2010 台风“云娜”(2004)的数值模拟:眼墙对流 与环境风切变的关系* 聂高臻,谈哲敏**,仇 欣 (南京大学大气科学学院中尺度害性天气教育部重点实验室,南京,210093) 摘 要: 本文利用中尺度数值模式WRF,模拟了台风“云娜”(2004)在近海加强并登陆的过程.模拟的台风强度、路径、登陆时间和台风登陆前眼墙回波、水平风场的非对称性特征,以及登陆时台风眼墙的回波结构与实际观测结果相近.台风中不同高度的环境风切变方向有较大差异:登陆前风切变在低层指向西北,中层指向东北,高层指向东南.涡旋中心倾斜主要受风切变影响;同时眼墙对流发展与风切变方向有着较好的对应关系,而与涡旋倾斜的一致性较差.登陆前后,不同高度的环境风切变方向指向相应高度上的上升运动中心.地形敏感性试验表明地形高度对环境风切变的影响较小,而对台风涡旋倾斜有较大影响. 关键词: 环境风切变,眼壁对流,涡旋倾斜,地 形,登陆台风 中图分类号: P435 A numerical simulation of typhoon Rananim(2004):The relationship between eyewall convection and the environmental vertical wind shear N ie Gao-Zhen,Tan Zhe-Min,Qiu X in (K ey Labo ra to ry of M eso scale Seve re Weather o f M inistry of Education,and School of A tmo spheric Science s, Nanjing U niver sity,N anjing,210093,China) A bstract: In this study,the Wea ther Research and F orecasting model(W RF)is used to simulate the inte nsifica tion and landfall of ty pho on Rananim(2004).T he simulated sto rm ag rees w ell with o bser vatio ns in te rms of t rack, intensity and the time of https://www.360docs.net/doc/6b13369634.html,pariso n between simulatio n and available rada r/satellite o bserv atio ns,it is found that the simulatio n also successfully captured the asy mmetric str uctures in the radar echo a nd surface wind field,and e specially the eyew all echo structure during Rananim's landfa ll.T he simulatio n show s that the directions of environmenta l ve rtical wind shea r v ary remarkably with heig ht.Befo re its landing,the ve rtical shear vecto r in the low er level is no r thw estwar d;while in the middle level,the shear vecto r is no r theastwa rd and southeastwa rd in the ***基金项目:国家重点基础研究发展规划项目(2009C B4251500),国家自然科学基金(40828005,40921160382),国家科技支撑计划重点项目(2006BAC02B03),国家公益行业科研专项(GYH Y200706020) 收稿日期:2010-01-06 通讯联系人,E-mail:zm tan@https://www.360docs.net/doc/6b13369634.html,

剪切力的计算方法

第3章剪切和挤压的实用计算 3.1剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴 线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件 的变形主要表现为沿着与外力作用线平行的剪切面(m - n面)发生相对错动(图3- 1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构 件。构件剪切面上的内力可用截面法求得。将构件沿剪切面m-n假想地截开,保留一 部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力F Q (图3-1C)的作用。F Q称为剪力,根据平衡方程',=0,可求得F Q二F。剪切破坏时,构件将沿剪切面(如图3-la所示的m-n面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。

3.2剪切和挤压的强度计算3.2.1剪切强度计算

剪切试验试件的受力情况应模拟零件的实际工作情况进行。图 试验装置的简图,试件的受力情况如图 3-2b 所示,这是模拟某种销钉联接的工作情 形。当载荷F 增大至破坏载荷 F b 时,试件在剪切面 m - m 及n - n 处被剪断。这种具 有两个剪切面的情况,称为双剪切。由图 3-2c 可求得剪切面上的剪力为 F Q 图3-2 由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法 确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。 在这种计算方法中, 假设应力在剪切面内是均匀分布的。若以 A 表示销钉横截面面积,则应力为 F Q A ?与剪切面相切故为切应力。以上计算是以假设“切应力在剪切面上均匀分布”为基础 的,实际上它只是剪切面内的一个“平均切应力”,所以也称为名义切应力。 当F 达到F b 时的切应力称剪切极限应力, 记为-b 。对于上述剪切试验, 剪切极限 应力为 _ Fb ■b - 2A 3-2a 为一种剪切 (3-1) bj

摩擦力的方向判断与大小计算

摩擦力的方向判断及大小计算 一. 教学内容: 摩擦力大小、方向的确定 二、考点点拨 摩擦力是三种基本性质力中最难判定的力,它的大小和方向的确定是高中阶段的重点和难点,物体在各种运动状态下摩擦力的分析在每年的高考中都有所体现,是高考的必考内容。 三、跨越障碍 摩擦处处、时时存在,在初中我们知道,摩擦分为静摩擦、滑动摩擦和滚动摩擦三类,我们已知道了摩擦的基础知识,我们今天将进一步来研究摩擦的相关知识。 (一)滑动摩擦力 1、产生:两个相互接触的物体发生相对运动时产生的摩擦力。 2、产生条件:1)接触面粗糙 2)相互接触且有形变即相互间有弹力 3)物体间有相对运动 3、方向:跟接触面相切,并跟物体相对运动方向相反。 例1:一物体在水平面上向右运动,试确定其摩擦力的方向。 物体相对于地面的方向是水平向右,所以摩擦力方向水平向左 例2:A、B两物体叠放在一起,两物体都沿水平面向右运动,A的速度为,B的速度为, 并且<,问A、B两物体间的摩擦力的方向如何? 虽然A的速度方向水平向右,但由于<,所以A相对于和它接触的物体B而言,是向左运动的,即相对运动方向是向左的,故A受到的B对它的摩擦力是水平向右的。 注:1、由例2可以看到,物体的运动方向和相对运动方向是有区别的。 2、摩擦力是和相对运动方向相反,不是和运动方向相反,所以我们在判断滑动摩擦力的方向时,一定要先找出该物体相对于和它接触的物体的运动方向,才能判断滑动摩擦力的方向,不能仅凭运动方向来判断摩擦力方向。

