多边形的有效边表填充算法-

多边形的有效边表填充算法-
多边形的有效边表填充算法-

实验三多边形的有效边表填充算法

一、实验目的与要求

1、理解多边形的扫描转换原理、方法;

2、掌握有效边表填充算法;

3、掌握链表的建立、添加结点、删除节点的基本方法;

3、掌握基于链表的排序操作。

二、实验内容

在实验二所实现工程的基础上,实现以下内容并把实现函数封装在类

CMyGL 中。

1、C++实现有效边表算法进行多边形扫描转换

2、利用1进行多边形扫描转换和区域填充的实现;

三、实验原理

请同学们根据教材及上课的PPT独立完成。

四、实验步骤(程序实现)。

1、建立并选择工程项目。打开VC6.0->菜单File 的New 项,在projects 属性页选择MFC AppWizard(exe)项,在Project name 中输入一个工程名,如“Sample”。单文档。

2、新建一个图形类。选择菜单Insert New class,Class type 选择“Generic Class”,Name 输入类名,如“CMyCG。

3、向新建的图形类中添加成员函数(实际就是加入实验要求实现的图形生成算法的实现代码)。在工作区中直接鼠标右键单击,选择“Add Member Function…”项,添加绘制圆的成员函数。

void PolygonFill(int number, CPoint *p, COLORREF color, CDC* pDC)

添加其他成员函数:

CreatBucket();

CreatET();

AddEdge();

EdgeOrder();

4、成员函数的实现。实现有效边表填充算法。这一部分需要同学们去实现。

参考实现:

多边形的有效边表填充算法的基本过程为:

1、定义多边形:

2、初始化桶

3、建立边表

4、多边形填充

1)对每一条扫描线,将该扫描线上的边结点插入到临时AET表中,HeadE.

2)对临时AET表排序,按照x递增的顺序存放。

3)根据AET表中边表结点的ymax抛弃扫描完的边结点,即ymax>=scanline

4)扫描AET表,填充扫描线和多边形相交的区间。

5)根据的边连贯性,更新AET表。0、构造桶结点的数据结构和有效边表的数据结构:

有效边表的数据结构:类AET

class AET

{

public:

AET();

virtual ~AET();

double x;

int yMax;

double k;//代替1/k

AET *next;

}

桶结点的数据结构:类Bucket

class Bucket

{

public:

Bucket();

virtual ~Bucket();

int ScanLine;

AET *p;//桶上的边表指针

Bucket *next;

}

1、定义多边形:

CPoint Point[7];//定义多边形

//设置多边形的7个顶点

Point[0]=CPoint(550,400);//P0

Point[1]=CPoint(350,600);//P1

Point[2]=CPoint(250,350);//P2

Point[3]=CPoint(350,50);//P3

Point[4]=CPoint(500,250);//P4

Point[5]=CPoint(600,50);//P5

Point[6]=CPoint(800,450);//P6

2、初始化桶

Bucket* CreatBucket(int number,CPoint *Point) {

int ScanMin,ScanMax;

Bucket *HeadB,*CurrentB;

ScanMin = ScanMax = Point[0].y;

for(int i = 1;i

{

//找最低和最高扫描线

}

for(i = ScanMin;i<=ScanMax;i++)

{

if(i == ScanMin)//桶头结点

{

HeadB = new Bucket(); //建立桶的头结点

CurrentB = HeadB;//CurrentB为Bucket当前结点指针

CurrentB->ScanLine = i;

CurrentB->p = NULL;//没有连接边链表

CurrentB->next = NULL;

}

Else//建立桶的其它结点

{

}

}

return HeadB;

}

3、建立边表

Bucket * CreatET(int number,CPoint *Point)

{

Bucket *HeadB;

Bucket *CurrentB;

AET *CurrentE,*Edge;

HeadB = CreateBucket(number,Point);

for (int i = 0;i

{

int j = i + 1;//边的第二个顶点,Point[i]和Point[j]构成边

if (j == number) //保证多边形的闭合

{

j = 0;

}

CurrentB = HeadB; //从桶链表的头结点开始搜索边(i,j)放入哪个桶

if(Point[i].y

{

while(Point[i].y>CurrentB.ScanLine) //在桶内寻找该边的yMin

{

CurrentB = CrrentB->next; //移到下一个桶结点

}

Edge = new AET(); //构造有效边表结点,计算AET表的值

Edge->x = Point[i].x;

Edge->ymax = Point[j].y;

Edge->k = double((Point[j].x-Point[i].x))/(Point[j].y-Point[i].y);//代表1/k

if(CurrentB->p == NULL) //当前桶结点上没有链接边结点

{

Current->p = Edge; //第一个边结点直接连接到对应的桶中

}

else //如果当前边已连有边结点

{

CurrentE = CurrentB->p;

//移动指针到当前边的最后一个边结点

//把当前边接上去

}

}

if(Point[j].y

{

//终点比起点高

}

}

CurrentE = NULL;

CurrentB = NULL;

AET = NULL;

return HeadB;

}

4、多边形填充

1)对每一条扫描线,将该扫描线上的边结点插入到临时AET表中,HeadE.

