AIAA-98-4759 RESPONSE SURFACE MODEL BUILDING AND MULTIDISCIPLINARY OPTIMIZATION USING D-OPT

AIAA-98-4759

RESPONSE SURFACE MODEL BUILDING AND MULTIDISCIPLINARY

OPTIMIZATION USING D-OPTIMAL DESIGNS

Resit Unal *

Engineering Management Department

Old Dominion University Norfolk, V A 23529Roger A. Lepsch t and Mark L. McMillin t Vehicle Analysis Branch NASA Langley Research Center

Hampton V A 23681

* Associate Professor. This study was funded by NAS1-19858-98.

t Aerospace Engineer. Member AIAA.

Copyright ó1998 by the American Institute of Aeronautics and Astronautics Inc. Allrights reserved.

Abstract

This paper discusses response surface

methods for approximation model building and multidisciplinary design optimization. The re-sponse surface methods discussed are central composite designs, Bayesian methods and D-optimal designs. An over-determined D-optimal design is applied to a configuration design and optimization study of a wing-body, launch ve-hicle. Results suggest that over determined D-optimal designs may provide an efficient ap-proach for approximation model building and for multidisciplinary design optimization.

I

ntroduction Computerized design and analysis capabili-ties exist in many key disciplines required for

design and analysis of space transportation systems. For a given configuration, system performance characteristics can be determined by the use of these analysis codes. The next step is to determine the settings of design pa-rameters that optimize the system performance characteristics subject to constraints. However,the complex computer programs used in aero-space design are usually stand alone codes run by disciplinary experts. In most cases, they are expensive and/or difficult to integrate and use

directly for multidisciplinary design optimiza-tion (MDO). An alternative is to construct dis-ciplinary approximation models for the func-tional relationships between performance characteristics and design parameters. These approximations are referred to as response sur-face models. The response surface models are then used to integrate the disciplines using mathematical programming methods. In many cases this approach allows efficient system level design analysis, MDO and rapid sensitiv-ity simulations.

Response Surface Model Building U s - i ng Central Composite Designs A second-order approximation model of the form given below (Equation 1) is commonly used in response surface model building since in many cases it can adequately model the re-sponse surface, especially if the region of inter-est is sufficiently limited.

y =b o + ? b i x i + ? b ii x i 2

+ ? ? b ij x i x j

(1)

In (1), the x i terms are the input variables that influence the response y, and b o , b i, and b ij are estimated regression coefficients. The

cross terms represent two-parameter interac-tions, and the square terms represent second-order non-linearity. Constructing a second-order model requires that ònó design parameters be studied at least at 3 levels (values) so that the coefficients in the model can be estimated. Therefore 3n factorial experiments (design points, functional evaluations or observations) may be necessary. For small values of "n" such as two or three, this approach works well. However, when a large number of design pa-rameters are under study, the number of obser-vations required for a full-factorial design may become excessive. Fortunately, a second-order approximation model can be constructed effi-ciently by utilizing central composite designs (CCD) from design-of-experiments literature.1 CCD are first-order (2n) designs augmented by additional center and òstaró points to allow estimation of the coefficients of a second-order model.1,2

Central composite designs offer an efficient alternative to 3n designs for constructing sec-ond-order response surface models. A problem involving five parameters for example, requires only 27 CCD experiments to construct a sec-ond-order response surface model as opposed to 243 (35) required by a full-factorial study. The authors have utilized CCD for second or-der approximation model building and MDO in numerous launch vehicle design applica-tions.3,4,5 The number of design parameters studied (n) ranged from four to six. In these applications, the fitted second-order model pre-dicted the analysis results with reasonable accu-racy within the design region studied. Response Surface Model Building U s-i ng Minimum Point D-Optimal Designs

CCD enable the efficient construction of a second-order response surface model with sig-nificantly less effort than would be required by a full factorial study. However, in some cases, which involve large numbers of design vari-ables, conducting experiments may be time-consuming and very expensive even with the use of CCD. In such cases, minimum point D-optimal designs may be utilized to generate a design matrix that enables a more efficient con-struction of a second-order model.5,6 A design is called òminimum pointó when the number of design points is exactly equal to the number of terms in the model to be fitted.6,12,13 As a re-sult, minimum point designs require the abso-lute minimum number of functional evaluations (experiments) to estimate the second-order model coefficients. Compared to minimum point D-optimal designs, CCD are overdeter-mined designs or there are more experiments than required to estimate the second-order model coefficients.

A statistical measure of goodness of a model obtained by least squares regression analysis is the minimum generalized variance of the estimates of the model coefficients. One way to construct a quadratic model using minimum point designs, leading to minimized variance of the least squares estimates, is to use the D-optimality criterion. Consider the prob-lem of estimating the coefficients of a linear ap-proximation model below by least squares re-gression analysis;1,5,6

y = b o + ? b i x i (2) Equation

(2)

can be expressed in matrix notation as:

Y = XB + e(3) Where Y is a vector of observations, e is the vector of errors, X is the design matrix and B is a vector of unknown model coefficients (b o and b i). The design matrix is a set of com-binations of the values of the coded variables, which specifies the settings of the design pa-rameters to be performed during experimenta-tion. B can be estimated by using the least squares method as:

B = (X'X)-1X'Y (4)

A measure of accuracy of the column of es-timators, B, is the variance-covariance matrix which is defined as;1,5,6,13

V(B) = s2 (X'X)-1(5) where s2 is the variance of the error. The V(B) matrix is a statistical measure of the goodness-of-fit. Equation 5 indicates that V(B) is a func-tion of (X'X)-1and therefore, one would want to minimize (X'X)-1 to improve the quality of the fit. Statisticians have shown that minimiz-ing (X'X)-1is equivalent to maximizing the

determinant of X'X.13,14,15 Therefore, gener-ating a design matrix which enables the con-struction of a good least squares approximation model translates to maximizing the determinant of the X'X matrix and experimental designs that maximize |X'X| are referred to as D-optimal designs.5,6,15 Here, òDó stands for the determinant of the X'X matrix associated with the model. This analysis can easily be extended to the quadratic model given by Equation (1), with the same conclusions for D-optimality.1

A number of authors have developed algo-rithms for obtaining D-optimal designs for spe-cific models using mathematical programming methods.6,13,15 There are also numerous software packages available for desk top com-puters.16 A major limitation of a saturated de-sign is the minimum (poor) coverage of the re-gion of interest.17 However, D-optimal minimum point designs generally work well in initial screening situations in which it is ex-pected that there will be a few important pa-rameters.15,17. As a result, minimum-point D-optimal designs may be used in lieu of CCD when there are large numbers of variables un-der study and experimental design effort is ex-pensive and resources are limited.

Response Surface Model Building Methods fo r Dete r ministic Expe r iments For most experimental designs constructed for building response surface models, a domi-nant issue is the variance of measurements of the response.7 However, the output of ex-periments carried out using computer models, as mostly used in aerospace design, is deter-ministic. Generally, there is no measurement error or no variability in analysis outputs, given a specific set of inputs. Therefore, experimental designs constructed to minimize variability of measurements and the accompanying statistical methods for model accuracy analysis may not be the best choice for deterministic experi-ments.8,9

Reference 8 presents an experimental de-sign approach based on the Bayesian statistics. The approaches for design and analysis of computer experiments using Bayesian statistics are given in references 8 and 9 in some detail. Bayesian approach to experimental design is a growing area of research. However, the appli-cation of Bayesian experimental design meth-ods in practical design analysis and optimiza-tion problems seems to have been limited.10 Further development appears to be needed be-fore they can be applied to practical design op-timization problems.

