三菱M701F4燃机IGV SET及对联合循环效率的影响

三菱M701F4燃机IGV SET及对联合循环效率的影响
三菱M701F4燃机IGV SET及对联合循环效率的影响

·46·

中国高新科技 2017年第1卷第11期

三菱M701F4燃机

IGV SET及对联合循环效率的影响

1 IGV SET ON控制的作用

(1)在燃气轮机负荷稳定时,IGV SET ON功能投入后,进口可转导叶IGV开度设定值会比IGV跟随功能未投入时偏小;同等负荷情况下,IGV开度指令变小,在一定程度上提高燃气轮机排烟温度,使得燃气轮机排气温度靠近温控线,提高联合循环效率。

(2)在燃气轮机负荷突然升高的过程中,由于燃气轮机排气温度过高达到排气温度限制值导致燃气轮机进入温度控制模式时,迅速增加IGV开度指令,使得燃气轮机排气温度降低,远离温度控制线,防止燃气轮机进入温度控制模式限制负荷变化。

(3)IGV SET ON功能的投入,在一定程度上调整了燃气轮机燃烧的空燃比(配合旁路阀),解决某厂燃气轮机排气黄烟(NO 2)环保问题。

2 IGV SET ON功能的逻辑控制过程

IGV SET ON投入前,IGV的控制指令输出为:#3燃气轮机输出功率经过压气机进口温度修正,输出两个函数F(X)A,F(X),这两个函数进行高值(即在同等负荷情况下输出IGV指令大值)选择,然后进行输出。两个函数分别如下:

由以上两个函数表格对比可知:在负荷一定的情况下,F(X)A的IGV输出指令较大,所以在IGV SET ON功能投入之前,IGV的开度指令是按F(X)A函数进行输出。

IGV SET ON投入后,三菱公司在增加IGV SET 表1 F(X)A

表2 F(X)

ON功能时,新引入一个函数F(X)B,IGV SET ON 功能的投退触发选择器(投入时F(X)B输出,退出时F(X)A输出)。F(X)B函数见表3。

燃气蒸汽联合循环

燃气--蒸汽联合循环技术的发展与评价 我国火电机组主要为燃煤发电机组,存在污染严重,供电煤耗高的问题,不能满足新世纪电力工业发展需要,必须依靠科技进步,促进我国资源环境相互协调可持续发展。采用高参数大容量机组,超临界压力机组是火电机组发展的主要方向外,发展清洁燃煤技术,煤气化联合循环和整体气化燃料电池等以燃气输机为技术基础的发电技术,亦是提高我国火电热效率的突破口方向。为此,今后发展燃气——蒸汽循环发电将具有战略意义燃气—蒸汽轮机联合循环热电冷联供系统是一项先进的供能技术。利用燃气燃烧产生的高温烟气在燃气轮机中做功,将一部分热能转变为高品位的电能,再利用燃气轮机排烟中的余热在废热锅炉内产生蒸汽来带动蒸汽轮机进一步发出部分电能,同时供热和制冷。从而实现了能源的高效梯级利用,同时也降低了燃气供热的成本,是城市中,特别是大气污染严重的大城市中值得大力发展的系统。 一.联合循环发电状况和需求。 从20世纪80年代以来,随着燃气轮机及其联合循环总能系统新概念的确立,材料科学、制造技术的进步,特别是能源结构的变化及环境保护的要求更加严格,燃气轮机及其联合循环机组在世界电力系统中的地位发生了显著化,不仅可以用作紧急备用电源和尖峰负荷,还被用来带基本负荷和中间负荷。21世纪以来世界燃气轮机进入了一个新的发展时期,我国燃气轮机引进、开发和应用又进入了一个新的发展阶段。燃气轮机技术进步主要表现在单机容量增大,热效率提高与污染物排放量降低。目前全世界每年新增的装机容量中,有l/3以上系采用燃气—蒸汽联合循环机组,而美国则接近l/2,日本则占火电的43%。据不完全统计,全世界现有燃油和燃天然气的燃气—蒸汽联合循环发电机组的总容量己超过400 GW。当前燃气轮机单机功率已经超过300MW,简单循环热效率超过39%;联合循环功率已经超过780 MW,联合循环热效率超过58. 5%,干式低NOx 燃烧技术已使燃用天然气和蒸馏油时的NOx排放量分别低于25mg/kg和42mg/kg,提高了燃气轮机在能源与电力中的地位与作用。从目前世界火力发电技术水平来看,提高火电厂效率和减少污染物的排放的方法,除带脱硫、除尘装置的超超临界发电技术(USC)、循环流化床(CFB)和增压流化床联合循环(PFBC)等外,燃天然气、燃油及整体煤气化等燃气-蒸汽联合循环是一个重要措施。据有关调研预测,未来10年我国对燃气轮机总需求量达34 000 MW左右。中国已开始利用西气东输,东海、南海油气,进口LNG(液化天然气)和开发煤气化等清洁能源。一批300 MW级燃气—蒸汽联合循环电厂已经建成或即将建成投产。可以说,随着国产化率的提高,造价的减低,燃用天然气和煤气等大型燃气—蒸汽联合循环发电机组,必将成为中国电力工业一个重要组成部分。 二.燃气-蒸汽联合循环原理 (一)联合循环的基本方案 1.余热锅炉型联合循环 将燃气轮机的排气通至余热锅炉中,加热锅炉中的水产生蒸汽驱动汽轮机作功。 2.排气补燃型联合循环 排气补燃型联合循环包括在余热锅炉前增加烟道补燃器以及在锅炉中加入燃料燃烧这两种方案。