2)对临时AET表排序,按照x递增的顺序存放。

3)根据AET表中边表结点的ymax抛弃扫描完的边结点,即ymax>=scanline

4)扫描AET表,填充扫描线和多边形相交的区间。

5)根据的边连贯性,更新AET表。

void PolygonFill(int number,CPoint *p,COLORREF fillcolor,CDC *pDC)//多边形填充{

HeadE=NULL;

for(CurrentB=HeadB;CurrentB!=NULL;CurrentB=CurrentB->next)//访问所有桶结点{

1)对每一条扫描线,将该扫描线上的边结点插入到临时AET表中,HeadE

for(CurrentE=CurrentB->p;CurrentE!=NULL;CurrentE=CurrentE->next)

//访问桶中排序前的边结点

{

AET *TempEdge=new AET;

TempEdge->x=CurrentE->x;

TempEdge->yMax=CurrentE->yMax;

TempEdge->k=CurrentE->k;

TempEdge->next=NULL;

AddEdge(TempEdge);//将该边插入临时Aet表

}

2)对临时AET表排序,按照x递增的顺序存放。

EdgeOrder();//使得边表按照x递增的顺序存放

3)根据AET表中边表结点的ymax抛弃扫描完的边结点,即ymax>=scanline

T1=HeadE;//根据ymax抛弃扫描完的边结点

if(T1==NULL)

{

return;

}

while(CurrentB->ScanLine>=T1->yMax)//放弃该结点,Aet表指针后移(下闭上开){

T1=T1->next;

HeadE=T1;

if(HeadE==NULL)

{

return;

}

}

if(T1->next!=NULL)

{

T2=T1;

T1=T2->next;

}

while(T1!=NULL)//

{

//根据AET表中边表结点的ymax抛弃扫描完的边结点,即ymax>=ScanLine

}

4)扫描AET表,填充扫描线和多边形相交的区间。

bool In=false;//设置一个BOOL变量In,初始值为假

double xb,xe;//扫描线的起点和终点

for(T1=HeadE;T1!=NULL;T1=T1->next)//填充扫描线和多边形相交的区间

{

if(In==false)

{

xb=T1->x;

In=true;//每访问一个结点,把In值取反一次

}

else

//如果In值为真,则填充从当前结点的x值开始到下一结点的x值结束的区间{

xe=T1->x-1;//左闭右开

//填充

Sleep(1);//延时1ms,提高填充过程的可视性

In=FALSE;

}

5)根据的边连贯性,更新AET表。

//利用边的连贯性,更新交点信息

}

delete HeadB;

delete CurrentB;

delete CurrentE;

delete HeadE;

}

5、图形类的使用

(1)、图形类对象的定义。首先在“C*View”(本例中是CSampleView)类的头文件中加入图形类的头文件,使图形类能在C*View 中被辨识和使用;然后,在C*View 类头文件中实例化图形类,即定义一个图形类的对象。

在public属性区加入:

CmyCG m_cg;

(2)、图形类对象的使用。在“C*View”类中有一个成员函数void OnDraw(CDC* pDC),找到该函数的实现。在其中加入对图形类对象的使用代码:

m_cg-> PolygonFill(_____,_____,_____,_____);

//测试:填充的多边形的七个顶点为:

Point[0]=CPoint(550,400);//P0

Point[1]=CPoint(350,600);//P1

Point[2]=CPoint(250,350);//P2

Point[3]=CPoint(350,50);//P3

Point[4]=CPoint(500,250);//P4

Point[5]=CPoint(600,50);//P5

Point[6]=CPoint(800,450);//P6

在进行填充之前先绘制多边形的轮廓。

6、程序的调试、运行。

五、实验结果抓图与结果分析

1、请给出顶点数7个,

Point[0]=CPoint(550,400);//P0

Point[1]=CPoint(350,600);//P1

Point[2]=CPoint(250,350);//P2

Point[3]=CPoint(350,50);//P3

Point[4]=CPoint(500,250);//P4

Point[5]=CPoint(600,50);//P5

Point[6]=CPoint(800,450);//P6

的多边形,填充颜色为红色的填充效果。

2、请给出顶点数6个,

Point[0]=CPoint(550,400);//P0

Point[1]=CPoint(350,600);//P1

Point[2]=CPoint(250,350);//P2

Point[3]=CPoint(350,50);//P3

Point[4]=CPoint(600,50);//P4

Point[5]=CPoint(800,450);//P5

的多边形,填充颜色为兰色的填充效果。

注意:在这个多边形中有一条边为水平边,上述的多边形有效边表填充算法是否仍然有效?

六、参考文献

多边形区域填充算法

13. 设五边形的五个顶点坐标为(10, 10),(15, 5),(12, 5),(8, 2)和(4, 5),利用多边形区域填充算法,编一程序生成一个实心图。 解:假设以上五个顶点依次对应编号A-B-C-D-E,首先计算得到ET表: 6-10 5 4 3 2 1 该多边形的AET指针的内容为: 1 AET为空 2 3 4 1 2 3 4 5 6 7 8 9 10 01234567891011121314 1516

5 6 7 8 9 10 具体编程实现如下: 第1步:(1) 根据输入的五个顶点坐标找到y 值最小的点(例如点D ,此时y=2),并找到与D 有边关系的两个顶点(此时为E 和C),在y=2处建立ET 边表记录(ymax 、xi 和m 值均可通过顶点坐标间的计算得到,例如DE 边的建立,特别注意:当D 点和E 点y 坐标值相同时,也即是DE 与x 轴平行,该边不能计入ET 边表),之后标记D 点被访问过;(2) 排除访问过的点以及和该点相关联的边,重复(1)直至将ET 表建立完善。 [注]边关系的建立可通过邻接矩阵的数据结构实现,权值可以为该矩阵行编号对应点的y 坐标值,ET 边表采用邻接表的数据结构 第2步:根据ET 表构建AET 表,并逐行完成多边形填充,具体的C++代码如下: (1) 建立头文件base_class.h ,主要是边表结点结构体和ET 边表类的实现 enum ResultCode{Success, Failure}; template struct Enode { Enode() {next=NULL;} Enode(T pymax, float pxi, float pm, Enode *pnext) { ymax=pymax; xi=pxi; m=pm; next=pnext; } T ymax, xi; //ymax 表示最大的y 值,xi 表示最底端点的x 坐标值 float m; //m 表示斜率的倒数 Enode *next; }; //定义了ET 表和AET 表中结点的结构体