例3:传送带顺时针方向运动,现将一物体静止地放上传送带,则物体在放上传送带的一段时间内所受滑动摩擦力的方向如何? 物体静止地放上传送带,传送带水平部分向右运动,则物体相对于传送的运动方向向左,所以受到的滑动摩擦力方向水平向右。 4、大小:经过试验,我们得出,物体受到的滑动摩擦力的大小和物体间的压力有关,还和物体间接触面的材料性质有关。 即f=μN μ是一个没有单位,小于1的常数,叫做动摩擦因数。它与两物体的材料性质,表面状况有关,和接触面积无关。 N是物体对接触面的正压力即垂直于接触面的弹力。 例4:一质量为5kg的物体在水平面上向右运动,它和水平面间的μ为0.6,则此时物体受到的滑动摩擦力多大? 解:此时物体对水平面的压力大小等于物体所受的重力 所以f=μN=0.6×50=30N 方向水平向左 注:这道例题中压力恰好等于重力的大小,但要特别注意,压力并不总等于重力,压力和重力是不相同的两个力。 5、作用效果:总是起着阻碍物体间相对运动的作用。 (二)静摩擦力 1、定义:两相对静止的相互接触的物体间,由于存在相对运动的趋势而产生的摩擦力。 2、静摩擦力产生的条件:1)两物体直接接触 2)接触处粗糙且相互间有弹力 3)两物体有相对运动的趋势 3、静摩擦力的方向:总是和接触面相切,并且总跟物体的相对运动趋势方向相反。 判断两物体间是否有相对运动的趋势,一般采用假设法,即假设接触面光滑,看相接触的两物体间是否有相对运动,如果有,此方向即为相对运动的趋势方向;如果没有,说明物体间无相对运动趋势。 例5:判断下面两个静止物体受到的静摩擦力的方向 (1)

低空风切变对飞行的影响

关于低空风切变对飞行的影响 摘要:低空风切变是影响飞机起飞和进场着陆阶段的一个危险因素。由于目前对低空风切变探测难、预报难、航管难等一系列困难,因此,低空风切变在飞机起飞、着陆阶段中对飞行安全威胁极大,尤其是微下冲气流造成的事故特别严重。本文重点根据微下冲气流中心与飞机相对位置的几种情况,分析低空风切变对飞行的不同影响。 关键字:风切变;飞行;起飞;着陆;风切变中心;微下冲气流中图分类号:p425.5 文献标识码:a 文章编号: abstract: the wind shear at low-altitude is a risk factor effecting take-off and landing. because of the present difficulty of detecting and forecasting the wind shear at low-altitude and to air traffic control, the wind-shear in low-altitude threats take-off and landing stages greatly, while the micro-downburst causes flight mishaps. this paper analysis the different influence of the wind shear at low-altitude to flight, according the relative position between the center of micro-downburst and the airplane. key word: wind-shear; flight; take off; landing; center of the wind shear; micro-downburst 1 前言

排放瓦斯时间计算

一、基本情况 1、瓦斯积聚地点: 2、瓦斯积聚浓度: 3、造成瓦斯积聚的原因: 4、排放瓦斯通风系统示意图(图中注明通风设施、进回风流方向、瓦斯积聚地点、警戒位置、通迅电话等) 二、计算 1、排放瓦斯量: QCH4=L·S·C+q·t 式中:L——瓦斯积聚巷道长度(m ) S——瓦斯积聚巷道平均断面(m2) C——巷道内积聚瓦斯平均浓度(% ) q——巷道正常瓦斯涌出量(m3/分) t ——排放瓦斯时间,可根据实际情况设定(分) 计算结果为(m3) 2、排放所需的最小总供风量: Qmin = ·QCH4 = 49.5QCH4 式中:Qmin ——排放瓦斯所需的最小总供风量(m3 )Cmax1 ——正常情况下,巷道内最高瓦斯允许浓度,取Cmax1=1%. Cmax2 ——排放时巷道内最高瓦斯允许浓度取Cmax2=2% QCH4——排放瓦斯量(m3 ) 计算结果为(m3)