Using Ove r dete r mined D-Optimal D e-signs fo r Dete r ministic Expe r iments

As noted previously, experimental designs constructed with the objective of minimizing experimental variance may not always be the best choice when approximating deterministic models. Reference 11 conducted a study com-paring the performance of experimental design methods for approximation model building for deterministic models in terms of the quality of fit in the region studied and in terms of the number of design points required. The findings suggest that CCD are good designs for prob-lems with five or less design parameters. This is consistent with the authors' experience where good approximations have been obtained using CCD in many applications.3,4,5 How-ever, for larger values of n, reference 11 rec-ommends the use of augmented minimum point designs that are around 20% to 50% over-determined and, suggests the use of the D-optimality criteria as a heuristic in selecting de-sign points for deterministic experiments.

As a result, the use of 20% to 50% over-determined D-optimal designs for approxima-tion model building appear to be a good choice for response surface model building for deter-ministic experiments, especially for larger val-ues of n (n36).

Wing Body Launch Vehicle Configur a-

t ion Study

An application of approximation model building and MDO using over-determined D-optimal designs is described for a configuration optimization study of a rocket-powered, single-stage-to-orbit launch vehicle. The vehicle is sized to perform a 25,000 lb. payload delivery to the International Space Station from Ken-nedy Space Center. Near term structures and subsystem technologies are assumed in its de-sign. The vehicle has a wing-body configura-tion with a slender, round cross-section fuse-lage and a clipped delta wing. The delta wing

has elevon control surfaces for aerodynamic roll and pitch control. Small vertical fins, called tip fins, are located at the wing tips for direc-tional control and a body flap extends rearward from the lower base of the fuselage to provide additional pitch control.

In this study, six vehicle design parameters and 15 two-parameter interactions were studied at three values by conducting 45 design ex-periments as opposed to 729 that would be re-quired by a full-factorial study. The purpose was to determine the best values of the design parameters that satisfy aerodynamic constraints at minimum weight.

To derive the shape of the configuration, response surface methods for MDO were used. At first, a face-centered central composite de-sign (CCD) was utilized. However, the result-ing data contained many design points of ex-cessive weight or design points which were very far from being optimal. Using this data, second order approximation equations were generated for weight and for the aerodynamic characteristics of the vehicle at subsonic, su-personic, and hypersonic flight conditions with various control surface settings. The weight equations predicted the design points studied with some crude accuracy. Deviations from the predicted and actual weights (residuals) ranged from 2% to 9%. The use of transformations (e.g. log (weight)) and the introduction of cu-bic terms to the model did not improve the pre-diction accuracy. These results suggested that the use of CCD may not have been the best choice for selecting the experimental design points in this case in the region studied.

In an effort to improve the prediction accu-racy, an overdetermined D-optimal design was utilized next.The following steps describe this multidisciplinary optimization and sensitivity study.

I dentify Design Variables and Feasible Ranges

Six weight & sizing and aerodynamics de-sign parameters were varied over a fixed range. The four common parameters included in aero-dynamics and weights & sizing analysis were the fineness ratio (defined as the fuselage length divided by diameter), the wing area, the tip fin area, and the body flap area. The other two parameters were ballast-weight and mass-ratio for weights and sizing analysis and angle of attack and elevon deflection for aerodynam-ics analysis. The aerodynamics were generated for three different mach numbers, which were Mach 0.3, Mach 2 and Mach 10. As an exam-ple, the ranges for the six weights & sizing pa-rameters are given in Table 1.

Table 1. Weights & Sizing Parameters and

Ranges

Parameter Range Fineness ratio (FR)47 Wing area ratio (WA)1020 Tip fin area ratio (TFA)0.5 3 Body flap area ratio (BFL)01 Ballast weight (BL)0 0.04 Mass ratio (MR)7.758.25

Construct t he Design Matrix

The next step is to construct an overdeter-mined D-Optimal design matrix that can enable the construction of a second-order response model for six parameters (Table 2).

Table 2. Six Parameter D-Optimal Design FR WA TFA BFL BL MR Weight

1-1-1-1-1-11

2-1-1-1-11-1

3-1-1-11-10

4-1-1-1111

5-1-101-1-1

6-1-11-1-11

........

........

........

........ 411100-11

42111-1-1-1

43111-111

4411110-1

45111111

The weights approximation equations from the previous CCD study were used to generate weight predictions for all of the possi-ble 729 (36) combinations of the variables at

three values. The predictions were not very good, but still useful enough for the purpose of screening out the excessive weight cases. As a result, 91 design points (or parameter combi-nations) were eliminated due to excessive weight. The remaining 638 design combina-tions were used as a starting point for generat-ing an overdetermined D-optimal design with 45 design points or experiments (Table 2). 16

The number of experiments were chosen as 45 for comparison purposes since this many experiments were required by the CCD study. With this new design matrix (Table 2), the six parameters are studied at three levels (values) as represented in coded form by, -1, 0 and +1. As an example, a -1 for Fineness ratio corre-sponds to 4 (lower bound), a 0 corresponds to 5.5 (mid value) and +1 corresponds to 7 (upper bound). These coded values are then trans-formed into actual parameter values to be used in conducting the analysis. With 45 experi-ments, this D-optimal design is about 55 % overdetermined since a minimum point D-optimal design would require 29 experiments for constructing the second order model. Conduct t he Matrix Experiments

In this study, all of the geometry and sub-system packaging of the vehicle were per-formed using a NASA-developed geometry modeling tool. The Aerodynamic Preliminary Analysis System (A PAS) was used to deter-mine vehicle aerodynamics. The weights and sizing analyses were performed using the NASA-developed Configuration Sizing (CONSIZ) weights/sizing package. This proc-ess was repeated for the 45 rows of the D-optimal design matrix, each of which corre-sponds to a vehicle design generating the weights and aerodynamics data.

From the weights analysis 45 data points for, empty weight, landed weight and landing center of gravities were obtained. From the aerodynamics analysis, lift, drag and pitching moment coefficients for the three mach num-bers are obtained (Table 3).

Construct t he Second-Order Response Surface Model

Least squares regression analysis is then used to determine the coefficients of the sec-ond order approximation model for the weights and the aeroynamics data in terms of the six design parameters. As a result, second order approximation equations for empty weight, landed weight and landing center of gravities (one for payload-in and one for payload-out) were constructed using the weights data.16

Table 3. Analysis Results

FR WA TFA BFL BL MR Weight cg

1-1-1-1-1-112684750.74 2-1-1-1-11-12646590.72 3-1-1-11-102606100.75 4-1-1-11113223720.73 5-1-101-1-12685120.76 6-1-11-1-113339660.78 ......... ......... ......... ......... 411100-112614860.76 42111-1-1-12354220.75 43111-1113186750.74 4411110-12565350.75 451111113261440.74

Approximation equations for the lift, drag and pitching moment coefficients for each of the three mach numbers are also obtained using the aerodynamics data. These second order ap-proximation models account for individual pa-rameter effects, non linearity (square terms) and interactions (cross terms). The prediction accuracy of the approximation equations in this case was very good (residuals were within 0.50% to 1.5% range for the weight equa-tions).These approximation equations can now be used to rapidly determine the effect of varying design parameter values on the weights and aerodynamic performance characteristics and for MDO. A major advantage of this ap-proach is that it enables the integration of disci-plines for MDO using mathematical program-ming methods. Furthermore, sensitivity simulations can be carried out without the need to re-analyze the entire system after each change in parameter values.