区域填充算法运行代码

///

///扫描线填充算法填充触发事件 /// /// /// private void scanLineFillingToolStripMenuItem_Click(object sender, EventArgs e) { slf.ScanLinePolygonFill(P,g,XiangSu); } private void label2_Click(object sender, EventArgs e) { } private void四联通填充ToolStripMenuItem_Click(object sender, EventArgs e) { tempp.X = tempP[3].X + XiangSu;//选取第4个点内侧(随机猜测) tempp.Y = tempP[3].Y + XiangSu; checkBox.Enabled = false;//让绘制过程中不能改变选择 do_check();//也要检查一遍,不然会出现错误 FloodSeedFill(tempp); checkBox.Enabled = true;//恢复 } /// ///初始化新边表 ///算法通过遍历所有的顶点获得边的信息,然后根据与此边有关的前后两个顶点的情况 ///确定此边的ymax是否需要-1修正。ps和pe分别是当前处理边的起点和终点,pss是起 ///点的前一个相邻点,pee是终点的后一个相邻点,pss和pee用于辅助判断ps和pe两个 ///点是否是左顶点或右顶点,然后根据判断结果对此边的ymax进行-1修正,算法实现非 ///常简单,注意与扫描线平行的边是不处理的,因为水平边直接在HorizonEdgeFill() ///函数中填充了。 /// private void InitScanLineNewEdgeTable(List[] NET, List Q, int ymin, int ymax) { List temp = new List(); EDGE e; for (int i = 0; i < Q.Count; i++) { Point ps = Q[i];

区域填充算法的实现

实验四区域填充算法的实现 一、实验目的和要求: 1、掌握区域填充算法基本知识 2、理解区域的表示和类型,能正确区分四连通和八连通的区域 3、了解区域填充的实现原理,利用Microsoft Visual C++ 6.0(及EasyX_2011版) 实现区域种子填充的递归算法。 二、实验内容: 1、编程完成区域填色 2、利用画线函数,在屏幕上定义一个封闭区域。 3、利用以下两种种子填充算法,填充上述步骤中定义的区域 (1)边界表示的四连通区域种子填充的实现 (2)内点表示的四连通区域种子填充的实现 4、将上述算法作部分改动应用于八连通区域,构成八连通区域种子填充算法, 并编程实现。 三、实验结果分析 1、以上各种算法相应代码及运行结果如下: 程序代码: #include #include #include void FloodFill4(int x,int y,int oldcolor,int newcolor) { if(getpixel(x,y)==oldcolor) { putpixel(x,y,newcolor); Sleep(1); FloodFill4(x-1,y,oldcolor,newcolor); FloodFill4(x,y+1,oldcolor,newcolor); FloodFill4(x+1,y,oldcolor,newcolor); FloodFill4(x,y-1,oldcolor,newcolor); } } void main() { int a,b,c,d,i,j; int graphdriver=DETECT; int graphmode=0; initgraph(&graphdriver,&graphmode," "); cleardevice();

实验三 区域填充算法的实现

实验三区域填充算法的实现 一、实验目的和要求: 1、掌握区域填充算法基本知识 2、理解区域的表示和类型,能正确区分四连通和八连通的区域 3、了解区域填充的实现原理,利用Microsoft Visual C++ 6.0或win-TC实现区 域种子填充的递归算法。 二、实验内容: 1、编程完成区域填色 2、利用画线函数,在屏幕上定义一个封闭区域。 3、利用以下两种种子填充算法,填充上述步骤中定义的区域 (1)边界表示的四连通区域种子填充的实现 (2)内点表示的四连通区域种子填充的实现 4、将上述算法作部分改动应用于八连通区域,构成八连通区域种子填充算法, 并编程实现。 三、实验结果分析 四连通图的实现: 程序代码: #include #include #include #include void BoundaryFill4(int x,int y,int Boundarycolor,int newcolor) { if(getpixel(x,y) != newcolor && getpixel(x,y) !=Boundarycolor) { putpixel(x,y,newcolor); Sleep(1); BoundaryFill4(x-1,y,Boundarycolor,newcolor); BoundaryFill4(x,y+1,Boundarycolor,newcolor); BoundaryFill4(x+1,y,Boundarycolor,newcolor); BoundaryFill4(x,y-1,Boundarycolor,newcolor); } } void polygon(int x0,int y0,int a,int n,float af) { int x,y,i; double dtheta,theta;

计算机图形学课程设计-有效边表填充算法的实现

计算机图形学课程设计设计题目改进的有效边表算法对多边形的填充学院名称信息科学与技术学院 专业名称计算机科学与技术 学生姓名刘柯 学生学号201213030112 任课教师梅占勇 设计(论文)成绩 教务处制 2015年9 月28 日

目录 一、设计内容与要求 (3) 1.1设计题目 (3) 1.2 设计内容 (3) 1.3 设计目标 (3) 二、总体设计 (3) 2.1 多边形的表示 (3) 2.2 x-扫描线算法 (4) 2.3 改进的有效边表算法 (4) 2.3.1 改进的有效边表算法 (4) 2.3.2 有效边表 (5) 2.3.3 边表 (6) 三、详细设计 (8) 3.1 改进的有效边表算法的实现 (8) 3.2 有效边表算法程序流程图 (9) 四、测试结果 (9) 五、总结 (15) 六、源代码 (15) 参考文献 (26)