燃气轮机与联合循环-姚秀平-课后题答案-第一单元

1. 从高温热源吸收热量:a-2-3-4-5-b-a; 对外做功:1-2-3-4-5-6-1; 向低温热源放出热量:a-2-3-4-5-b-a; 效率:对外做功:1-2-3-4-5-6-1与从高温热源吸收热量:a-2-3-4-5-b-a的间接比。 2. 可用能 不可用能 1 2 3 4 a b T S 从高温热源吸收热量:a-2-3-b-a; 对外做功:1-2-3-4-1; 向低温热源放出热量:a-1-4-b-a; 效率:对外做功:1-2-3-4-1与从高温热源吸收热量:a-2-3-b-a间接比。 3 和 4、从热力学角度看,汽轮机循环利用了蒸汽可在常温下凝结的特性,达到了较低的工质平均放热温度,但工质平均吸热温度不高。燃气轮机循环的工质平均吸热温度高,但工质平均吸热温度不低。 汽轮机发展方向:开发新材料以便把主蒸汽参数从亚临界水平逐步提高到超超临界水平;采用两次再热等手段改进热力系统及设备的设计。其中,主要方向为提高工质平均吸热温度。燃气轮机发展方向:提高燃气平均吸热温度。 5、燃气轮机是工作于高温区的一种热机,易于利用高品位的热量; 汽轮机是工作于低温区的一种热机,易于利用低品位的热量; 而联合循环按照热量梯级利用的原则将燃气轮机和汽轮机结合起来,可以将高品位和低品位的热量同时利用起来。由于联合循环同时利用了燃气轮机循环平均吸热温度高和汽轮机

循环平均放热温度低的优点,又同时克服了两者的缺点,所以可以达到较高的循环效率。 6、ISO 基本功率是指在国际标准化委员会所规定的ISO 环境条件下燃汽轮机连续运行所能达到的功率。ISO 环境条件:温度15℃,压力0.01013MPa 相对湿度60%。 7、燃气轮机与汽轮机同轴,共同驱动一台发电机的联合循环机组称为单轴机组; 燃气轮机与汽轮机不同轴,各驱动一台发电机的联合循环机组成为多轴机组。 8、前置循环是工作于高温区,输入大部分热量的循环,它会产生大量的余热; 后置循环是工作于低温区以前置循环的余热为主要热源的循环。 两者通常用换热设备耦合在一起,最广泛的应用是燃气——蒸汽联合循环。 9、最基本的三种联合循环形式:余热锅炉型、补燃余热锅炉型和增压锅炉型。 余热锅炉型: 2 1C GT B 燃料 3 G 4 G 5 6 HRSG 7811 P CC 10 ST 9 燃气轮机可用能2T s 4 3 1 611 7 5 8 9 10b d c a 汽轮机可用能 燃气轮机子循环:从高温热源吸收热量:a-2-3-c-a ; 对外做功:1-2-3-4-1; 通过余热锅炉传向谁的热量:b-5-4-c-b ; 向外界放出了热量:a-1-5-b-a ; 汽轮机子循环:从余热锅炉吸收的热量:b-6-7-8-9-d-b ,与面积b-5-4-c-b 相等; 对外做功:6-7-8-9-10-11-6;通过凝汽器向外界放出的热量:b-11-10-d-b ; 补燃余热锅炉型: P C G 12 B 燃料 84 HRSG GT 3 6 7 911 ST 5 CC 10G 燃料a 1 2b 11 65 7 T c d s 10 8 4 9 3 12 汽轮机可用能 燃气轮机可用能 增压锅炉型: P C G 12燃料 84 PCB GT 367 9 11ST 5 CC 10G 12 ECO 汽轮机可用能 1 a 211 b 65 7T 燃 机可用能 3 10 c d s 8 412 9 13