Determine Design Parameter Values that Optimize the Response

In the next step, the approximation equa-tions were transferred into a spreadsheet and a gradient-based non-linear optimizer, contained within the same spreadsheet, is used to deter-mine the settings of design parameter values to minimize vehicle empty weight subject to de-sign constraints. The results are shown in Ta-ble 4.

Table 4. Optimization Process Results Parameter Optimum Value Fineness ratio 6.9

Wing area ratio18.76

Tip fin area ratio 1.99

Body flap area ratio0 Ballast weight 0.014 Mass ratio8.0 Predicted Empty Weight249,792 Verified Empty weight249,360

Using the optimization results and the empty weight approximation equation, the ve-hicle empty weight is predicted to be 249,792 pounds. A verification weights & sizing and aerodynamics analysis using the optimized val-ues was conducted yielding a computed weight of 249,360 pounds. This is very close to the predicted weight. As indicated by this result, the second-order approximation equation con-structed using the overdetermined D-optimal design accurately represented the response sur-face within the region studied for this study.

Conclusions

In this paper, response surface methods for approximation model building techniques were discussed. A major advantage of using ap-proximation models is that it enables the inte-gration of disciplines for MDO using mathe-matical programming methods. Furthermore, sensitivity simulations can be carried out with-out the need to re-analyze the entire system af-ter each change in parameter values.

The approximation techniques discussed were, central composite designs, minimum point designs and overdetermined D-optimal designs for deterministic experiments. A brief summary of each technique was given and an application of model building using over-determined D-optimal designs for deterministic experiments was presented.

The results suggest that, the use of 20% to 50% over-determined D-optimal designs for approximation model building is a good choice for response surface approximation model building.

REFERENCES

1.R. H. Myers; Response Surface Method-ology, Virginia Commonwealth University, Allyn and Bacon Inc., Boston Mass., 1971.

2.Box, G. E. and N. R. Draper, Empirical Model Building and Response Surfaces, John Wiley, New York, NY, 1987.

3.Lepsch, R. A., Jr., D.O. Stanley and R. Unal, òDual-Fuel Propulsion in Single Stage Advanced Manned Launch System Vehicle,óJournal of Spacecraft and Rockets, Volume 32, Number 3, May-June, pp. 417-425, 1995.

4. D. O. Stanley, W. C. Engelund, R. A. Lepsch, M. McMillin, K.E. Wurster, R.W. Powell, A.A. Guinta, and R. Unal, òSSTO Configuration Selection and Vehicle Design,óAIAA-93-1053, February 1993.

5.Unal, R., R. A. Lepsch, W. Engelund and D. O. Stanley, Approximation Model Building and MDO Using Response Surface Methods with Applications To Launch Vehicle Design, Proceedings of the 6th Annual AIAA/USA F/ NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, September 199

6.

6.J. A. Craig, òD-Optimal Design Method: Final Report and User?s Manual,ó USAF Con-tract F33615-78-C-3011, FZM-6777, General Dynamics, Forth Worth Div.,1978.

7.Sharifzadeh S., J. Koehler, A. Owen and J. Shott, òUsing Simulators to Model Trans-mitted Variability in IC Manufacturing,ó IEEE Transactions on Semiconductor Manufactur-ing, Vol. 2, No. 3, August, pp. 82-93, 1989.

8. Sacks, J. W. Welch, T. Mitchell and H.

Wynn, òDesign and Analysis of Computer Ex-periments,ó Statistical Science, Vol. 4, Number 4, November, 1989.

9.Owen, A., òOrthogonal Array Designs for Computer Experiments, Department of Statis-tics, Stanford University,ó

https://www.360docs.net/doc/6313414304.html,/designs/owen.small, 1994.

10.Chaloner, K. and I. Verdinelli, òBayesian Experimental Design: A Review,ó Department of Statistics, University of Minnesota, Minn., 1995.

11.Carpenter, W. C. òEffect of Design Selec-tion on Response Surface Performance,óNASA Contractor Report 4520, June 1993. 12.Lucas, J. M., òOptimum Composite De-signs,ó Technometrics, Vol. 16, No. 4, No-vember 1974.13.Mitchell, T. J., òAn Algorithm for the Construction of D-Optimal Experimental De-signs,ó Technometrics, Vol. 16, No. 2, May 1974.

14. D. C. Montgomery; Design and Analysis of Experiments, John Wiley and Sons, N.J., 1991.

15.M. J. Box and N.R. Draper, òOn-Mimimum Point Second-Order Designs,óTechnometrics, Vol. 16, No. 4, November 1974.

16. JMPaDesign User?s Guide, SAS Institute Inc, Cary, NC, 1992.

17. D. K. Lin, òAnother Look at First-Order Saturated Designs: The P-Efficient Designs,óTechnometrics, Vol. 35, No. 3, August 1993.

数据备份与恢复系统哪个品牌好

在互联网普及的时代,数据显得尤为重要。数据备份是对数据进行再存储,是一个数据导出动作,以防数据丢失。而数据恢复则与数据备份是两个相反方向的行为,是将不小心丢失的数据重新导回电脑端。数据备份与恢复系统哪个品牌好呢? 铱迅数据备份备份与恢复系统,是业界针对大数据量环境的应急接管平台,其利用磁盘级CDP技术,可实现IO级别的细颗粒度实时备份,将备份窗口、数据丢失降到较低。并且可以实现任意时间点的数据挂载与演练,能够快速响应业务系统的接管需求,对应用实现连续保护。 软硬件一体化配置 数据备份与恢复系统集备份服务器,操作系统、备份软件、磁盘阵列融于一体;并可加载铱迅容灾平台的虚拟化软件模块,备份容灾一机实现。 多方位的数据备份支持

备份存储服务器 软件模块 软件部分的服务器端内置在硬件中,采用Web界面提供设备、客户端、备份数据及管理员的管理;客户端由多个功能模块构成,安装在需要备份的服务器或PC上,依据数据保护的对象和等级不同,客户端授权划分为多个类型;更有扩展功能软件包,支持异地数据灾备等功能。