一、设计内容与要求 1.1设计题目 用改进的有效边表算法实现多边形的填充 1.2 设计内容 使用OpenGL实现用改进的有效边表算法填充多边形 1.3 设计目标 参照课本上改进的有效边表算法的思想,实现该算法的C语言代码,并用该算法搭配OpenGL以像素点的方式绘制出给定顶点坐标的多边形。 二、总体设计 2.1 多边形的表示 在计算机图形学中,多边形有2种重要的表示方法:顶点表示和点阵表示。 顶点表示用多边形的顶点序列来刻画多边形,这种方法直观、几何意义强,占用内存少,应用普遍,但它没有明确指出哪些像素在多边形内,故不能直接用于面着色。 点阵表示用位于多边形内的像素的集合来刻画多边形。这种表示法虽然失去了许多重要的几何信息,但便于运用帧缓存表示图形,是面着色所需要的图形表示形式。 大多数图形应用系统采用顶点序列表示多边形,而顶点表示又不能直接用于显示,那么就必须有从多边形的顶点表示到点阵表示的转换,这种转换称为多边形的扫描转

画圆与凸多边形填充算法

华北水利水电大学 计算机图形学 实验报告 2017--2018学年 第一学期 2014级 计算机科学与技术 专业 指导老师 曹源昊 班级 2014157 学号 201415717 姓名 李卫朋 实验四、画圆与凸多边形填充算法 1. 实验目的 练习对Bezier 曲线的绘制和Bezier 曲线的de Casteljau 算法。 2. 实验内容和要求 按要求完成以下一个作业。提交纸质实验报告,同时提交实验报告和源代码的电子版。 实现Bezier 曲线的de Casteljau 递推算法,能够对任意介于0和1之间的参数t 计算Bezier 曲线上的点,然后把Bezier 曲线绘制成首尾相连的直线段。 要求: (1). 对[0,1]参数区间进行100等分。 (2). 控制点的数目至少为5个,即Bezier 曲线的次数不低于4次。 (3). 同时绘制控制多边形。 (4). 至少绘制两条Bezier 曲线,具有不同的次数,颜色和曲线宽度。 形如: 3. 算法描述 使用vs2012编译环境,使用OpenGL 进行绘图操作。 4. 源程序代码 // 实验4.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include #include #include GLfloat ctrlPoints[5][2] = { { -0.8f, 0.1f }, {-0.4f, 0.6f }, { 0.0f, 0.8f }, { 0.5f, 0.2f },{0.9f,0.7f} }; 1P 2P 3P 4 P 5P

计算机图形学 多边形裁剪与填充 计算机图形学课程设计

课程设计报告 课程名称计算机图形学 课题名称多边形裁剪与填充 专业计算机科学与技术 班级计算机0902 学号 姓名 指导教师刘长松曹燚 2012年10 月9 日

湖南工程学院 课程设计任务书 课程名称计算机图形学课题多边形裁剪与填充 专业班级计算机0902 学生姓名 学号 指导老师刘长松曹燚 审批 任务书下达日期2012年9月15 日 任务完成日期2012 年10月9 日

一、设计内容与设计要求 1.设计内容: 交互式地实现多边形的裁剪和填充。。 2.设计要求: 1)窗口功能设计。 2)实现鼠标画多边形与数据存储功能。 3)实现鼠标剪裁窗口选择功能。 4)实现多边形裁剪和填充功能。 3.算法提示: 多边形裁剪算法分析: 基本思想是一次用窗口的一条边裁剪多边形,窗口的一条边以及延长线构成裁剪线,该线把平面分成两个部分:可见一侧,不可见一侧。用一条裁剪边对多边形进行裁剪,得到一个顶点序列,作为下一条裁剪边处理过程的输入点。 对于每一条裁剪边,只是判断点在窗口的哪一测以及求线段与裁剪边的交点算法应随之改变。 多边形填充算法分析: 确定多边形所占有的最大扫描线数,得到多边形顶点的最小和最大y值(ymin 和ymax),从y=ymin 到 y=ymax, 每次用一条扫描进行填充。对一条扫描线填充的过程可分为四个步骤: a.求交b.排序c.交点配对d.区间填色。 二、进度安排 第 3 周星期一8:00——12:00 星期二8:00——12:00 星期三8:00——12:00 星期四8:00——12:00 星期五8:00——12:00 第 4 周星期一8:00——12:00 附: 课程设计报告装订顺序:封面、任务书、目录、正文、附件(A4大小的图纸及程序清单)、评分。正文的格式:一级标题用3号黑体,二级标题用四号宋体加粗,正文用小四号宋体;行距为22。 正文的内容:一、课题的主要功能;二、课题的功能模块的划分(要求画出模块图);三、主要功能的实现(至少要有一个主要模块的流程图);四、程序调试;五、总结;六、附件(所有程序的原代码,要求对程序写出必要的注释)。 正文总字数要求在5000字以上(不含程序原代码)。

计算机图形学 区域填充算法的实现

实验四区域填充算法的实现 班级 08信计2班学号 20080502088 姓名许延恒分数 一、实验目的和要求: 1、理解区域的表示和类型。 2、能正确区分四连通和八连通的区域 3、了解区域填充的实验原理。 4、利用C++实现区域填充的递归算法。 二、实验内容: 1假设在多边形内有一像素已知,由此出发利用连通性找到区域内所有像素。 2 取(x,y)为种子点将整个区域填充为新的颜色。 3 进行递归填充。 三、实验结果分析 区域填充属性包括填充样式,填充颜色和填充图案的类型。C语言中定义了某种图形后,即可调用-floodfill函数,对指定区域进行填充 . 程序代码 #include #include #include void floodfill4(int x,int y,int oldcolor,int newcolor) { if(getpixel(x,y)==oldcolor) { putpixel(x,y,newcolor); Sleep(1); floodfill4(x,y+1,oldcolor,newcolor); floodfill4(x,y-1,oldcolor,newcolor); floodfill4(x-1,y,oldcolor,newcolor); floodfill4(x+1,y,oldcolor,newcolor); } } main() { int a,b,c,d,i,j; int graphdriver=DETECT; int graphmode=0; initgraph(&graphdriver,&graphmode,"");