3、排放瓦斯需用的时间: t=Qmin /Q局=49.5QCH4/ Q局= 49.5(L·S·C+q·t)/ Q局 式中:t——排放瓦斯需用的时间(分) Qmin——排放瓦斯所需的最小总供风量(m3) Q局——排放过程中局扇平均供风量,一般取局扇正常供风量的60%~70%。(m3/分) 计算结果为(分),考虑到其它因素,确定为(分) 三、排放瓦斯安全技术措施 1、排放瓦斯时,回风系统内必须切断电源,撤出人员,除救护队员和瓦检员外,其它人员严禁进入回风系统,排放瓦斯回风流路线为: 2、凡是通往瓦斯排放回风流的地点,必须设置警戒,警戒人员要认真负责,不得擅自离岗睡觉,防止闲杂人员进入回风流。警戒位置:其中警戒点由安检队负责把口,警戒点由队负责把口。 3、排放瓦斯流经巷道内的电器设备,必须指定专人在采区变电区和配电点两处同时切断电源,此项工作由机电区负责组织进行。其中电源由队负责。 4、排放瓦斯前,必须检查局扇及其开关附近10 m 范围内瓦斯浓度,只有当瓦斯浓度不超过0.5% 时,方可启动局扇。 5、局扇启动后,要检查局扇运转情况,严禁局扇发生循环风。 6、排放时,必须采取限制向独头巷道内送入风量的方法,一次只能续接一节风筒,严禁“一风吹”。

X射线机暴光参数计算法

X射线机曝光参数计算法 基本参数确定 一、以透照厚度为准:单壁单影=T;双壁单影或双壁双影=2T 1、≤10mm时,1mm相当于5KV; 2、10~20mm时,1mm相当于6.2KV; 3、21~30 mm时,1mm相当于9KV; 4、31~40 mm时,1mm相当于12KV; 二、焦距 焦距每增加或者减少100mm,电压增大或者减少10KV。 三、时间 1分钟=25KV 三、X射线机曝光参数为(基数): 透照厚度T=8mm时,电压170KV,时间为1分钟。 四、X射线机焦点到窗口的距离 XXQ 2005 120 mm XXQ 2505 150 mm XXQ 3005 170 mm 五、计算方法 1、当透照厚度增加或者减少1 mm时,电压变化按(一)中各变化范围执行; 2、当焦距每增加或者减少100mm时,压变化按(二)中执行; 3、时间每增加或者减少1分钟,电压增加或者减少25KV; 例:计算φ219*14管焊口的曝光 第一步:确定所用X射线机型号,XXQ 2505或者XXQ 3005型; 第二步:计算焦距-----219+150=369 mm或者219+170=389 mm 第三步:确定焦距和电压变化量,我们一般以X射线机曝光正常基数为准,即600 mm;这里φ219*14的焦距为219+150=369 mm或者219+170=389 mm,比基数600 mm缩短231 mm或者211 mm,那么电压就应该减去23.1KV或者21.1KV。 第四步:计算透照厚度变化时,电压变化量,我们基本厚度是8 mm,现在透照厚度是 14×2=28 mm。这样比基本厚度8 mm增加20mm,根据(一)中4参照,电压补偿量为: 20 mm×8KV=160KV。因为基数是170KV,故正常曝光参数为:170KV+160KV-23.1KV=306.9KV 或者170KV+160KV-21.1KV=308.9KV,时间1分钟。 第五步:因为1分钟=25KV,在此基础上计算XXQ 2505或者XXQ 3005型的曝光参数: 1、XXQ 2505:用240KV拍片,其时间为(306.9 KV-240 KV)÷25KV/分钟=2.68 分钟;这里2.68分钟是在原来1分钟基础需要补偿的2.68分钟,故还应加上基础1分钟, 即正常曝光时间为2.68分钟+1分钟≈4分钟

摩擦力的求法

摩擦力的求法 求解物体所受的摩擦力,首先要弄清楚物体所受摩擦力的性质。即物体受到的是静摩擦力还是滑动摩擦力。 所谓静摩擦力,就是物体和与它接触的物体保持相对静止时所受到的摩擦力。此力产生 的条件有四:○ 1两个物体相互接触○2相互接触的物体之间有弹力○3接触面不光滑○4物体之间有相对滑动的趋势。 物体受到的静摩擦力是一个变力,它将随着外力的变化或随着物体运动状态的变化而变化。因此在计算物体所受到的静摩擦力大小时,要根据物体所处的不同状态利用不同的方法进行计算。 a) 如果物体处于静止或匀速直线运动状态,要根据共点力作用下物体的平衡条件进行求解。 b) 如果物体处于加速直线运动状态,则要根据牛顿第二定律进行求解。 例1、如图所示,放在水平地面上的物体在水平拉力F 作用下处于静止,则物体所受的摩擦力大小是多少?方向朝哪? 解:通过受力分析知:物体受到四个力的作用,重力;支持 力;拉力和摩擦力。根据共点力作用下物体的平衡条件知, 物体所受的摩擦力大小等于物体所受的拉力。即f = F 例2、如图所示,水平地面上的物体在斜向上与水平方 向成θ角的拉力作用下处于静止。求物体受到的摩擦力大小。 解:通过受力分析知,物体受到四个力的作用,重力;支持力; 拉力和摩擦力。由于物体处于静止状态,根据共点力作用下物 体的平衡条件知:???=+=G F N f F θθsin cos 因此物体所受的摩擦力等于Fcos θ = f 。 如果物体和与它接触的物体保持相对静止,而一起作加速运动时,要根据牛顿第二定律进行求解。 例3、质量为m 的物体放在质量为M 的另一物体上,在光滑的水平 面上一起向右作匀加速直线运动,它们运动的加速度大小为a ,求质量为 m 的物体所受的摩擦力是多大? 解:分析m 的受力情况知,m 受到三个力的作用,重力;支持力; 摩擦力。 其中重力和支持力在竖直方向上是一对平衡力,大小相等;而物体所受 的静摩擦力才是物体作匀加速直线运动的原因,根据牛顿第二定律知:f = ma 例4、质量为m 的物体放在一水平转台上,距中心转轴的距离为r ,当物 体随转台一起以角速度ω匀速成转动时,求物体受到的摩擦力大小? 解:分析物体受力知,物体受到三个力的作用。重力;支持力;和指向圆心的摩擦力。重力和支持力在竖直方向是一对平衡力,大小相等。而物体受到静摩擦力才是物体产生向心 加速度的原因。根据牛顿第二定律知:r m f 2 ω= 应当注意的是,物体所受到的静摩擦力跟物体间的正压力没有关系。 滑动摩擦力,是指物体相对于和它接触的物体有相对滑动时,在接触面处 产生的摩擦力。滑动摩擦力的产生应具备四个条件:○ 1两物体相接触○2相