铱迅数据备份与恢复系统采用软硬件一体化配置,以持续数据保护技术(CDP)为核心,具备实时备份、定时备份等功能,整合了USB Key、密码口令等多因子安全身份验证安全模块,可以为数据库、文件、应用、操作系统提供安全、有效、完整的数据保护。 多方位备份 跨平台支持各类桌面电脑、服务器及小型机;支持Windows、Linux、Unix等操作系统及VMware ESX(i)、Hyper-V等虚拟化系统;支持Oracle/SQL Server/My SQL/DB2/Sybase及国产数据库等多种数据库;支持双机、虚拟机等服务器架构;支持LAN-Base、LAN-Free等备份方式;提供手动备份、定时备份、实时备份等备份策略设置;提供数据库、文件、应用及操作系统的多方位保护。 简易化操作 数据自动集中备份到黑方的存储空间中。基于Web界面统一管理平台,提供备份设备、备份客户端、备份数据的集中管理,将IT 技术人员的专业性数据备份恢复工作简化为普通工作人员即可轻松掌握并自动完成的简单工作。 CDP实时备份和恢复 创新性CDP持续数据保护技术,数据备份与恢复准确到秒,连续实时捕获所需备份文件的数据变化,并自动保存变化的数据和时间戳(即表示数据变化的时间节点),在此基础上可以实现过去任意时间点的数据恢复。有效解决定时备份、准CDP备份的时间窗口问题。 功能简介 核心技术 铱迅数据备份与恢复系统以持续数据保护(CDP)为核心技术精髓,并结合升级加密、数据压缩、数据同步等诸多先进技术,来实现可靠、安全、多面、有效的数据备份与恢复。

【操作系统】Windows XP sp3 VOL 微软官方原版XP镜像

操作系统】Windows XP sp3 VOL 微软官方原版XP镜像◆ 相关介绍: 这是微软官方发布的,正版Windows XP sp3系统。 VOL是Volume Licensing for Organizations 的简称,中文即“团体批量许可证”。根据这个许可,当企业或者政府需要大量购买微软操作系统时可以获得优惠。这种产品的光盘卷标带有"VOL"字样,就取 "Volume"前3个字母,以表明是批量。这种版本根据购买数量等又细分为“开放式许可证”(Open License)、“选择式许可证(Select License)”、“企业协议(Enterprise Agreement)”、“学术教育许可证(Academic Volume Licensing)”等5种版本。根据VOL计划规定, VOL产品是不需要激活的。 ◆ 特点: 1. 无须任何破解即可自行激活,100% 通过微软正版验证。 2. 微软官方原版XP镜像,系统更稳定可靠。 ◆ 与Ghost XP的不同: 1. Ghost XP是利用Ghost程序,系统还原安装的XP操作系统。 2. 该正版系统,安装难度比较大。建议对系统安装比较了解的人使用。 3. 因为是官方原版,因此系统无优化、精简和任何第三方软件。 4. 因为是官方原版,因此系统不附带主板芯片主、显卡、声卡等任何硬件驱动程序,需要用户自行安装。 5. 因为是官方原版,因此系统不附带微软后续发布的任何XP系统补丁文件,需要用户自行安装。 6. 安装过程需要有人看守,进行实时操作,无法像Ghost XP一样实现一键安装。 7. 原版系统的“我的文档”是在C盘根目录下。安装前请注意数据备份。 8. 系统安装结束后,相比于Ghost XP系统,开机时间可能稍慢。 9. 安装大约需要20分钟左右的时间。 10. 如果你喜欢Ghost XP系统的安装方式,那么不建议您安装该系统。 11. 请刻盘安装,该镜像用虚拟光驱安装可能出现失败。 12. 安装前,请先记录下安装密钥,以便安装过程中要求输入时措手不及,造成安装中断。 ◆ 系统信息:

数据备份及恢复标准流程

数据备份及恢复标准流程

索引 一Outlook Express篇 (3) 二Foxmail篇 (5) 三Office Outlook篇 (7) 四操作系统篇 (8) 五数据库篇 (9) 六数据灾难恢复篇 (10)

一、Outlook Express篇 Outlook Express是WIN9X自带的邮件收发软件,它拥有相当多的用户,但由于其是随系统安装而来的,再加上WIN9X的极不稳定,重装系统后将丢失OE中的很多个性设置,甚至于收发的邮件,因此,在系统正常时备份相关的信息是必要的。本文以OE5.0以上版本为例介绍。 1.存储文件夹的改变 在OE的工具-选项-维护-存储文件夹中可以改变邮件的存放位置,这里必须把邮件存放在其它分区中如E:\MAIL中,或改变HKEY_CURRENT_USER\Software\Microsoft\OutlookExpress中的Store Root,可以导出这个注册表分支,存放在E:\MAIL中。 2.邮件规则的备份 OE的一个强大功能就是其邮件规则,这样可以有选择性的收取邮件,将不用的邮件直接在服务器上删除,这些规则可以在脱机状态下设定,而不象FOXMAIL的远程邮箱管理必须在线执行,这样并没有节省在线的时间。 在OE中设置了邮件规则(在工具-邮件规则-邮件中进行设置)后,在注册表中的HKEY-CURRENT-USER\Identities\{9ACEA700-E70A-11D3-9796-A034DB516564}\Software\Microsoft\Outlook Express\5.0\Rules\Mail保存你的该项设置,当然各人{}中的内容可能不同;你的机子上OE中有多个标识,这里将会有几个{}。 3.个性化的签名 在工具-选项-签名中可以设定自已个性化的签名,而且对不同帐号自动添加不同的签名,如用于投稿的帐号,要添加自己的通信地址,这样可以收到稿费。在新闻中发帖子,要

Windows7 SP1官方原版下载

Windows7 SP1官方原版 以下所有版本都为Windows7 SP1官方原版,请大家放心下载! 32位与64位操作系统的选择:https://www.360docs.net/doc/6313414304.html,/Win7News/6394.html 最简单的硬盘安装方法:https://www.360docs.net/doc/6313414304.html,/thread-25503-1-1.html 推荐大家下载旗舰版,下载后将sources/ei.cfg删除即可安装所有版本,比如旗舰,专业,家庭版。 ============================================ Windows 7 SP1旗舰版中文版32位: 文件cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso SHA1:B92119F5B732ECE1C0850EDA30134536E18CCCE7 ISO/CRC:76101970 cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso.torrent(99.63 KB, 下载次数: 326189) Windows 7 SP1旗舰版中文版64位: 文件cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso SHA1: 2CE0B2DB34D76ED3F697CE148CB7594432405E23 ISO/CRC: 69F54CA4 cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso.torrent(128.17 KB, 下载次数: 197053)

系统运维管理-备份与恢复管理(Ⅰ)

系统运维管理备份与恢复管理(Ⅰ) 版本历史 编制人: 审批人:

目录 目录 (2) 一、要求容 (3) 二、实施建议 (3) 三、常见问题 (4) 四、实施难点 (4) 五、测评方法 (4) 六、参考资料 (5)

一、要求容 a)应识别需要定期备份的重要业务信息、系统数据及软件系统等; b)应建立备份与恢复管理相关的安全管理制度,对备份信息的备份方式、备份频度、存储介质和保存期等进行规定; c)应根据数据的重要性和数据对系统运行的影响,制定数据的备份策略和恢复策略,备份策略须指明备份数据的放置场所、文件命名规则、介质替换频率和将数据离站运输的方法; d)应建立控制数据备份和恢复过程的程序,记录备份过程,对需要采取加密或数据隐藏处理的备份数据,进行备份和加密操作时要求两名工作人员在场,所有文件和记录应妥善保存; e)应定期执行恢复程序,检查和测试备份介质的有效性,确保可以在恢复程序规定的时间完成备份的恢复; f)应根据信息系统的备份技术要求,制定相应的灾难恢复计划,并对其进行测试以确保各个恢复规程的正确性和计划整体的有效性,测试容包括运行系统恢复、人员协调、备用系统性能测试、通信连接等,根据测试结果,对不适用的规定进行修改或更新。 二、实施建议 制定数据备份的规定,包括备份的策略、计划和容等信息,备份策略的制定要结合本身数据量多少、数据更新时间等要求进行制定,对备份的数据要进行定期的恢复性测试,保证该备份的可用性。数据的恢复管理不仅仅是灾难恢复的计划,应当针对不同的数据恢复要求和恢复的容制定多种适当的恢复策略,并定期对策略的有效性进行测试。