《计算机图形学》有序边表填充算法

实验报告 一、实验目的 1、掌握有序边表算法填充多边形区域; 2、理解多边形填充算法的意义; 3、增强C语言编程能力。 二、算法原理介绍 根据多边形内部点的连续性知:一条扫描线与多边形的交点中,入点和出点之间所有点都是多边形的内部点。所以,对所有的扫描线填充入点到出点之间所有的点就可填充多边形。 判断扫描线上的点是否在多边形之内,对于一条扫描线,多边形的扫描转换过程可以分为四个步骤: (1)求交:计算扫描线与多边形各边的交点; (2)排序:把所有交点按x值递增顺序排序; (3)配对:第一个与第二个,第三个与第四个等等;每对交点代表扫描线与多边形的一个相交区间; (4)着色:把相交区间内的象素置成多边形颜色,把相交区间外的象素置成背景色。 p1,p3,p4,p5属于局部极值点,要把他们两次存入交点表中。如扫描线y=7上的交点中,有交点(2,7,13),按常规方法填充不正确,而要把顶点(7,7)两次存入交点表中(2,7,7,13)。p2,p6为非极值点,则不用如上处理。

为了提高效率,在处理一条扫描线时,仅对与它相交的多边形的边进行求交运算。把与当前扫描线相交的边称为活性边,并把它们按与扫描线交点x坐标递增的顺序存放在一个链表中,称此链表为活性边表(AET)。 对每一条扫描线都建立一个与它相交的多边形的活性边表(AET)。每个AET的一个节点代表一条活性边,它包含三项内容 1.x -当前扫描线与这条边交点的x坐标; 2.Δx -该边与当前扫描线交点到下一条扫描线交点的x增量; 3.ymax -该边最高顶点相交的扫描线号。 每条扫描线的活性边表中的活性边节点按照各活性边与扫描线交点的x值递增排序连接在一起。 当扫描线y移动到下一条扫描线y = y+1时,活性边表需要更新,即删去不与新扫描线相交的多边形边,同时增加与新扫描线相交的多边形边,并根据增量法重新计算扫描线与各边的交点x。 当多边形新边表ET构成后,按下列步骤进行: ①对每一条扫描线i,初始化ET表的表头指针ET[i]; ②将ymax = i的边放入ET[i]中; ③使y =多边形最低的扫描线号; ④初始化活性边表AET为空; ⑤循环,直到AET和ET为空。 ●将新边表ET中对应y值的新边节点插入到AET表。 ●遍历AET表,将两两配对的交点之间填充给定颜色值。 ●遍历AET表,将 ymax= y的边节点从AET表中删除,并将ymax> y的各边节点 的x值递增Δx;并重新排序。 ●y增加1。 三、程序源代码 #include "graphics.h" #define WINDOW_HEIGHT 480 #define NULL 0 #include "alloc.h" #include "stdio.h" #include "dos.h" #include "conio.h" typedef struct tEdge /*typedef是将结构定义成数据类型*/ { int ymax; /* 边所交的最高扫描线号 */

扫描线填充算法讲解

扫描线算法(Scan-Line F illing) 扫描线算法适合对矢量图形进行区域填充,只需要直到多边形区域的几何位置,不需要指定种子点,适合计算机自动进行图形处理的场合使用,比如电脑游戏 和三维CAD软件的渲染等等。 对矢量多边形区域填充,算法核心还是求交。《计算几何与图形学有关的几种 常用算法》一文给出了判断点与多边形关系的算法――扫描交点的奇偶数判断 算法,利用此算法可以判断一个点是否在多边形内,也就是是否需要填充,但 是实际工程中使用的填充算法都是只使用求交的思想,并不直接使用这种求交 算法。究其原因,除了算法效率问题之外,还存在一个光栅图形设备和矢量之 间的转换问题。比如某个点位于非常靠近边界的临界位置,用矢量算法判断这 个点应该是在多边形内,但是光栅化后,这个点在光栅图形设备上看就有可能 是在多边形外边(矢量点没有大小概念,光栅图形设备的点有大小概念),因此,适用于矢量图形的填充算法必须适应光栅图形设备。 2.1扫描线算法的基本思想 扫描线填充算法的基本思想是:用水平扫描线从上到下(或从下到上)扫描由 多条首尾相连的线段构成的多边形,每根扫描线与多边形的某些边产生一系列 交点。将这些交点按照x坐标排序,将排序后的点两两成对,作为线段的两个 端点,以所填的颜色画水平直线。多边形被扫描完毕后,颜色填充也就完成了。扫描线填充算法也可以归纳为以下4个步骤: (1)求交,计算扫描线与多边形的交点 (2)交点排序,对第2步得到的交点按照x值从小到大进行排序; (3)颜色填充,对排序后的交点两两组成一个水平线段,以画线段的方式进 行颜色填充; (4)是否完成多边形扫描?如果是就结束算法,如果不是就改变扫描线,然 后转第1步继续处理; 整个算法的关键是第1步,需要用尽量少的计算量求出交点,还要考虑交点是 线段端点的特殊情况,最后,交点的步进计算最好是整数,便于光栅设备输出 显示。