联合循环汽轮机的热力设计探讨

联合循环汽轮机的热力设计探讨 发表时间:2018-01-28T21:43:09.497Z 来源:《基层建设》2017年第32期作者:徐承浩1 鉴小宝2 [导读] 摘要:本文对综合气化联合循环(IGCC)系统优化研究的集体设计进行了研究:归纳IGCC系统的主要热特性、两级、组合周期和IGCC系统,提出了大型交叉迭代设计优化的新思路;采用模块化建模方法建立系统设计优化模型。 1.青岛特温暖多能生态科技有限公司山东 266000; 2.山东金诺建设项目管理有限公司山东 266000 摘要:本文对综合气化联合循环(IGCC)系统优化研究的集体设计进行了研究:归纳IGCC系统的主要热特性、两级、组合周期和IGCC系统,提出了大型交叉迭代设计优化的新思路;采用模块化建模方法建立系统设计优化模型。介绍了联合循环汽轮机的热设计和设计特点。 关键词:联合循环;汽轮机;热力设计 1前言 燃料和燃气联合循环电厂,在80年代后期发展迅速,因为它可以快速启动,越来越多的熊峰剃须,因此,在联合循环中为汽轮机提出了许多新的要求,主要体现在以下几个方面:(1)由于燃气轮机的启动速度非常快,相应的涡轮可快速启动; (2)为了提高整个循环的效率,需要汽轮机运行; (3)根据燃气轮机、废热锅炉和蒸汽轮机启动时间的不同步,可以配备旁路系统; (4)燃气轮机进口单位或国外技术生产,数字电液控制系统的控制系统,为了使整个电厂控制水平一致,要求涡轮也可以采用数字电液控制系统。 综合煤气化联合循环(IGCC)是一种先进的动力系统,结合高效的联合循环和清洁煤技术,提供了最有前景的洁净煤发电技术。IGCC是一种集热发电、煤化工、环境技术、多学科、多设备组合为一体的复杂能源动力系统,与许多高新技术相结合。很长一段时间,IGCC系统的优化设计研究是围绕提高热性能为主要目标,以提高整体性能的IGCC系统,一方面,继续完善关键设备技术,寻求新的突破,另一方面,每个设备全面优化匹配的规则的深入研究,找到一个系统作为一个整体解决方案。 2热力设计 2.1热力设计主要过程见图1 图1热力设计主要过程 2.2热力设计原则 与传统的汽轮机相比,组合式循环汽轮机有很大的不同。主要特点:(1)无调节水平,节流调整的蒸汽分配方式; (2)汽轮机排汽流量比常规蒸汽流量高出30%。 (3)最后阶段的特殊设计需要特别考虑热应力对结构设计的影响。 (4)采用东旗厂的成熟模式和最先进的现代设计技术,确保运行的可靠性和最先进的经济; (5)结构和辅助系统的设计是为了满足两班换班和快速起动的需要。 2.3热力设计特点 (1)没有热量返回系统。为了尽可能多地使用燃气轮机的废气,增加汽轮机的输出功率,蒸汽轮机在联合循环中一般不购买给水加热器,热水和由废热锅炉承担的氧气,有时是由冷凝器氧。 (2)优化蒸汽参数。在热锅炉的合理传热区域内选择最优的蒸汽循环系统和蒸汽初始参数,使联合循环机组达到最佳的供电效率。 (3)优化流程设计。常规汽轮机流动优化技术可用于联合循环汽轮机。 (4)汽轮机由滑动压操作,调整阶段不再设置,汽轮机的所有级别都使用汽轮机。在这种情况下,滑动压力达到50%的负载情况:一方面,锅炉在可变工况下产生相对较多的蒸汽。另一方面,在变工况下,温度变化引起的热应力减小。 (5)由于无抽汽热水平,对于双压力、三中压汽轮机和注气量,因此,常规热电式汽轮机总发电容量的组合式循环汽轮机排汽量比为30%左右。因此,与常规机组相比,低压水位的流动区域应该增加30%左右。 (6)除了排汽,冷凝器也有各种形式,如轴向蒸汽排气和侧向排气。其中,轴向流阻力小;该单元的对称性很好,所以该单元不能设置两层操作平台,这样可以降低工厂成本。但单缸轴向排气的体积流量是有限的,只能在较小的动力涡轮中使用。 3汽轮机的通流及本体部分设计

汽轮机技术及产品介绍

汽轮机技术及产品介绍 1.设置于最后一级高加后,利用回热抽汽的过热度来提升最终给水温度,提升经济性的装置是()。(6.0分) A.除氧器 B.低压加热器 C.省煤器 D.外置式蒸冷器 2.火力发电厂汽轮机的主要任务是:(6.0分) A.将热能转化为电能 B.将热能转化为机械能 C.将电能转化为机械能 D.将机械能转化为电能 3.汽轮机的热力循环过程称之为()(6.0分) A.卡诺循环 B.朗肯循环 C.布雷登循环 D.联合循环

4.汽轮机的级是由()组成的。(6.0分) A.隔板+喷嘴 B.汽缸+转子 C.喷嘴+动叶 D.主轴+叶轮 5.主蒸汽参数为1 6.7MPa.a的汽轮机为()(6.0分) A.高压汽轮机 B.超高压汽轮机 C.亚临界汽轮机 D.超临界汽轮机 1.热电联产汽轮机,调整抽汽可调整抽汽时,采用的手段包括()(8.0分)) A.直接打孔抽汽 B.回热抽汽 C.旋转隔板 D.座缸阀 E.联通管抽汽