高一物理摩擦力教学设计{模板}

第4.3节摩擦力 【教学设计思想】 在课堂上创设生活情景,引出生活难题,引导学生独立思考,尝试去解决问题,使学生对本节课产生极大的兴趣, 【教材分析】 教材出处:鲁科版《高中物理》必修一第四章第三节 摩擦力是力学中的三大性质力之一,是高中力学的一个重点,也是难点。正确认识摩擦力对整个力学知识框架的搭建起着至关重要的作用。在摩擦力这节课中,重点是研究滑动摩擦力,要求会计算其大小和判断其方向;难点是静摩擦力,尤其是静摩擦力方向的判断。教师要试图将学生初中学过的相关概念与本节的内容有机地融合在一起。教学中要力图从两种摩擦力的区别与联系出发,让学生从摩擦力产生的条件、影响摩擦力大小的因素、范围及其计算来理解两种摩擦力的异同,通过探究实验去加深巩固。 本节课也是一节科学探究课,教材从生活中的摩擦现象引入,以探究静摩擦力和滑动摩擦力与哪些因素有关为主线,安排了学生猜想、设计实验、实验探究、合作交流等教学过程,让学生经历探讨两种摩擦力与接触面粗糙程度、压力关系的过程。很好地体现了新教材让学生在体验知识的形成与发展过程中,主动获取知识的精神。同时,本节课的内容与学生的实际生活联系十分密切,教材的编写突出了这一点。在通过实验得出摩擦力的有关知识后,注重引导学生运用所学的知识去分析解释大量生活生产中的摩擦现象,并能运用这些知识解决实际生活中遇到的问题。 【学情分析】 学习者是高中一年级学生,目前还没有学习力的合成与分解相关知识,只是在初中阶段简单的了解了一下摩擦力的性质。所以在讲述新课的时候要充分考虑学生的接受能力,要让他们在已掌握知识的基础上逐渐学习新课程,避免跨越式教学。 一、教学目标 (一)知识与技能 1.认识静摩擦、滑动摩擦力,和它们的产生条件及其作用效果,会判断它们的方向。 2.根据物体的平衡条件简单地计算静摩擦力的大小。 3.能运用滑动摩擦力公式来计算滑动摩擦力 (二)过程与方法

测风经验介绍

风能资源测量与评估 一、风资源测量和评价的通用方法 风能资源评估方法可分为统计分析法和数值模拟方法两类,其中统计分析法又可分为基于气象站历史观测资料的统计方法和基于测风塔观测资料统计分析法两种。我国目前主要采用基于气象站历史观测资料的统计分析法和数值模拟方法对风能资源进行评估。 在一个给定的地区内调查风能资源时可以划分为三种基本的风能资源评估的规模或阶段:区域的初步识别、区域风能资源估计和微观选址。 (1)区域的初步识别这个过程是从一个相对大的区域中筛选合适的风能资源区域,筛选是基于气象站测风资料、地貌、被风吹得倾向一侧的树木和其他标志物等。在这个阶段,可以选择新的测风位置。 (2)区域风能资源估计这个阶段要采用测风计划以表征一个指定区域或一组区域的风能资源,这些区域已经考虑发展风电。在这个规模上测风最基本的目标是: 1、确定和验证该区域内是否存在充足的风能资源,以支持进一步的具体场址调查; 2、比较的区域以辨别相对发展潜力; 3、区域调查对既定区域风场的送出和土地属性等等客观因素进行调研,究其对建设风场的可行性; 4、获得代表性资料来估计选择的风电机组的性能及经济性; 5、筛选潜在的风电机组安装场址。 微观选址风能资源评估的第三步是微观选址,用来为一台或更多风力发电组定位,以使风电场全部电力输出最大,风力发电机组排布最佳。 二、风资源测评程序 (1)风资源测平程序风能资源评估的目标是确定该区域是否有丰富(或者较好)的风能资源,通过数据估算选择合适的风电机组,提高经济性,并为微观选址提供依据。 (2)测风步骤现场测风的目地是获取准确的风电场选址区的风况数据,要求数据具有代表性、精确性和完整性。因此,应制定 1

齿轮各参数计算方法

齿轮各参数计算方法 1、齿数Z 闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多一些为好,小一些为好,小齿轮的齿数可取为z1=20~40。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿数,一般可取z1=17~20。为使齿轮免于根切,对于α=20度的标准支持圆柱齿轮,应取z1≥17 2、模数m 齿距与齿数的乘积等于分度圆的周长,即pz=πd。为使d为有理数的条件是 p/π为有理数,称之为模数。即:m=p/π 模数m是决定齿轮尺寸的一个基本参数。齿数相同的齿轮模数大,则其尺寸也大。