多边形的有效边表填充算法-

实验三多边形的有效边表填充算法 一、实验目的与要求 1、理解多边形的扫描转换原理、方法; 2、掌握有效边表填充算法; 3、掌握链表的建立、添加结点、删除节点的基本方法; 3、掌握基于链表的排序操作。 二、实验内容 在实验二所实现工程的基础上,实现以下内容并把实现函数封装在类 CMyGL 中。 1、C++实现有效边表算法进行多边形扫描转换 2、利用1进行多边形扫描转换和区域填充的实现; 三、实验原理 请同学们根据教材及上课的PPT独立完成。 四、实验步骤(程序实现)。 1、建立并选择工程项目。打开VC6.0->菜单File 的New 项,在projects 属性页选择MFC AppWizard(exe)项,在Project name 中输入一个工程名,如“Sample”。单文档。 2、新建一个图形类。选择菜单Insert New class,Class type 选择“Generic Class”,Name 输入类名,如“CMyCG。 3、向新建的图形类中添加成员函数(实际就是加入实验要求实现的图形生成算法的实现代码)。在工作区中直接鼠标右键单击,选择“Add Member Function…”项,添加绘制圆的成员函数。 void PolygonFill(int number, CPoint *p, COLORREF color, CDC* pDC) 添加其他成员函数: CreatBucket(); CreatET(); AddEdge(); EdgeOrder(); 4、成员函数的实现。实现有效边表填充算法。这一部分需要同学们去实现。 参考实现: 多边形的有效边表填充算法的基本过程为: 1、定义多边形: 2、初始化桶 3、建立边表 4、多边形填充 1)对每一条扫描线,将该扫描线上的边结点插入到临时AET表中,HeadE. 2)对临时AET表排序,按照x递增的顺序存放。 3)根据AET表中边表结点的ymax抛弃扫描完的边结点,即ymax>=scanline 4)扫描AET表,填充扫描线和多边形相交的区间。

多边形填充算法运行代码

private void scanLineFillingToolStripMenuItem_Click(object sender, EventArgs e) { slf.ScanLinePolygonFill(P,g,XiangSu); } private void label2_Click(object sender, EventArgs e) { } private void四联通填充ToolStripMenuItem_Click(object sender, EventArgs e) { tempp.X = tempP[3].X + XiangSu;//选取第4个点内侧(随机猜测) tempp.Y = tempP[3].Y + XiangSu; checkBox.Enabled = false;//让绘制过程中不能改变选择 do_check();//也要检查一遍,不然会出现错误 FloodSeedFill(tempp); checkBox.Enabled = true;//恢复 } ///

///下拉框选择像素回调函数 /// /// /// private void PortList_SelectedIndexChanged(object sender, EventArgs e) { XiangSu = 2 * PortList.SelectedIndex + 2;//根据下拉框选择绘制像素 } /// ///洪泛填充[注入填充] ///将所有联通区域内某种指定颜色的点都替换成另一种颜色 ///边界填充:只要是边界内的点无论是什么颜色,都替换成指定的颜色 /// /// /// private void floodFillAlgorithmToolStripMenuItem_Click(object sender, EventArgs e) {

区域填充种子算法实现

实验三区域填充种子算法实现 实验目的: 1、熟练在Visual C++中程序实现及调试的能力。 2、通过程序的设计熟练区域填充种子算法过程; 3、掌握堆栈在数据结构中的应用 实验内容: 1、visual c++中菜单的修改,点的输入及鼠标函数的控制; 2、复习数据结构中堆栈的建立,入栈,出栈等函数; 3、实现整个多边形的区域填充种子算法,与扫描转换算法进行区分; 实验步骤: 预处理:多边形点列的输入,存储于数组中P[100],种子点的输入,确定为point(x,y) 确定多边形的边界色(旧画笔色),初始色(背景色),填充色(新画笔色); 数据结构的建立:建立堆栈,包括数组stack[100],及一个指标top,用来指向当前堆栈的最外面的栈口的元素。 步骤:1、堆栈置为空,top=0; 2、将初始的种子点point进栈,push(x,y); 3、填色堆栈非空即top>0时,一直循环下列步骤 取栈顶的元素,出栈pop(x,y),savex=x;

从当前点开始沿当前扫描线往右检验,若有未填新色的,则填色。 然后同样往左检验。 当前扫描线俩个方向都检查完后,检验上一条扫描线y=y+1; 若有未填新色的,则把所有未填新色区间的右端点压入堆栈。 同理检验下一条扫描线y=y-2; 实验指导: 一、 在实验二的基础上进行编程 ; (1) 引入实验二代码 scanline.dsw 二、 编辑菜单资源

选中窗口左边栏的“ResourceView ”,其中的“Menu ”,双击“IDR_MAINFRAME ”,右边即为菜单,在菜单上空处双击,出项如图所示窗口,其中弹出不选中; 如上,同样创建其余菜单项。(如下表); 三、 添加消息处理函数 由菜单的“查看”,“建立类向导”,打开ClassWizard (也可CTRL+W )为应用程序添加与菜单项相关的消息处理函数,ClassName 栏选中CScanLineView 类,根据表建立。 输入菜单项名称,(如显示多边形) 双击,出现如下窗口

多边形的偏移填充算法

多边形的偏移填充算法 多边形偏移(polygon offset)算法可能我们印象不深,不过用过autoCAD的同学也印象autoCAD 上面也还是有这个功能的。我们可以用autoCAD上的“正多边形”功能画一个多边形,然后用修改工具中“偏移”按钮,对多边形进行偏移,见图1,从外面的一个大的5边形按照边偏移至里面小的5边形,其中相应边偏移的距离定义为offset值。 图1 AutoCAD中的多边形偏移效果图 当然,这只是简单的情况,复杂的情况可能是有多个多边形,其中1个outer多边形,多个inner 多边形,然后offset的时候应该是outer多边形向内offset,inner多边形向外offset。当一个多边形(特别是凹多边形)初步offset时,可能会发生自交;然后多边形之间也可能会发生相交。大概思路:这里就需要首先将自交的多边形分裂出来,并选择正确的多边形;然后将选择出来的多边形进行求交计算,再一次将有相交的多边形合并分裂出来,并且选择正确的多边形,这个时候得到的全部多边形就是一次offset出来的结果。 1、为了保证outer多边形能向内offset,inner多边形能向外offset,这里需要保证outer多边形是逆时针方向旋转的,inner多边形是顺时针方向旋转的。 1.1 这里就稍稍讲下多边形的顺逆判断。