2.下列属于汽轮机和电厂性能指标的是()(8.0分)) A.汽轮机热耗 B.汽轮机内效率 C.汽轮机热效率 D.供电煤耗 E.发电煤耗 3.下列属于火力电站的设备的是()(8.0分)) A.锅炉 B.汽轮机 C.发电机 D.核岛 E.凝汽器 4.汽轮机热力循环系统中,系统上的管道损失主要包括()(8.0分)) A.主汽水管道损失 B.再热压损 C.回热抽汽管道压损 D.汽轮机进汽压损

E.排汽损失 5.下述汽轮机属于按热力特性分类的是()(8.0分)) A.凝汽式汽轮机 B.抽汽式汽轮机 C.空冷汽轮机 D.多压式汽轮机 E.电站汽轮机 1.火电厂中汽轮机的热力循环过程叫朗肯循环。(6.0分) 2.反动级中,蒸汽在动叶中不仅受到冲动力的作用,仅受到反动力的作用。(6.0分) 3.双轴汽轮机就是两台汽轮机,两台机组间没有任何关系。(6.0分) 4.反动度为0.5的级称为反动级。(6.0分)

燃气-蒸汽联合循环机组循环效率的分析

燃气-蒸汽联合循环机组循环效率的分析 发表时间:2018-11-13T20:31:59.670Z 来源:《电力设备》2018年第20期作者:张志响 [导读] 摘要:最近几年,我国经济可以说是快速发展,而经济发展离不开能源,在我国,电力是能源利用的主要方式,我国70%以上的电力都是来源于以煤炭燃烧的火力发电。 (河北华电石家庄热电有限公司 050041) 摘要:最近几年,我国经济可以说是快速发展,而经济发展离不开能源,在我国,电力是能源利用的主要方式,我国70%以上的电力都是来源于以煤炭燃烧的火力发电。但是,大量的煤炭燃烧造成了气候变暖、空气质量变差、雾霾严重等一系列的环境问题。燃气-蒸汽联合循环机组的出现,使这种状况得到了解决,燃气-蒸汽联合循环机组在发电过程中使煤得到了更充分的燃烧,减少了污染物的排放,使环境污染问题得到了改善。本文对燃气-蒸汽联合循环机组进行了研究,并分析了影响循环机组效率的因素。 关键词:燃气-蒸汽联合循环机组;发电;效率 1、燃气-蒸汽联合循环机组概述 燃气-蒸汽联合循环机组是一种节能型机组,能够最大程度上使煤得到洁净燃烧,不但可以减少环境污染,还能提高发电效率。燃气-蒸汽联合循环机组是上个世纪90年代才出现并开始发展的,它是通过气体动力循环和蒸汽动力循环来完成工作。气体动力循环是压气机将空气压进燃烧室,空气与燃烧室内的燃料进行燃烧,使温度升高,气体进行膨胀,烟气在膨胀的过程中进行做功,使热能转换成机械能推动燃气轮机进行发电。做完功的烟气温度还很高,会进入到余热锅炉进行热能的回收,加大蒸汽的压强和温度,使蒸汽进行做功,并把能量转换成机械能进行发电。这样,就完成了燃气-蒸汽联合循环。 2、燃气-蒸汽联合循环机组配置的型式 燃气-蒸汽联合循环机组的配置设备一般包括燃气轮机、蒸汽轮机、余热锅炉、发电机和其他硬件配置等。根据硬件配置的不同通常分为单轴循环机组和多轴循环机组。下面针对这两种型式进行简单分析: 单轴燃气-蒸汽循环机组的硬件配置是比较简单的,燃气轮机、余热锅炉、蒸汽轮机和发电机组是同轴转动,在整个发电运作过程中依靠一个轴进行工作。这是出现比较早的循环机组,配置和运作都比较简单,在工作效率上也有欠缺的地方,能源无法实现洁净燃烧,无法进行完全利用。所以,这种型式的循环机组也逐渐被更先进的型式所取代。 多轴燃气-蒸汽循环机组的硬件配置相对单轴型式来说比较复杂。燃气轮机和蒸汽轮机都有一个自己的发电机组,它们分别带动发电机进行联合循环。这种型式对设备的要求比较高,对于相关管道的设计和布置也比较复杂,整体的运行成本也要比单轴的高很多。但是,这种型式实现了联合循环,可以更充分的进行能源的利用,大大提高了循环机组的工作效率,符合现在经济发展的需求。 3、燃气-蒸汽联合循环机组的优点 3.1热效率高 联合循环机在运作时,压气机会把空气和煤气进行压缩,之后两种气体会一起进入燃烧室,在1000多摄氏度的环境下进行燃烧,膨胀做功。而膨胀后的气体温度依然可达500多摄氏度,这些气体则会进入到余热锅炉进行热量的回收,这种模式充分提高了机组的热效率。例如,350MW级联合循环机组的效率可达58%,比一般的机组效率高出很多。 3.2污染物的排放少 燃气-蒸汽联合循环机组是将空气与天然气或液体燃料进行燃烧,使气体膨胀进行做功来进行发电。这种方式与传统的燃煤机组的方式相比,燃烧释放的气体中,二氧化碳的排放量是传统方式排放的一半,氮氧化物的排放量没有超过传统方式排放的五分之一,二氧化硫的排放量几乎可以忽略。燃气-蒸汽联合循环机组运作过程中,污染物的排放更少,这种方式更适合现在环保的需求。 3.3占地和耗水量比较少 使用燃气-蒸汽循环机的电厂与同容量的传统火力电厂相比,占地面积不到传统电厂的一半,极大的节约了土地。而且,联合循环机组中燃气轮机的运作不需要大量的水来进行冷却,与同容量的火电厂比较更加节水。 4、影响燃气-蒸汽联合循环机组效率的因素 4.1环境温度 周围大气的温度会影响到机组燃气轮机的效率。当环境温度比较高时,压气机就需要消耗更多的功率进行空气的压缩,燃气轮机输出的功率就会下降;当环境温度比较低时,会使压气机的进口导叶片结冰,需要将压气机出口的高温空气导入进口,来提高进口空气的温度,这样也会降低燃气轮机的功率。所以,联合循环机组的功率受到环境温度的影响。 4.2煤气进口的温度 联合循环机组在运行过程中对进口处煤气的温度也是有要求的。如果压缩机进口煤气的温度比较高,则气体的比容就会比较大,压缩同样质量的气体,温度越高,压缩机所需要耗费的功率就越大。而且也会限制到煤气的流量,影响到燃气轮机的效率,进而影响整个燃气-蒸汽联合循环机组的效率。 4.3机组负荷 经过相关的实验验证,燃气轮机的效率与机组的输出效率成正比。当机组发电机最后输出的功率越高时,燃气轮机的功率也会越高。所以,机组负荷的大小也会影响到本身的功率输出。 总之,燃气-蒸汽联合循环机组对于我国的电力业的发展影响重大,不仅提高了发电厂的热效率,还使我国的环境污染问题得到了缓解,是一种节能、清洁生产的技术,更加符合当下经济效益和社会效益的需求。 参考文献 [1]段秋生.燃气-蒸汽联合循环电站热力性能分析理论与计算[M].北京:清华大学出版社,2010. [2] 刘伟,袁益超,刘聿拯.燃气-蒸汽联合循环余热锅炉及其影响因素分析[J].电站系统工程,2012,24(02):5-8. [3]朱宪然,张清峰,赵振宁.700MW级多轴燃气-蒸汽联合循环机组掉峰和启动特性[J].中国电力,2009,42(06):1-5.