3、分度圆直径d 齿轮的轮齿尺寸均以此圆为基准而加以确定,d=mz 4、齿顶圆直径da和齿根圆直径df 由齿顶高、齿根高计算公式可以推出齿顶圆直径和齿根圆直径的计算公式: da=d+2ha df=d-2hf =mz+2m=mz-2×1.25m =m(z+2)=m(z-2.5) 5、分度圆直径d 在齿轮计算中必须规定一个圆作为尺寸计算的基准圆,定义:直径为模数乘以齿数的乘积的圆。实际在齿轮中并不存在,只是一个定义上的圆。其直径和半径分别用d和r表示,值只和模数和齿数的乘积有关,模数为端面模数。与变位系数无关。标准齿轮中为槽宽和齿厚相等的那个圆(不考虑齿侧间隙)就为分度圆。标准齿轮传动中和节圆重合。但若是变位齿轮中,分度圆上齿槽和齿厚将不再相等。若为变位齿轮传动中高变位齿轮传动分度圆仍和节圆重合。但角变位的齿轮传动将分度圆和节圆分离。 6、压力角αrb=rcosα=1/2mzcosα 在两齿轮节圆相切点P处,两齿廓曲线的公法线(即齿廓的受力方向)与两节圆的公切线(即P点处的瞬时运动方向)所夹的锐角称为压力角,也称啮合角。对单个齿轮即为齿形角。标准齿轮的压力角一般为20”。在某些场合也有采用α=14.5°、15°、22.50°及25°等情况。

知识讲解_摩擦力(基础)

摩擦力 【学习目标】 1.知道滑动摩擦产生的条件,会正确判断滑动摩擦力的方向 2.会用公式f=μN计算滑动摩擦力的大小,知道影响动摩擦因数的大小因素 3.知道静摩擦力的产生条件,能判断静摩擦力的有无以及大小和方向 4.理解最大静摩擦力.能根据二力平衡条件确定静摩擦力的大小 【要点梳理】 要点一、摩擦力 要点诠释: 1.定义:当相互接触且相互挤压的物体之间有相对运动或相对运动趋势时,接触面间产生的阻碍相对运动或相对运动趋势的力,称为摩擦力.固体、液体、气体的接触面上都会有摩擦作用. 2.分类:分为滚动摩擦(初中已经学习过)、滑动摩擦力和静摩擦力 要点二、滑动摩擦力 要点诠释: 1.产生:一个物体在另一个物体表面上相对于另一个物体发生相对滑动时,另一个物体阻碍它相对滑动的力称为滑动摩擦力. 2.产生条件:①相互接触且相互挤压;②有相对运动;③接触面粗糙. 说明: 1)两个物体直接接触、相互挤压有弹力产生. 摩擦力与弹力一样属接触作用力,但两个物体直接接触并不挤压就不会出现摩擦力.挤压的效果是有压力产生.压力就是一个物体对另一个物体表面的垂直作用力,也叫正压力,压力属弹力,可依上一节有关弹力的知识判断有无压力产生. 2)接触面粗糙.当一个物体沿另一物体表面滑动时,接触面粗糙,各凹凸不平的部分互相啮合,形成阻碍相对运动的力,即为摩擦力.凡题中写明“接触面光滑”、“光滑小球”等,统统不考虑摩擦力(“光滑”是一个理想化模型). 3)接触面上发生相对运动. 特别注意:“相对运动”与“物体运动”不是同一概念.“相对运动”是指受力物体相对于施力物体(以施力物体为参照物)的位置发生了改变;而“物体的运动”一般指物体相对地面的位置发生了改变.

电机参数计算方法

我设定的自制马达规格如左:使用7.4V 1600mA锂电池,耗电在7A以内(马达功率约50W,电池放电系数约4.4C),采用直驱或减速皆可。 以上述条件,无刷马达应采用△接线铜损较小(因线电流=√3*相电流,故马达内线圈电流会较小,以相同的线径来说,铜损自然较小)。 我是采用AWG #28号线(直径0.32mm),每相每极绕21圈,采用△接线,使用7.4V 1600mA 锂电池。 以直驱测试,其数据如下: 螺旋桨测量转数(RPM) 测量电池电流(A) 测量马达线电流(A) 换算马达相电流(A) 计算功率(W) 4040 15000 6.2A 3.6A 2.1A 45W 5025 13000 7.4A 4.3A 2.5A 55W 以减速组测试(58/18=3.2),其数据如下: 螺旋桨测量螺旋桨转数(RPM) 换算马达转速(RPM) 测量电池电流(A) 计算功率(W) 7060 6250 20000 4.2A 31W 8060 5500 17600 6.2A 46W 9070 5000 16000 7.4A 55W 无刷马达/有碳刷马达效能计算 扭力常数: Kt=Kb x 1.345 Kt=1345 / kv 消耗电流: I = [V-(Kb x kRPM)] / Rm I = [V-(RPM / kv)] / Rm 输出扭力: J = (Kt x I) - (Kt x Inl) 每分钟转速: kRPM = (V - RmI) / Kb kRPM = (V - RmI) x kv / 1000 输出功率: Po = (J x RPM) / 1345 消耗功率: Pi = V x I 马达效率: Eff = (Po / Pi) x 100 最高效率电流: Ie max = Sqrt [(V x Inl) / Rm] 符号定义: Eff = 效率 I = 消耗电流值 Iemax=发挥最高效率之电流量 Inl = 无负载量测电流值 J = 扭力(oz-in) Kb = 电压常数(Volt / 1000 RPM) Kt = 扭力常数(oz-In / A) Pi = 消耗功率(Watts) Po = 机械输出功率(Watts) Rm = 马达内阻 RPM = 每分钟转速 V = 电压