三、常见问题 多数公司没有对备份的数据进行恢复性测试。 四、实施难点 数据的恢复性测试需要建立测试的环境,投入较大;如果在原有系统上进行测试,应当不影响系统的正常运行,并确保原有系统能够快速的恢复。 五、测评方法 形式访谈,检查。对象系统运维负责人,系统管理员,数据库管理员,网络管理员,备份和恢复管理制度文档,备份和恢复策略文档,备份和恢复程序文档,备份过程记录文档,检查灾难恢复计划文档。 实施 a)应访谈系统管理员、数据库管理员和网络管理员,询问是否识别出需要定期备份的业务信息、系统数据及软件系统,主要有哪些;对其的备份工作是否以文档形式规了备份方式、频度、介质、保存期等容,数据备份和恢复策略是否文档化,备份和恢复过程是否文档化,对特殊备份数据(如数据)的操作是否要求人员数量,过程是否记录备案; b)应访谈系统管理员、数据库管理员和网络管理员,询问是否定期执行恢复程序,周期多长,系统是否按照恢复程序完成恢复,如有问题,是否针对问题进行恢复程序的改进或调整其他因素; c)应访谈系统运维负责人,询问是否根据信息系统的备份技术措施制定相应的灾难恢复计划,是否对灾难恢复计划进行测试并修改,是否对灾难恢复计划定期进行审查并更新,目前的灾难恢复计划文档为第几版; d)应检查备份和恢复管理制度文档,查看是否对备份方式、频度、介质、保存期等容进行规定; e)应检查数据备份和恢复策略文档,查看其容是否覆盖数据的存放场所、文

Microsoft 微软官方原版(正版)系统大全

Microsoft 微软官方原版(正版)系统大全 微软原版Windows 98 Second Edition 简体中文版 https://www.360docs.net/doc/6313414304.html,/viewthread.php?tid=16446&page=1&extra=#pid125031 微软原版Windows Me 简体中文版 https://www.360docs.net/doc/6313414304.html,/viewthread.php?tid=16448&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows 2000 Professional 简体中文版 https://www.360docs.net/doc/6313414304.html,/viewthread.php?tid=16447&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows XP Professional SP3 简体中文版 https://www.360docs.net/doc/6313414304.html,/viewthread.php?tid=16449&page=1&extra=#pid125073微软原版Windows XP Media Center Edition 2005 简体中文版 https://www.360docs.net/doc/6313414304.html,/viewthread.php?tid=16451&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows XP Tablet PC Edition 2005 简体中文版 https://www.360docs.net/doc/6313414304.html,/viewthread.php?tid=16450&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Server 2003 R2 Enterprise Edition SP2 简体中文版(32位) https://www.360docs.net/doc/6313414304.html,/viewthread.php?tid=16452&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Server 2003 R2 Enterprise Edition SP2 简体中文版(64位) https://www.360docs.net/doc/6313414304.html,/viewthread.php?tid=16453&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Vista 简体中文版(32位) https://www.360docs.net/doc/6313414304.html,/viewthread.php?tid=16454&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Vista 简体中文版(64位) https://www.360docs.net/doc/6313414304.html,/viewthread.php?tid=16455&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows7 SP1 各版本下载地址: https://www.360docs.net/doc/6313414304.html,/viewthread.php?tid=12387&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 Datacenter Enterprise and Standard 简体中文版(32位) https://www.360docs.net/doc/6313414304.html,/viewthread.php?tid=16457&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 Datacenter Enterprise and Standard 简体中文版(64位) https://www.360docs.net/doc/6313414304.html,/viewthread.php?tid=16458&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 R2 S E D and Web 简体中文版(64位) https://www.360docs.net/doc/6313414304.html,/viewthread.php?tid=16459&highlight=%CE%A2%C8%ED%D4%AD %B0%E6

windows正版系统+正版密钥

精心整理正版Windows系统下载+正版密钥 2010-05-3011:49 喜欢正版Windows系统 这是我收集N天后的成果,正版的Windows系统真的很好用,支持正版!大家可以用激活工 具激活!现将本收集的下载地址发布出来,希望大家多多支持! Windows98第二版(简体中文) 安装序列号:Q99JQ-HVJYX-PGYCY-68GM3-WXT68 安装序列号:Q4G74-6RX2W-MWJVB-HPXHX-HBBXJ 安装序列号:QY7TT-VJ7VG-7QPHY-QXHD3-B838Q WindowsMillenniumEdition(WindowME)(简体中文) 安装序列号:HJPFQ-KXW9C-D7BRJ-JCGB7-Q2DRJ 安装序列号:B6BYC-6T7C3-4PXRW-2XKWB-GYV33 安装序列号:K9KDJ-3XPXY-92WFW-9Q26K-MVRK8 Windows2000PROSP4(简体中文) SerialNumber:XPwithsp3VOL微软原版(简体中文) 文件名:zh-hans_windows_xp_professional_with_service_pack_3_x86_cd_vl_x14-74070.iso 大小:字节 MD5:D142469D0C3953D8E4A6A490A58052EF52837F0F CRC32:FFFFFFFF 邮寄日期(UTC):5/2/200812:05:18XPprowithsp3VOL微软原版(简体中文)正版密钥: MRX3F-47B9T-2487J-KWKMF-RPWBY(工行版)(强推此号!!!) QC986-27D34-6M3TY-JJXP9-TBGMD(台湾交大学生版) QHYXK-JCJRX-XXY8Y-2KX2X-CCXGD(广州政府版)