国外燃气_蒸汽联合循环汽轮机

国外燃气-蒸汽联合循环汽轮机 郑云之 (上海汽轮机有限公司,上海200240) 摘 要: 结合介绍国外燃气-蒸汽联合循环汽轮机的实绩和发展,综合联合循环汽轮机在蒸汽参数、总体布置、快速启动和两班制运行、结构设计等方面的特点以及典型的应用实例,对联合循环汽轮机的总体及其特色有较全面的分析。 关键词: 燃气-蒸汽联合循环汽轮机; 蒸汽参数; 总体布置; 快速启动; 两班制运行; 结构设计特点; 应用实例 中图分类号: T K26 文献标识码:A Steam Turbines for Gas-Steam Combined-Cycle Power Plant Abroad ZH EN G Yun-z hi (Shanghai Turbine Co.Ltd.,Shanghai200240) Abstract: T his paper makes al-l around analysi s for the features of combine-cycle steam turbine by introduc-ing the ex periences and development of g as-steam turbine combined cycle,integrating the characteristics and typically applied actual ex amples of its steam condition,general layout,fast start-up,daily start and stop and structure design etc. Key words: steam turbine of g as-steam combine cycle; steam condition; general layout; fast startup; daily start and stop; structure design featur es; applied actual examples 1 发展业绩实例 燃气轮机及燃气 蒸汽联合循环的发展十分迅速,仅以Siemens KWU1999年的统计为例,KWU公司的实绩如下: 投入运行的燃气轮机:287台 运行小时总数:850万小时 启动总次数:24万次 至1999年的燃气轮机总数: 360台 (包括订单)4300万千瓦 其中:燃气 蒸汽联合循环机组: >192套、3932万千瓦 联合循环3932万千瓦中燃机和汽机均由KWU制造:2804万千瓦 燃机由KWU制造、汽机由别的厂家生产:1128万千瓦 联合循环3932万千瓦中: 收稿日期:2000-07-18 作者简介:郑云之(1937-),男,上海汽轮机有限公司副总工程师,教授级高级工程师,中国动力工程学会透平专委会委员兼秘书长,先后发表论文40余篇。