第16讲 摩擦力大小的计算(解题方法类)

第16讲摩擦力大小的计算 【方法指导】 一、滑动摩擦力 1.在求解摩擦力的大小时,一定要分清是求静摩擦力,还是求滑动摩擦力,只有滑动摩擦力才能直接应用公式F=μF N求解。 2.公式F=μF N中的F N是物体接触面之间的压力,不一定有F N=mg,要根据物体受力情况来确定。 3.滑动摩擦力F的大小与物体的运动速度、接触面积的大小无关。 4.计算滑动摩擦力的大小时,关键是根据力的平衡知识求出正压力的大小。 二、静摩擦力 静摩擦力的大小在0~F fmax之间,其具体数值由物体受的其他外力和运动状态决定,与接触面间的正压力无关,但最大静摩擦力的大小与正压力成正比。 【对点题组】 1.如图所示,在动摩擦因数μ=0.1的水平面上向右运动的物体,质量为20 kg,在运动过程中,还受到一个水平向左的大小为10 N的拉力作用,则物体受到的滑动摩擦力为(g取10 m/s2) () A.10 N,向右B.10 N,向左 C.20 N,向右D.20 N,向左 2.如下图所示,两块木板紧紧夹住木块,一直保持静止,木块重为30 N,木块与木板间的动摩擦因数为0.2.若左右两端的压力F都是100 N,则每块木板对木块的摩擦力大小和方向是() A.30 N,方向向上 B.20 N,方向向上 C.40 N,方向向下 D.15 N,方向向上3.一根质量为m,长度为L的均匀长方木条放在水平桌面上,木条与桌面间的动摩擦因数为μ.现用水平力F推木条,当木条经下图所示位置时,桌面对它的摩擦力为() A.μmg B. 2 3 mg μ C. 1 3 mg μD.上述选项均不对 4.如下图所示,物体放在水平桌面上,在水平方向上共受三个力作用,即F1、F2和摩擦力作用,物块处于静止状态,其中F1=10 N,F2=2 N,若撤去F1,物体仍静止不动,则物块受到的摩擦力是() A.8 N,方向向右B.8 N,方向向左 C.2 N,方向向右D.2 N,方向向左 5. A、B、C三物块的质量分别为M、m和m0,按如下图所示连接。绳子不可伸长,且绳子和滑轮的质量、滑轮的摩擦均可不计。若B随A一起沿水平桌面做匀速运动,则可以断定() A.物块A与桌面之间有摩擦力,大小为m0g B.物块A与B之间有摩擦力,大小为m0g C.桌面对A、B对A都有摩擦力,两者方向相同,合力为m0g D.桌面对A、B对A都有摩擦力,两者方向相反,合力为m0g 6.一物块m在水平力拉动下,沿静止的水平传送带由A端运动到B端,如图甲所示,这时所受摩擦力为F1;现开动机械让传送带向左匀速传动,再次将同样的物块m由传送带的左端匀速拉动到右端,这时所受摩擦力大小为F2,如图乙所示。则F1、F2的大小关系满足()

瓦斯排放计算公式

作经验,能严格控制排放量,安全问题是能解决的,此方法的优点在于风机吸入的风量全部用于排放并稀释瓦斯,所以在停风区内积聚的瓦斯浓度高且全风压风量又不太大时,采用逐段排放比较好。 2 有关参数计算 独头掘进巷道停风后,其内部积存的瓦斯量、瓦斯浓度、排放时最大供风量、最大排放量和最短的排放时间都很有必要在排放前制定的安全措施报告中计算出来,这样一是有利于排放瓦斯人员在实际操作时做到心中有数,二是有利于妥善安排停电撤人区域内各部门的工作。严格讲,井下条件复杂,有关计算属于估算,与实际情况未必完全相符,执行时应根据实际情况灵活调整。独头巷道内积存的瓦斯量VCH4=KQCH4t 式中VCH4——独头巷道内积存的瓦斯量,m3; QCH4——正常时独头巷道的绝对瓦斯涌出量,m3/min; t——停风时间,min; K——停风后独头巷道内绝对瓦斯涌出量与正常掘进时绝对瓦斯涌出量之比值,K值因矿井及独头巷道的具体情况,即瓦斯涌出源的构成不同而不同,但停风后由于巷道不掘进,CH4涌出量减小,故K<1,一般为~。独头巷道内积存的瓦斯浓度C=VCH4×100