在多边形是简单多边形的前提下,其实还是挺简单的,只要找出多边形左下角的一个顶点,然后判断与这个顶点相连的两条边的叉积是否大于0就行了;如果多边形不是简单多边形,比如有自相交,有顶点夹角为0的情况等等,这个时候多边形就不应该有顺逆这种属性吧 2、对单个多边形,根据角平分线初步偏移得到角点 对于一个角点,可以设这个顶点为curPoint,相连的前一个点为prePoint,下一个点为nexPoint,于是可以得到两个向量a = prePoint – curPoint,b=nexPoint – curPoint。将向量a和b设置为单位向量之后,相加就能得到角平分线的方向向量c。然后对单位向量a和b做点乘和叉乘,就能得到这个角度的cos和sin值了,我们假设这个角度的一般为Θ,则cos=cos2Θ,sin=sin2Θ。根据三角函数,就能得到sinΘ值,之后将就能得到该顶点的角平分线方向的偏移向量d=c/|c|×offset÷sinΘ。 3、考虑到有些边在偏移的过程中会消失,即一些边有退化的offset值,见图3。如果初步偏移的值大于它的退化offset值,则该边就会反向出现,见图3中的边【4,5】,会给后面的程序带来很大的麻烦。 图2

计算机图形学-区域填充的扫描线算法

计算机图形学——区域填充的扫描线算法 一.实验名称: 区域填充的扫描线算法 二.实验目的: 1、理解区域填充扫描线算法的原理; 2、实现区域填充的扫描线算法并测试; 三.算法原理: 算法基本思想: 首先填充种子点所在扫描线上位于区域内的区段,然后确定与该区段相邻的上下两条扫描线上位于区域内的区段,并依次将各区段的起始位置保存, 这些区段分别被用区域边界色显示的像素点所包围。随后,逐步取出一开始点并重复上述过程,直到所保存各区段都填充完毕为止。 借助于栈结构,区域填充的扫描线算法之步骤如下: Step 1. 初始化种子点栈:置种子点栈为空栈,并将给定的种子点入栈; Step 2. 出栈:若种子点栈为空,算法结束;否则,取栈顶元素(x,y)为种子点; Step 3. 区段填充:从种子点(x, y) 开始沿纵坐标为y 的当前扫描线向左右两个方向逐像素点进行填色,其颜色值置为newcolor 直至到达区域边界。分别以xl 和xr 表示该填充区段两端点的横坐标; Step 4. 新种子点入栈: 分别确定当前扫描线上、下相邻的两条

扫描线上位于区段[xl, xr] 内的区域内的区段。若这些区段内的像素点颜色值为newolor ,则转至Step 2;否则以区段的右端点为种子点入种子点栈,再转至Step 2。 四.原程序代码: /*****************************************/ /*4-ScanLineFill 区域填充的扫描线算法实现*/ /*****************************************/ #include #include #include #include #define Stack_Size 100 //栈的大小常量 //定义结构体,记录种子点 typedef struct{ int x; int y; }Seed; //定义顺序栈(种子点) typedef struct { Seed Point[Stack_Size]; int top;

多边形有效边表填充算法

多边形有效边表填充算法案例效果如下: 具体实现: (1)新建MFC项目: (2)分别添加类:AET 和Bucket

在AET.h 中定义#pragma once class AET { public: AET(void); ~AET(void); double x; int yMax; double k; AET * next; }; 在Bucket.h中定义#pragma once #include"AET.h" class Bucket {

public: Bucket(void); ~Bucket(void); int Scanline; AET *p; Bucket * next; }; (3)定义菜单 (4)添加菜单处理程序 (5)定义视图头文件 // scanfillView.h : CscanfillView 类的接口// #pragma once #include"AET.h" #include"Bucket.h" # define Number 7 class CscanfillView : public CView {

protected: // 仅从序列化创建 CscanfillView(); DECLARE_DYNCREATE(CscanfillView) // 属性 public: CscanfillDoc* GetDocument() const; // 操作 public: void PolygonFill(); //上闭下开填充多边形 void CreatBucket(); //建立桶节点 void Et(); //构造边表 void AddEdge(AET *); //将边插入AET表 void EdgeOrder(); //对AET表进行排序 // 重写 public: virtual void OnDraw(CDC* pDC); // 重写以绘制该视图 virtual BOOL PreCreateWindow(CREATESTRUCT& cs); protected: virtual BOOL OnPreparePrinting(CPrintInfo* pInfo); virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo); virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo); // 实现 public: virtual ~CscanfillView(); #ifdef _DEBUG virtual void AssertValid() const; virtual void Dump(CDumpContext& dc) const; #endif protected: COLORREF GetColor; //调色板 CPoint Point[7]; //定义多边形 Bucket * HeadB,*CurrentB; //桶的头结点和当前节点 AET E[Number],*HeadE,*CurrentE,*T1,*T2; //有效边表的节点 // 生成的消息映射函数 protected: DECLARE_MESSAGE_MAP() public: afx_msg void OnMenuAET(); };

计算机图形区域填充算法

西安工程大学实验报告 课程实验名称区第 1 页共 6 页 系别组别_____________ 实验报告日期年月日 姓名学号报告退发 ( 订正、重做 ) E_mail:_________________________________ 教师审批评分___________________ 区域填充算法 一、实验目的和任务 1. 学习多边形填充的基于扫描线的区域填充算法 2. 编程实现区域填充算法 二、实验环境和设备 windows系统下 vs2012 c++ 三、实验步骤和过程 在MFC框架中通过菜单与对话框实现多边形顶点参量的输入,选择各种填充算法中的两种进行展示,其中栅栏填充和边填充算法不能同时选择,多边形的表示根据所选择的算法,以内点表示或边界表示均可