燃气轮机与联合循环-姚秀平-课后题答案-第三单元

1.压气机在燃气轮机中的作用是什么? 连续不断地从周围环境吸取空气并将其压缩后供给燃气轮机的燃烧室。 2.燃气轮机所使用的压气机有哪两种类型?它们各有什么特点? 轴流式:流量大、效率高但级的增压能力低,多应用于大功率燃机。 离心式:级的增压能力高但流量小、效率低,多应用于中小功率燃机。 3.轴流式压气机由那两个组成部分? 由转子、静子组成。 转子:动(工作)叶片、叶轮(转鼓)、主轴。静子:静(导)叶、气缸 4.何谓扭速?何谓理论功?理论功是否可全部转换为气体的压力能? 扭速:气流经过叶栅内的流动发生了转折,气流转折所引起的相对速度圆周分量的变化 成为扭速。 理论功:基元级的动叶栅加给单位质量气体的机械功成为理论功或加功量。 不能。理论功的一部分用于气流的动能升高,也有一部分用于气流压力升高,还有一部分在气流流动过程中因摩擦等因素而转换成了热量。 5.压气机级的理论功为什么会受到限制? u 的增加要受到材料许用应力的限制,u 过大时,叶片根部截面处的离心拉应力会超过叶片材料的许用应力。 的增大要受到叶栅气动性能的限制 , 过大时,在叶栅中气流的转折角过大,叶栅 表面上的气流边界层容易分离并形成漩涡,导致流动损失大幅度增加。所以压气机级的理论 功会受到限制。 6.压气机的压比特性曲线有哪些主要特点? (1)每一转速下,压比有一最大值 (2)转速不变,流量降至一定值时→不稳定→喘振 (3)转速不变,流量增至一定值后→压比急剧下降→阻塞 (4)转速越高,特性线越陡 (5)效率的流量特性与压比类同 7. 8.试绘图说明压气机级在转速一定、体积流量增大和减小时,速度三 角形的变化情况 转速一定时,级的扭速与体积流量之间有什么关系? 随着体积流量的增大,扭速必然减小,理论功也相应减小 u w ?w u w C u =?u w ?u w ?w u w C u = ?

联合循环汽轮机热力性能试验方法的研究

第26卷第4期 2012年7 月POWER EQUIPMENT Vol.26,No.4 July.2012   收稿日期:2012-04-23 作者简介:刘向民(1977-),男,工程师,主要从事汽轮机及其热力系统性能试验研究。 E-mail:liuxiangmin@speri.com.cn 联合循环汽轮机热力性能试验方法的研究 刘向民 (上海发电设备成套设计研究院,上海200240) 摘 要:介绍了燃气轮机改联合循环发电的汽轮机热力性能试验,给出了试验方案、计算方法、修正方法和试验不确定度计算方法,分析了试验结果,提出了优化试验方案的建议。通过试验得出:热耗率总不确定度为±0.420,发电机功率总不确定度为±0.355%,表明了该试验方案能够保证试验结果的准确、有效。 关键词:联合循环;汽轮机;热力性能;试验方法;改造 中图分类号:TK267 文献标识码:A 文章编号:1671-086X(2012)04-0226-04 Research of Steam Turbine Thermal Performance Test Method ofGas Turbine Unit Expanded to Combined Cycle LIU Xiang-min (Shanghai Power Equipment Research Institute,Shanghai 200240,China) Abstract:Steam turbine performance test of a gas turbine unit expanded to combined cycle is introduced.Test program,calculation method,correction method and test uncertainty calculation method are given.The test is analyzed and recommendation for optimizing the plan is presented.It is obtained though the test that the total uncertainty of heat rate is±0.420 and the total uncertainty of generation output is±0.355%.It is showed that the test program can ensure accurate and valid results.Keywords:combined cycle;steam turbine;thermal performance;test method;retrofit 一座以天然气为燃料的燃气轮机电厂装有4台9E级燃气轮机发电机组,在运行一段时间后,需要改造成联合循环,利用燃气轮机排出的余热发电,以进一步提高发电厂的热经济性,为此进行了扩建工程,安装了4台余热锅炉和2台汽轮机。该扩建工程项目规定了必须对汽轮机的热力性能保证值进行考核。对联合循环中汽轮机的热力性能试验,国内至今尚无专门标准可循,因此在实际工作中以GB/T 8117.1《大型凝汽式汽轮机高准确度试验》[1]作为参考,综合考虑了试验的准确度、实施难易度和试验成本等因素,研究制定了试验方案。 1 试验方案 该汽轮机为单压、无再热、直接冷凝式的引进汽轮机,其额定主蒸汽压力为4.202MPa,主蒸汽温度为503℃。额定工况下汽轮机热力性能保证值:热耗11 102kJ/(kW·h),发电机输 出功率107 291kW。额定工况热平衡图见图1 。 图1 额定工况的汽轮机热平衡图

GE公司F级燃气轮机总体性能参数

GE公司F级燃气轮机 1 F级燃气轮机产品系列及其性能演变 F级燃气轮机已有多种多样的型号可满足不同用户的需要,在MS6000、MS7000、MS9000系列中都有F级的产品,表1列出F级燃气轮机最新机型简单循环的性能,表2列出50Hz的F级燃气 表1 F级最新机型燃气轮机简单循环性能 基本参数MS9351FA MS7241FA MS6101FA 净出力/MW 255.6 171.7 70.1 效率/% 36.9 36.4 34 透平进口温度/℃1327 1327 1288 压比15.4 15.5 14.9 质量流量/kg·s-1624 432 198 排气温度/℃609 602 597 频率/Hz 50 60 50/60 表2 50HzF级燃气轮机联合循环性能 基本参数S109FA S209FA S106FA S206FA 净出力/MW 390.8 786.9 107.4 218.7 净热耗率/kJ·(kWh)-16350 6305 6767 6654 净效率/% 56.7 57.1 53.2 54.1 MS9001FA、MS7001FA、MS6001FA型燃气轮机都有18级的压气机和3级的涡轮机,以冷端驱动和轴向排气为特点,有利于联合循环布置。F级燃气轮机采用GE公司传统可靠的分管式燃烧系统,