系统备份及恢复

系统备份及恢复 推荐的系统备份策略。系统需要备份的内容: ERDB ( 系统的控制组态内 容): c:\Program files\Honeywell\Experion PKS\Engineering Tools\System\Er Server 实时数据 库 (操作组态内容): C:\ Program files\Honeywell\ Experion PKS\Server\Data 操作流程图(包括子图): 用户自定 Station 设置文 件: C:\ Program files \Honeywell\ Experion PKS\Client\Station\*.stn \system\R**\*.stb QB 设置文件: 用户自定义目录 报表文件(自由格式报表或Excel报表) : 用户自定义目录 事件或历史数据文件及归档文件 (可选择备份或不 备): C: \Program files \honeywell\ Experion PKS\Server\Archive 用户自定义文件: 用户自定义目录 1系统备份介质建议: 移动硬盘 / 刻录光盘 / 磁带 / 远程网络计算机硬盘 1.1 ERDB备份(主Server:ServerB) Upload and Update Dbadmin – Backup Database 生成主*.bak 文件 Control Builder—File-Export生成project 备份文件. Snapshot/Checkpoint files — C:\Honeywell\Engineering Tools\System\ER\CPM***.snapshot 将以上生成的三类文件拷贝到备份目标盘er目录下 1.2 Server 数据库 (Server同步情况下, 只需备份一个 Server) C:\Program files\Honeywell\Experion PKS\Server\Data 目录到备份目标 盘。(不一定能直接copy, 与后台Service有关)。 bckbld –out filename –tag cda / backup function.(使用pntbld filename恢 复组态内容) 1.3 操作流程图(包括子图) 操作流程图(包括子图)备份到目标盘. 1.5 Station 设置文件(两台Server分别备份,并作标记) C:\Honeywell\Client\Station\*.stn 拷贝到备份目标盘station目录下 1.6QB 设置文件 (备份正式使用的那份文件) 用户自定义目录下*.qdb 文件拷贝到备份目标盘qckbld目录下 . 1.7 报表文件(自由格式报表或Excel报表) : C:\Honeywell\Server\Report 下自由格式报表或用户Excel 报表文件拷贝到备份目标盘Report目录下 1.8事件及历史数据文件和归档文件 (可选择备份或不备): C:\honeywell\Server\data ,Archive 和evtarchive目录拷贝到备份目标盘Archive目录下. 1.9 用户自定义文件备份到目标盘 2 使用备份恢复系统(适用于冗余Server) 2.1 ServerA 系统恢复(ServerB 工作正常情况下) ServerA 重新安装操作系统和PKS软 件 设置Servera与Serverb冗余 使ServerA 处于Backup 状态 在Station中(非ServerA station)作Server同步, 恢复Server实时数据库 在ServerB 中 Dbadmin--Recover Secondary Database ServerB中的流程图拷贝到ServerA响应目录下 备份盘中ServerA的Station目录下*.stn文件拷贝回ServerA 中: C:\Honeywell\Client\Station 目录覆盖同名文件. 备份盘中ServerA的qckbld目录中*.qdb文件恢复到ServerA相应目录中 报表文件文件恢复到ServerA相应目录中 历史数据文件从ServerB C:\honeywell\Server\Archive 目录拷贝到ServerA相应Archive目

windows系统官网原版下载

微软MSDN官方(简体)中文操作系统全下载 这不知是哪位大侠收集的,太全了,从DOS到Windows,从小型系统到大型系统,从桌面系统到专用服务器系统,从最初的Windows3.1到目前的Windows8,以及Windows2008,从16位到32位,再到64位系统,应有尽有。全部提供微软官方的校验文件,这些文件都可以在微软官方MSDN订阅中得到验证,完全正确! 下载链接电驴下载,可以使用用迅雷下载,建议还是使用电驴下载。你可以根据需要在下载链接那里找到你需要的文件进行下载!太强大了!!! 产品名称: Windows 3.1 (16-bit) 名称: Windows 3.1 (Simplified Chinese) 文件名: SC_Windows31.exe 文件大小: 8,472,384 SHA1: 65BC761CEFFD6280DA3F7677D6F3DDA2BAEC1E19 邮寄日期(UTC): 2001-03-06 19:19:00 ed2k://|file|SC_Windows31.exe|8472384|84037137FFF3932707F286EC852F2ABC|/ 产品名称: Windows 3.2 (16-bit) 名称: Windows 3.2.12 (Simplified Chinese) 文件名: SC_Windows32_12.exe 文件大小: 12,832,984 SHA1: 1D91AC9EB3CBC1F9C409CF891415BB71E8F594F7 邮寄日期(UTC): 2001-03-06 19:21:00 ed2k://|file|SC_Windows32_12.exe|12832984|A76EB68E35CD62F8B40ECD3E6F5E213F|/ 产品名称: Windows 3.2 (16-bit) 名称: Windows 3.2.144 (Simplified Chinese) 文件名: SC_Windows32_144.exe 文件大小: 12,835,440 SHA1: 363C2A9B8CAA2CC6798DAA80CC9217EF237FDD10 邮寄日期(UTC): 2001-03-06 19:21:00 ed2k://|file|SC_Windows32_144.exe|12835440|782F5AF8A1405D518C181F057FCC4287|/ 产品名称: Windows 98 名称: Windows 98 Second Edition (Simplified Chinese) 文件名: SC_WIN98SE.exe 文件大小: 278,540,368 SHA1: 9014AC7B67FC7697DEA597846F980DB9B3C43CD4 邮寄日期(UTC): 1999-11-04 00:45:00 ed2k://|file|SC_WIN98SE.exe|278540368|939909E688963174901F822123E55F7E|/ 产品名称: Windows Me 名称: Windows? Millennium Edition (Simplified Chinese) 文件名: SC_WINME.exe

FANUC系统数据备份与恢复教学内容

F A N U C系统数据备份 与恢复

一、FANUC系统数据备份与恢复 (一)概述 FANUC数控系统中加工程序、参数、螺距误差补偿、宏程序、PMC程序、PMC数据,在机床不使用是是依靠控制单元上的电池进行保存的。如果发生电池时效或其他以外,会导致这些数据的丢失。因此,有必要做好重要数据的备份工作,一旦发生数据丢失,可以通过恢复这些数据的办法,保证机床的正常运行。 FANUC数控系统数据备份的方法有两种常见的方法: 1、使用存储卡,在引导系统画面进行数据备份和恢复; 2、通过RS232口使用PC进行数据备份和恢复。 (二)使用存储卡进行数据备份和恢复 数控系统的启动和计算机的启动一样,会有一个引导过程。在通常情况下,使用者是不会看到这个引导系统。但是使用存储卡进行备份时,必须要在引导系统画面进行操作。在使用这个方法进行数据备份时,首先必须要准备一张符合FANUC系统要求的存储卡(工作电压为5V)。具体操作步骤如下: 1、数据备份: (1)、将存储卡插入存储卡接口上(NC单元上,或者是显示器旁边); (2)、进入引导系统画面;(按下显示器下端最右面两个键,给系统上电); (3)、调出系统引导画面;下面所示为系统引导画面: (4)、在系统引导画面选择所要的操作项第4项,进入系统数据备份画面;(用UP或DOWN键)

(5)、在系统数据备份画面有很多项,选择所要备份的数据项,按下YES键,数据就会备份到存储卡中; (6)、按下SELECT键,退出备份过程; 2、数据恢复: (1)、如果要进行数据的恢复,按照相同的步骤进入到系统引导画面; (2)、在系统引导画面选择第一项SYSTEM DATA LOADING; (3)、选择存储卡上所要恢复的文件; (4)、按下YES键,所选择的数据回到系统中; (5)、按下SELECT键退出恢复过程; (三)使用外接PC进行数据的备份与恢复 使用外接PC进行数据备份与恢复,是一种非常普遍的做法。这种方法比前面一种方法用的更多,在操作上也更为方便。操作步骤如下: 1、数据备份: (1)、准备外接PC和RS232传输电缆; (2)、连接PC与数控系统; (3)、在数控系统中,按下SYSTEM功能键,进入ALLIO菜单,设定传输参数(和外部PC匹配); (4)、在外部PC设置传输参数(和系统传输参数相匹配); (5)、在PC机上打开传输软件,选定存储路径和文件名,进入接收数据状态; (6)、在数控系统中,进入到ALLIO画面,选择所要备份的文件(有程序、参数、间距、伺服参数、主轴参数等等可供选择)。按下“操作”菜单,进入到操作画面,再按下“PUNCH”软键,数据传输到计算机中; 2、数据恢复: (1)、外数据恢复与数据备份的操作前面四个步骤是一样的操作;