/LS=KQCH4t×100/LS 式中C——独头巷道内CH4平均浓度,%; L——独头巷道长度,m; S——独头巷道平均断面积,m2。 当停风时间很长,即t值很大时,有可能使计算出的C≥100%,这与实际情况不符,此时取C=100%,从另一方面讲,独头巷道内CH4分布是不均匀的。最大排放量M=Q0(-C0)/100 式中M——从独头巷道中每分钟最多允许排出的瓦斯量,m3/min; Q0——全风压通风巷道中风量,m3/min; C0——全风压通风巷道入风流中携带的CH4浓度,%。最大供风量 Qmax=M×100/C=Q0(-C0)/C 式中Qmax——允许往独头巷道内供风量的最大值,m3/min;C——独头巷道内平均CH4浓度,%。排放时间T

线路参数计算公式

参数计算(第一版) 1.线路参数计算内容 1.1已知量: 线路型号(导线材料、截面积mm 2)、长度(km)、排列方式、线间距离(m)、外径(mm)、分裂数、分裂距(m)、电压等级(kV)、基准电压U B (kV , 母线电压作为基准电压)、基准容量S B (100MV A)。 1.2待计算量: 电阻R(Ω/km)、线电抗X(Ω/km)、零序电阻R0(Ω/km)、零序电抗X0(Ω/km)、对地电纳B(S/km)、对地零序电纳B0(S/km)。 1.3计算公式: 1.3.1线路电阻 R=ρ/S (Ω/km) R*=R 2B B U S 式中 ρ——导线材料的电阻率(Ω·mm 2/km); S ——线路导线的额定面积(mm 2)。 1.3.2线路的电抗 X=0.1445lg eq m r D +n 0157 .0(Ω/km) X*=X 2B B U S 式中 m D ——几何均距,m D =ac bc ab D D D (mm 或cm,其单位应与eq r 的单位相同); eq r ——等值半径, eq r =n n m rD 1 (mm,其中r 为导线半径); n ——每个导线的分裂数。 1.3.3零序电阻 R0=R+3R g (Ω/km)

R0*=R0 2B B U S 式中 R g ——大地电阻, R g =π2×10-4×f =9.869×10-4×f (Ω/km)。在f =50Hz 时, R g =0.05Ω/km 。 1.3.4零序电抗 X0=0.4335lg s g D D (Ω/km) X0*=X0 2B B U S 式中 g D ——等值深度, g D = γ f 660,其中γ为土壤的电导率,S/m 。当土壤电导率不明 确时,在一般计算中可取g D =1000m 。 s D ——几何平均半径, s D =32 m D r '其中r '为导线的等值半径。若r 为单根导 线的实际半径,则对非铁磁材料的圆形实心线,r '=0.779r ;对铜或铝的绞线,r '与绞线股数有关,一般r '=0.724~0.771r ;纲芯铝线取r '=0.95r ;若为分裂导线,r '应为导线的相应等值半径。m D 为几何均距。 1.3.5对地电钠 B= 610lg 58 .7-?eq m r D (S/km) B*=B B B S U 2 式中 m D ——几何均距,m D =ac bc ab D D D (mm 或cm,其单位应与eq r 的单位相同); eq r ——等值半径, eq r =n n m rD 1 -(其中r 为导线半径); 1.3.6零序对地电钠