并可配备双燃料燃烧系统,如在以天然气为主燃料时,可以轻油为辅助燃料。当天然气供应发生故障时,机组可自动切换到轻油燃烧,使燃机不因燃料供应故障而停机,进一步保证了机组的可靠性和可用性。机组也可根据要求,在一定条件下使用双燃料混合燃烧。此外,F级燃气轮机可燃用低热值燃料,从而扩大了发电厂的燃料使用范围和灵活性。F级燃气轮机应用于IGCC电厂,可 GE公司在其制造MS6000型、MS7000型和MS9000型机组的基础上,发展完善了底盘部套、控制和辅机组合一体的快装模块结构,这种标准化布置可减少管道、布线及其他现场相关联接的工 F级燃气轮机还显示出不同寻常的环保特点。由于机组的效率高,单位发电量的NO x和CO排放量较少。采用干式低NO x(DLN)燃烧室,大大降低了NO x的排放。180多台采用干式低NO x燃烧室的F级燃气轮机已累计运行近30 0万h。有些电厂的NO x排放量甚至低于10mg/kg。 1.1 7F和7FA、7FB型燃气轮机 自从1987年生产第一台7F型燃气轮机后,经过不断改进,形成了一系列F级的燃气轮机。图1以7000系列中的F级燃气轮机为例,展示了F级燃气轮机的发展过程。(图中华氏温度t F 换算因数为)其主要性能见表3。 图1 F级燃气轮机的发展过程 表3 7F系列燃气轮机主要性能

联合循环燃气轮机发电厂简介

联合循环燃气轮机发电 厂简介 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

联合循环燃气轮机发电厂简介联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美国GE公司的 MS9001E燃气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。 1.燃气轮机 1.1简介 燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部分:1、燃气轮机(透平或动力涡轮);2、压气机(空气压缩机);3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船

舶动力。重型燃气轮机为工业型燃机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。 埕岛电厂采用的MS9001E燃气轮发电机组是50Hz,3000转/分,直接传动的发电机。该型燃气轮发电机组最早于1987年投入商业运行,基本负荷燃用天然气时的功率为123.4MW,热效率为33.79%,排气温度539℃,排气量1476×103公斤/小时,压比为12.3,燃气初温为1124℃,机组为全自动化及遥控,从启动到满载正常时间为约20分钟,机组使用MARKⅤ控制和保护系统. MS9001E型机组为户外快装机组,因此不需要专用的厂房建筑,而是用多块吸声板构成的长方形箱体,机组即放置在其内,箱体既起隔声作用,又能代替厂房使机组在各种气候条件下都能正常工作,每台机组连同发电机及控制室等均分别放置在长方体状的箱体内,在其周围还有空气进气系统,燃料供应单元和机组的冲洗装置等附属设备,组成整套燃气轮机动力装置。1.2辅机部分 主要有主润滑油泵,辅助润滑油泵,事故油泵.,油雾抽取装置 燃气轮机在正常运行时,透平功率的三分之二用来拖动压气机,其余三分之一功率为输出功率。显然,在燃机起动过程中,必须由外部动力来

常规汽轮机电站的联合循环系统更新改造技术

常规汽轮机电站的联合循环系统更新改造 技术 0引言 到目前为止,我国老火电厂改造有三种方法:蒸汽轮机全三维设计改造、原有锅炉替换为循环流化床锅炉、蒸汽轮机发电机组改为热电并供电厂。但是,这些方法并不能同时满足大幅度降低能耗和解决燃煤的环境问题。为达到同时满足这两个条件,必须在以上设备改造基础上,对原有蒸汽轮机发电厂进行联合循环系统更新改造。 联合循环系统更新改造技术从热力学角度而言,是将具有高温加热优势的燃气轮机(Brayto n循环)动力装置和较低排汽温度的汽轮机(Rankine循环)动力装置有机结合起来,取长补短,按能的品位高低进行梯级利用。达到扩容降耗的目的。因此,不仅可以大幅度提高发电效率,而且可以同时解决环境污染问题。 采用联合循环系统更新改造传统燃煤火电站在国外近几十年来得到很大发展,并积累了成熟经验。其改造方案主要有以下四种:给水加热型(FWH-Repowering ),排气助燃型(FF -Repowerin g),余热锅炉型(H RSG-Repowe ring) 和平行混合型(PP-Repow ering)。特别是80年代后,美国、曰本、荷兰、德国、意大利等国发展势头更是方兴未艾,