四、实验故障与排除 五、总结 附录 #include #include const int POINTNUM = 7; //多边形点数. /******定义结构体用于活性边表AET和新边表NET***********************************/ typedef struct XET { float x; float dx, ymax; XET* next; }AET, NET; /******定义点结构体

point******************************************************/ struct point { float x; float y; } polypoint[POINTNUM] = { 250, 50, 550, 150, 550, 400, 250, 250, 100, 350, 100, 100, 120, 30 };//多边形顶点 void PolyScan() { /******计算最高点的y坐标(扫描到此结 束)****************************************/ int MaxY = 0; int i; for (i = 0; iMaxY) MaxY = polypoint[i].y; /*******初始化AET表 ***********************************************************/ AET *pAET = new AET; pAET->next = NULL; /******初始化NET表 ************************************************************/ NET *pNET[1024]; for (i = 0; i <= MaxY; i++) { pNET[i] = new NET; pNET[i]->next = NULL; } glClear(GL_COLOR_BUFFER_BIT); //赋值的窗体显示. glColor3f(0.0, 0.0, 0.0); //设置直线的颜色红色 glBegin(GL_POINTS); /******扫描并建立NET表 *********************************************************/ for (i = 0; i <= MaxY; i++) { for (int j = 0; jpolypoint[j].y) {

计算机图形学 区域填充算法的实现

实验四区域填充算法的实现 班级 08信计学号 58 姓名陈瑞雪分数 一、实验目的和要求: 1、掌握区域填充算法基本知识 2、理解区域的表示和类型,能正确区分四连通和八连通的区域 3、了解区域填充的实现原理,利用Microsoft Visual C++ 6.0(及EasyX_2011版) 实现区域种子填充的递归算法。 二、实验内容: 1、编程完成区域填色 2、利用画线函数,在屏幕上定义一个封闭区域。 3、利用以下两种种子填充算法,填充上述步骤中定义的区域 (1)边界表示的四连通区域种子填充的实现 (2)内点表示的四连通区域种子填充的实现 4、将上述算法作部分改动应用于八连通区域,构成八连通区域种子填充算法, 并编程实现。 三、实验结果分析 1、以上各种算法相应代码及运行结果如下: 程序代码: #include #include #include void FloodFill4(int x,int y,int oldcolor,int newcolor) { if(getpixel(x,y)==oldcolor) { putpixel(x,y,newcolor); Sleep(1); FloodFill4(x-1,y,oldcolor,newcolor); FloodFill4(x,y+1,oldcolor,newcolor); FloodFill4(x+1,y,oldcolor,newcolor); FloodFill4(x,y-1,oldcolor,newcolor); } } void main() { int a,b,c,d,i,j; int graphdriver=DETECT; int graphmode=0; initgraph(&graphdriver,&graphmode," ");

算法系列之十二:多边形区域填充算法--递归种子填充算法

算法系列之十二:多边形区域填充算法--递归种子填充算 法 平面区域填充算法是计算机图形学领域的一个很重要的算法,区域填充即给出一个区域的边界(也可以是没有边界,只是给出指定颜色),要求将边界范围内的所有象素单元都修改成指定的颜色(也可能是图案填充)。区域填充中最常用的是多边形填色,本文中我们就讨论几种多边形区域填充算法。一、种子填充算法(Seed Filling)如果要填充的区域是以图像元数据方式给出的,通常使用种子填充算法(Seed Filling)进行区域填充。种子填充算法需要给出图像数据的区域,以及区域内的一个点,这种算法比较适合人机交互方式进行的图像填充操作,不适合计算机自动处理和判断填色。根据对图像区域边界定义方式以及对点的颜色修改方式,种子填充又可细分为几类,比如注入填充算法(Flood Fill Algorithm)、边界填充算法(Boundary Fill Algorithm)以及为减少递归和压栈次数而改进的扫描线种子填充算法等等。所有种子填充算法的核心其实就是一个递归算法,都是从指定的种子点开始,向各个方向上搜索,逐个像素进行处理,直到遇到边界,各种种子填充算法只是在处理颜色和边界的方式上有所不同。在开始介绍种子填充算法之前,首先也介绍两个概念,就是“4-联通算法”

和“8-联通算法”。既然是搜索就涉及到搜索的方向问题,从区域内任意一点出发,如果只是通过上、下、左、右四个方向搜索到达区域内的任意像素,则用这种方法填充的区域就称为四连通域,这种填充方法就称为“4-联通算法”。如果从区域内任意一点出发,通过上、下、左、右、左上、左下、右上和右下全部八个方向到达区域内的任意像素,则这种方法填充的区域就称为八连通域,这种填充方法就称为“8-联通算法”。如图1(a)所示,假设中心的蓝色点是当前处理的点,如果是“4-联通算法”,则只搜索处理周围蓝色标识的四个点,如果是“8-联通算法”则除了处理上、下、左、右四个蓝色标识的点,还搜索处理四个红色标识的点。两种搜索算法的填充效果分别如如图1(b)和图1(c)所示,假如都是从黄色点开始填充,则“4-联通算法”如图1(b)所示只搜索填充左下角的区域,而“8-联通算法”则如图1(c)所示,将左下角和右上角的区域都填充了。图(1)“4-联通”和“8-联通”填充效果并不能仅仅因为图1 的填充效果就认为“8-联通算法”一定比“4-联通算法”好,应该根据应用环境和实际的需求选择联通搜索方式,在很多情况下,只有“4-联通算法”才能得到正确的结果。1.1 注入填充算法(Flood Fill Algorithm)注入填充算法不特别强调区域的边界,它只是从指定位置开始,将所有联通区域内某种指定颜色的点都替换成另一种颜色,从而实现填

相关文档
最新文档