信息安全系统备份与恢复管理办法

信息安全系统备份与恢复管理办法 1.总则 第一条为保障公司信息系统的安全,使得在计算机系统失效或数据丢失时,能依靠备份尽快地恢复系统和数据,保护关键应用和数据的安全,保证数据不丢失,特制定本办法。第二条对于信息系统涉及到的网络设备、网络线路、加密设备、计算机设备、应用系统、数据库、维护人员,采取备份措施,确保在需要时有备用资源可供调配和恢复。 第三条本管理办法中涉及到的设备主要指运行在信息技术部主机房中的网络设备、加密设备及计算机设备。 第四条信息系统备份手段根据不同信息的重要程度及恢复时间要求分为实时热备份和冷备份等。同一平台的系统应尽量使用同样的备份手段,便于管理和使用。信息技术部负责信息系统的备份与恢复管理,并制定数据备份计划,对数据备份的时间、内容、级别、人员、保管期限、异地存取和销毁手续等进行明确规定。 第五条信息技术部应根据各系统的重要程度、恢复要求及有关规定要求制定系统配置、操作系统、各应用系统及数据库和数据文件的备份周期和保存期限。 第六条对于重要系统和数据的备份周期及备份保存期限应遵循以下原则:

(一) 至少要保留一份全系统备份。 (二) 每日运行中发生变更的文件,都应进行备份。 (三) 生产系统程序库要定期做备份,每月至少做一次。 (四) 生产系统有变更时,须对变更前后的程序库进行备份。 (五) 批加工若有对主文件的更新操作,则应进行批加工前备份。 (六) 每天批加工结束后都要对数据文件进行批后备份,对核心数据须进行第二备份。 (七) 对批加工生成的报表也要有相应的备份手段,并按规定的保留期限进行保留。 (八) 用于制作给用户数据盘的文件应有备份。 (九) 各重要业务系统的月末、半年末、年末以及计息日等特殊日的数据备份须永久保留。 (十) 定期将生产系统的数据进行删减压缩,并将删减的数据备份上磁带,永久保留。 (十一) 以上未明确保存期限的各项备份的保存至少应保存一周。 2.设备备份 第七条信息系统电源设备应尽量保证有两套电源来源。 第八条对关键通讯线路和网点通讯线路必须采用双通讯线路;网络的运行线路和备份线路必须选用不同的网络服务供

Windows7官方个版本正版镜像下载地址

Windows7官方个版本正版镜像下载地址 简体中文旗舰版: 32位:下载地址:ed2k://|file|cn_windows_7_ultimate_x86_dvd_x15-65907.iso|2604238848|D6F139D7A45E81B 76199DDCCDDC4B509|/ SHA1:B589336602E3B7E134E222ED47FC94938B04354F 64位:下载地址:ed2k://|file|cn_windows_7_ultimate_x64_dvd_x15-66043.iso|3341268992|7DD7FA757CE6D2D B78B6901F81A6907A|/ SHA1:4A98A2F1ED794425674D04A37B70B9763522B0D4 简体中文专业版: 32位:下载地址:ed2k://|file|cn_windows_7_professional_x86_dvd_x15-65790.iso|2604238848|e812fbe758f 05b485c5a858c22060785|h=S5RNBL5JL5NRC3YMLDWIO75YY3UP4ET5|/ SHA1:EBD595C3099CCF57C6FF53810F73339835CFBB9D 64位:下载地址:ed2k://|file|cn_windows_7_professional_x64_dvd_x15-65791.iso|3341268992|3474800521d 169fbf3f5e527cd835156|h=TIYH37L3PBVMNCLT2EX5CSSEGXY6M47W|/ SHA1:5669A51195CD79D73CD18161D51E7E8D43DF53D1 简体中文家庭高级版: 32位:下载地址:ed2k://|file|cn_windows_7_home_premium_x86_dvd_x15-65717.iso|2604238848|98e1eb474f9 2343b06737f227665df1c|h=GZ7FZE7XURI5HNO2L7H45AGWNOLRLRUR|/ SHA1:CBA410DB30FA1561F874E1CC155E575F4A836B37 64位:下载地址:ed2k://|file|cn_windows_7_home_premium_x64_dvd_x15-65718.iso|3341268992|9f976045631 a6a2162abe32fc77c8acc|h=QQZ3UEERJOWWUEXOFTTLWD4JNL4YDLC6|/ SHA1:5566AB6F40B0689702F02DE15804BEB32832D6A6 简体中文企业版: 32位:下载地址:ed2k://|file|cn_windows_7_enterprise_x86_dvd_x15-70737.iso|2465783808|41ABFA74E5735 3B2F35BC33E56BD5202|/ SHA1:50F2900D293C8DF63A9D23125AFEEA7662FF9E54 64位:下载地址:ed2k://|file|cn_windows_7_enterprise_x64_dvd_x15-70741.iso|3203516416|876DCF115C2EE 28D74B178BE1A84AB3B|/ SHA1:EE20DAF2CDEDD71C374E241340DEB651728A69C4

论工控生产系统的数据备份及系统灾难恢复方法

论工控生产系统的数据备份及系统灾难恢复方法

目录 一、初识工控生产系统 (3) 1.应用架构与部署方式 (3) 2.硬件组成 (5) 3.操作系统 (8) 4.应用程序 (8) 二、工控机数据与系统保护分析 (9) 1.数据重要 VS 系统重要 (9) 2.硬件容易损坏 (9) 3.工控机应用程序复杂 (10) 4.昂贵的费用 (10) 三、对工控机的保护方案有哪些 (10) 1.冷备机 (10) 2.Ghost方案 (11) 3.磁盘克隆 (11) 四、理想的工控机保护方案 (12) 1.工控机需要备份什么 (12) 2.在线热备份 (12) 3.多种备份机制 (12) 4.灾难发生后的系统快速恢复 (13) 5.异机还原与系统迁移 (13) 五、Acronis到底能对工控干点啥 (13) 1.在线热备份,无停机时间 (17) 2.在线热备份,无停机时间生产快速恢复 (18) 3.更经济、更有效 (18)

一、初识工控生产系统 工控机(Industrial Personal Computer,IPC)即工业控制计算机,与传统的办公用计算机不同,工控机采用专用的硬件设备,使用特殊的制造工艺而成。在控制现场、路桥控制收费系统、医疗仪器、环境保护监测、通讯保障、智能交通管控系统、楼宇监控安防、语音呼叫中心、排队机、POS柜台收银机、数控机床、加油机、金融信息处理、石化数据采集处理、物探、野外便携作业、环保、军工、电力、铁路、高速公路、航天、地铁、智能楼宇、户外广告等诸多领域得到广泛的应用。我们将从多个方面来认识工控机,以下将进行基础知识的介绍。 1.应用架构与部署方式 工控机从应用架构与部署方式来分,可分为单节点工控设备、集中管控型工控系统、混合型工控系统。 单节点工控设备只负责对单个生产环节进行控制,不与其它生产设备产生必然的数据联系。例如,某机械生产机床设备配置一台工控机,并在前端配置LED按键式控制面板,生产工人通过前端LED面板的操作对生产设备进行参数的配置与调整,最后生产出预期的产品。如下图所示(本文中图片或来自网络,以达到读者对所讲述内容深入理解,仅供参考):