摩擦力做功几种求法

3 l 白城一中物理组 / 闫炜平 摩擦力做功计算是同学做题时容易疑惑的问题, 概括的说分为三种情况,下面举例说明: 一、在摩擦力大小、方向都不变的情况下,应该 用θ cos ? ? =s f W f 可求。 二、在摩擦力大小不变,方向改变时,由微元法, 可将变力功等效成恒力功求和。 例1:质量为m的物体,放在粗糙水平面上。现 使物体沿任意曲线缓慢地运动,路程为s,物体与水 平面间的动摩擦因数为μ。则拉力F做的功为多少? 解:由微元法可知:F做的功应等于摩擦力做功总和。 例2 :如图所示,竖直固定放置的斜面AB的下 端与光滑的圆弧轨道BCD的B端相切,圆弧面半径 为R,圆心O与A、D在同一水平面上,∠COB=θ。 现有一个质量为m的小物体从斜面上的A点无初速 滑下,已知小物体与AB斜 面间的动摩擦因数为μ。求 (1)小物体在斜面体上能 够通过的路程;(2)小物体 通过C点时,对C点的最 大压力和最小压力。 [解析](1)小物体在运动过程中,只有重力及摩 擦力做功,小物体最后取达B点时速度为零。设小物 体在斜面上通过的总路程为s,由动能定理得: ① 又 由①②式得: (2)小物体第一次到达C点时速度大,对C点压力 最大。 由动能定理④ 小物体最后在BCD圆弧轨道上运动,小物体通过C 点时对轨道压力最小。得: ⑥ 解⑥⑦式得 最小值 [注意,摩擦力做功的公式s f W? - =中,s一般是 物体运动的路程] 三、摩擦力大小、方向都在时刻改变时,速度V 越大时,压力 N F也越大,则由 N F fμ =可知 N F越 大,f也越大,摩擦力做功越多。 例1:连接A、B两点的弧形轨道ACB与ADB 是用相同材料制成的,它们的曲率半径相同。如图所 示,一个小物体由A点以一 定初速度v开始沿ACB滑 到B点时,到达B点速率 为 1 v若小物体由A点以相 同初速度沿ADB滑到B点时,速率为 2 v与的关系: () A 1v>2v B 1v=2v C 1v<2v D 无法判断 [解析]A 物体沿ACB运动过程中受竖直向下的 重力。垂直于轨道向上的支持力,沿切线方向的摩擦 力,其中重力、支持力不做功,摩擦力做负功,又据 圆运动的知识,支持力的平均值小于重力,摩擦力的 平均值较小。物体沿ADB运动过程中受竖直向下的 重力、垂直于轨道向上的支持,沿切线方向的摩擦力, 重力、支持力不做功,摩擦力做负功,而此过程中支 持力的平均值大于重力,摩擦力较大,而过程运动弧 长相同。所以沿ACB过程摩擦力做负功较小,到达B 点时速率较大,故选 A正确。 例2:如图所示,地面上有一个半圆形轨道,一 小物体(可视为质点)从一端离地面高为h的A点自 由落下,恰好顺着圆弧运动,从另一端D点竖直向上 射出,其最高点B距地面的高度为h/2,接着物体从 B点又自由落下,返回到左边的 最高点() A 低于C点 B 高于C点 C 恰在C点 D 无法确定 [解析]B 物体沿ACDB运动过程中应用动能定 理可知:2/ mgh W f = 即:由功能关系可知:由C到D过程中机械能损 失为2 mgh, 同理可知:当物体由BD到C过程中损失机械能 小于2 mgh故球一定能够高于C点。 例3:如图所示,在竖直平面内固定着1/4圆弧 槽,圆弧槽的半径为R,它的末 端水平,上端离地高H,一个小 球从上端A点无初速滑下,若 小球的水平射程为S,求圆弧槽 阻力做功。 解:设小球脱离滑槽,开始做平抛运动的速度为 05年高考试题(选) 25.(20分)如图所示,一对杂技演员(都视为 质点)乘秋千(秋千绳处 于水平位置)从A点由静 止出发绕O点下摆,当摆 到最低点B时,女演员在 极短时间内将男演员沿水 平方向推出,然后自己刚 好能回到高处A。求男演员落地点C与O点的水平距 离s。已知男演员质量m1和女演员质量m2之比 ,2 2 1 = m m秋千的质量不计,秋千的摆长为R,C 点低5R。 (白城一中物理组/ 李松选 答案请见2版右下角) 大家一起来学习 如图所示,滑块A质量m=0.01kg,与水平地面 间的动摩擦因数μ=0.2。用细线悬挂的小球质量均为 m’=0.01kg且沿x轴均匀排列。A与第一只小球及小 球与相邻小球距离均为s=2m,且从左至右悬挂小球 的线长分别为……当A与第一只小球间距 为2m时的运动速度且正好沿着x轴正 向运动。不计滑块和小球大小且当滑块与球、球与球 发生碰撞时机械能守恒,交换速度,碰后任一小球恰 好能在坚直平面内做完整的圆周运动。() (1)最左侧悬挂小球的线长为多少? (2)滑块在运动中能与几个小球发生碰撞。 (3)求出碰撞中第n 的表达式。 [解析](1)设滑块与第一个 球碰撞前的速度为 1 v,由动 能定理得:2 1 umgs= - 一个球碰后瞬间球速 1 v v= 械能守恒得:2 2 1 2 1 2 1 2 2 1mv mgl mv+ =又因为 球在最高点时,由牛顿第二定律有, 所以悬挂在最左侧绳长 (2)对滑块由动能定理得2 2 1 0mv umgs- = - 所以滑块滑行的总路程m s25 =则滑块在滑行过 程中与小球碰撞个数5. 12 = =s s n,应取12个 (3)设滑块与第n个(n≦12)球碰前速度为 n v由 动能定理得2 22 1 2 1mv mv ns umg n - = ? -则滑 块与球碰后,球速 n n v v= '若第n个悬线长 n l到最高 点速度为n n v 对小球机械能守恒2 2'2 1 2 2 1n n n n mv mgl mv+ = 且在最高点由牛顿第二定律有 n n l mv mg2' =联立 以上各式g ugns v l n 5 ) 2 (2 - = [教师评语]这是一道力学习题,可用来培养同学们的 复合解题能力、考查的知识点有: ①动能定理 ②机械能守恒 ③瞬间牛顿第二定律 ④弹性碰撞时(不损失能量) 由动量守恒,能量守恒可知,质量相等发生速度互换 现象。 (白城一中一年五班/ 史小汐投搞) ② 2 2 1 cos c mv AB mg mgR= ? -θ μ 第1版共2版主管白城一中教研所主办白城一中高一物理组排版:张学金李延铎我们的目标:从生活走向物理,从物理走向社会!印刷:校本部印刷室 B C A cos= -fs mgRθ θ μcos mg f= μ R S= R mv mg N c 2 max = -③ s mg s s s s mg W n f ? = + + + =μ μ) ( 3 2 1 R mv mg N c /2' min = - ⑦ (1 mgR- ()mg ctg Nθ θ μ? - =cos 2 3 max B v ()R H g S v B - =2 2 2 1 B f mv W mgR= - ()R H mgS mgR W f - - =4 2 由平抛运动知识得:① 由动能定理得: ()mg Nθ cos 2 3 min - = 由①②得: ② m g ugs v l84 .1 5 ) 2 (2 1 = - = 1 2 2 l mv mg= ( 16 .0 2m n - =12 3.2.1 = n 2 / 10s m g= s m v/ 10 = 3 l 2 l 1 l 1 l

相关文档
最新文档