如何在windows下安装原版mac系统

windows下安装苹果教程。最详细,最全面,最值得看的教程! 最详细,最适合新手的教程:如何原版安装mac 从windows到mac os(安装黑苹果目前最详细教程) 最近网上有不少如何安装苹果系统的教程,个人感觉都不错,但是有些地方还是不够详细,所以我决定写一个比较详细的教程。鉴于网上有不少类似的教程,所以我的这个安装方法中有不少是借鉴和总结他们的,在此不一一提出,但是对这些作者表示感谢和崇高的敬意。本教程较长,不要因此以为苹果的安装比较复杂,其实我只是让每一步叙述的更加详细,提供更多的方法处理安装,还有就是加入了大量的图片。由于本教程过于详细,所以比较适合新手阅读。 安装之前要做好失败的心理准备,新手建议先备份重要数据到别的机器,预防数据丢失。要有足够的耐心和毅力,敢于不断尝试,不自己实践过永远不知道自己电脑是不是能够成功安装,安装成功后的成就感只有自己知道,另外完成安装过程也是学习电脑知识的过程,祝各位能安装顺利。 以下是详细过程: 安装之前的准备: ################################################### ##################### 硬盘安装原版mac(以10.6.3零售版为例) 以下工具或软件下载地址在4楼和5楼,4楼提供10.6.3零售版115网盘下载,5楼提供帖子中所涉及的大部分软件的115网盘下载,126楼提供本教程的pdf格式的下载

所要准备的软件等: ①原版苹果镜像,推荐Mac.OS.X.10.6.3.Retail.dmg ②推荐bootthink2.4.6版本,另外也可以用变色龙,个人喜欢用bootthink 引导,感觉方便。 ③winPE或者windows原版安装光盘(设置C盘为活动分区用),推荐winPE,winPE的详细制作过程及制作需要的软件(附下载地址)下面有,另外一般的Ghost安装盘上都会有winPE的。 ④硬盘安装助手 ⑤XP必备DiskGenius:硬盘分区工具 (windows7可不用该工具,系统自带磁盘管理) ⑥Mac.OS.X.10.6.3.Retail的替换文件: 替换文件是让苹果系统可以安装在MBR分区上,即windows的分区,有想拿出整块硬盘安装mac的可以不用替换,如何替换看以下的安装过程。不替换的缺点:需要另外找硬盘备份自己硬盘上的所有数据资料,因为硬盘由MBR 分区转变为GPT时会损失所有数据。 ⑦HFS Explorer和Java VM(Java JRE虚拟机),,先安装Java VM (Java JRE虚拟机),才能正常使用HFS Explorer。 ⑧Macdrive或是TransMac,安装了Macdrive可以不用TransMac。 ⑨AMD,intel Atom和Pentium单核的CPU需要准备替换对应的内核 主板不能开启AHCI的还需要补丁i系列的处理器(i3,i5,i7)还需要替换10.3.1以上内核,因为2010年4月

系统数据备份与恢复规程

密级:内部 系统数据备份与恢复规程 ***有限公司 202 年月

目录 第一章引言 (1) 1.1编写目的 (1) 1.2预期读者 (1) 1.3编写背景 (1) 1.3.1使用者 (1) 1.4文档结构 (2) 第二章数据备份功能要求详述 (3) 2.1备份环境 (3) 2.1.1备份环境 (3) 2.1.2存储网络环境 (4) 2.1.3备份方式及备份空间 (4) 2.2备份需求 (5) 2.2.1系统级备份 (5) 2.2.2应用级备份 (5) 2.2.3文件级备份 (5) 2.2.4数据库备份 (5) 2.3备份策略 (5) 2.3.1备份策略定义 (5) 2.3.2系统级备份策略 (6) 2.3.3应用级备份策略 (6) 2.3.4文件级备份策略 (6) 2.3.5数据库备份策略 (7) 第三章故障与恢复策略 (8) 3.1故障与恢复介绍 (8) 3.2设计原则 (9) 3.3故障与恢复策略 (9) 第四章备份与恢复步骤 (10) 4.1备份步骤 (10) 4.1.1系统级备份步骤 (10) 4.1.2应用软件备份步骤 (10) 4.1.3脱机应用文件备份步骤 (11) 4.1.4数据库备份步骤 (13) 4.2恢复步骤 (16) 4.2.1系统级故障恢复步骤 (16) 4.2.2应用软件故障恢复步骤 (16) 4.2.3脱机应用文件故障恢复步骤 (17) 4.2.4数据库故障恢复步骤 (18)

第一章引言 1.1 编写目的 本文档主要描述江西中磊支付平台的数据备份与恢复的需求、策略要求以及相应的步骤,为后期实施和维护管理过程中提供数据库备份与恢复的规范。 1.2 预期读者 江西中磊支付平台项目组项目经理、集成经理、开发经理、系统管理员。 1.3 编写背景 在江西中磊支付平台的软件实施过程中,数据的安全至关重要,一方面数据的丢失或者数据库系统无法正常运行影响江西中磊支付平台业务应用系统的正常运作,另一方面如果系统在崩溃后不能够按照预期的要求恢复到指定状态也将影响到江西中磊支付平台业务应用系统的正常运作,例如数据冲突或者状态不一致。特地编写此文档将对实施过程中的数据备份与恢复提供指导。 1.3.1使用者 本文档适用于参与江西中磊支付平台项目实施的工程师、江西中磊支付平台的系统管理员以及项目经理、开发经理、系统管理员。

系统数据备份与恢复管理制度

系统数据备份与恢复管理制度 一、目的 为规范数据备份管理工作,合理存储历史数据及保证数据的安全性,防止因硬件故障、意外断电、病毒等因素造成数据的丢失,保障中心技术资料的储备,特制订本管理制度。 二、适用范围 中心各部门、实验室。 三、备份介质 移动硬盘、光盘、邮盘等 四、制度内容 1、为了确保系统计算机系统的数据安全,使得在计算机系统失效或数据丢失时,能依靠备份尽快地恢复系统和数据,保护关键应用数据的安全,保证数据不丢失,特制定本制度。 2、拥有重要系统或重要数据的科室或部门应该及时对数据进行备份,防止系统数据的丢失;涉及数据备份和恢复的科室或部门要由专人负责数据备份工作,并认真填写数据备份记录表。 3、计算机信息数据备份的基本原则是“谁使用、谁备份”,即由计算机使用者按要求及时备份相关信息数据。 4、数据的备份分为定期备份和临时备份。定期备份是指按照规定的时间定期对数据进行备份;临时备份是指在特殊情况下(如电脑中毒、软件升级、更换设备等)进行的应急备份。各科室、部门可依据自身的工作特点选择不同的备份模式。 5、所有数据备份工作由各科室指定管理员进行详实记录,并建

立记录档案。备份的数据应该严格管理,妥善保存;备份数据资料保管地点应有防火、防热、防潮、防尘、防磁、防盗设施。 6、数据的备份、恢复、转出、转入的权限都应严格控制。严禁未经授权将数据备份出系统,转给无关的人员或单位;严禁未经授权进行数据恢复或转入操作。 7、一旦发生数据丢失或数据破坏等情况,要由系统管理员进行备份数据恢复,以免造成不必要的麻烦或更大的损失。 8、说明:其他相关规定按程序文件BZCDC/CX24-2011《计算机应用管理程序》执行。 五、附表 BZCDC/JL0050 《数据备份记录表》

相关文档
最新文档