尤其是HRS G-Repoweri ng应用得最多,主要进行改造的机组等级为100丽、200M W、300MW。但是,我国国情与国外不同:国外火电机组用天然气和液体燃料的电站比较多,天然气和燃油供应比较充足,而我国天然气和燃油比较缺乏,煤炭比较丰富;国外的燃煤机组有脱硫脱硝装置,而我国的中小型燃煤机组没有脱硫脱硝设备;国外发达国家财力雄厚,可投入大量资金进行余热锅炉型的更新改造, 而我国是发展中国家,资金缺乏。 因此,对我国现有火电站进行升级改造时,结合我国实际情况,尽可能降低改造费用。如原本应淘汰的5万千瓦汽轮机组采用给水加热型联合循环更新改造技术后,使全厂发电效率可从%提高到%,达到3 0万千瓦大机组的水平[1-2]。 根据中国具体情况,本文主要讨论给水加热型和排气助燃型两种联合循环,并从热力学角度对它们进行热力特性分析与比较。改造后联合循环系统总输出功率以蒸汽轮机为主,锅炉燃料仍然是煤,而新增加的燃气轮机则燃用油或者天然气,即以煤炭为主的双燃料动力系统。同时这种双燃料动力系统也适合我国环境污染严重的西部地区(双燃料基地的能源结构)。 1改造常规电站联合循环系统 给水加热型联合循环系统给水加热型联合循环系统是 用燃气轮机的排气加热锅炉给水,以减少汽轮机用于给水

浅谈燃气-蒸汽联合循环中双压汽轮机系统

第11卷第5期中国水运V ol.11 N o.5 2011年5月Chi na W at er Trans port M ay 2011 收稿日期:作者简介:唐美琼()女,武汉都市环保工程技术股份有限公司工程师。 浅谈燃气-蒸汽联合循环中双压汽轮机系统 唐美琼 (武汉都市环保工程技术股份有限公司,湖北武汉430071) 摘 要:文中对燃气-蒸汽联合循环发电工程中双压汽轮机系统的配置和特点进行了分析和总结,对汽轮机系统热力 参数的选择进行了探讨,为公司以后燃气-蒸汽联合循环汽轮机系统的设计提供了一定的借鉴作用。关键词:燃气-蒸汽联合循环;汽轮机系统中图分类号:TP39文献标识码:A 文章编号:1006-7973(2011)05-0109-03一、概述 由于联合循环电站具有热效率高、机动性好且能满足日益严格的环保要求等优点,近年来我国对联合循环电站的需求迅速增加。除了提高燃气轮机性能之外,合理利用低品质的燃气轮机排气余热,产生蒸汽用于发电,是提高联合循环电站效率的关键。即余热锅炉和蒸汽轮机组成的热力系统的优 化设计,对联合循环的性能有很大的影响。因此,分析和探讨 燃气-蒸汽联合循环中汽轮机的系统配置和特点、合理的选择热力参数,显得尤为重要。 联合循环中蒸汽循环的系统配置自有独特之处,本文以我公司独立设计并成功并网发电的涟钢燃气-蒸汽联合循环发电工程为基础,分析了该项目中汽轮机系统配置与常规电厂中汽轮机系统配置的区别,研究了汽轮机系统的特点,探讨了热力参数的基本选择原则。 分析结果可作为联合循环系统总体优化设计的参考。二、联合循环中汽轮机系统配置 涟钢燃气-蒸汽联合循环发电工程的燃机是三菱公司的M251S 型燃机,出力为28.5MW ;汽轮机为南京汽轮机厂生产的双压凝汽式汽轮机,出力为22MW ;余热锅炉为德尔塔公司生产的双压锅炉。早在电厂初步方案选择阶段,我公司与德尔塔就电厂整个系统选择进行了大量的计算比较,供用户选择确定。最终,涟钢工程选用了双压锅炉配双压汽机。 1.机炉选型 联合循环系统配置的余热锅炉同常规锅炉不同,实际上,该锅炉仅有常规锅炉中的换热部分,是一个特殊的换热器,没有燃烧系统和送风系统。为了增加其换热效率,现在大多采用多级换热也就是多压锅炉,尽量降低余热锅炉的排烟温度,但同时也要考虑由此引起的投资及维护费用的增加。 本项目在初步设计阶段对炉双压/机单压,炉双压/机双压,炉三压/机双压三种组合进行计算比较,炉双压/机双压方案比炉双压、机单压方案出力增加5%左右,而炉三压/机双压方案又比炉双压/机双压方案出力增加2%左右,但炉三压方案要同时考虑酸露点及水露点对锅炉的腐蚀影响。综合考虑了以上因素,涟钢电厂选用了炉双压、机双压方案。这样既体现了出力的优势,又可使投资和维修费用相对增加不多。 2.汽轮机系统配置 为了适应快速启停的要求,联合循环汽轮机辅助系统有其自身特点。 (1)旁路系统 联合循环机组为单元制运行,在快速启动或紧急停机情况下,旁路系统应能将余热锅炉产生的全部蒸汽经减温减压 后送入汽轮机到凝汽器。本机组选用容量100%的旁路系统。 主蒸汽旁路和补汽旁路分别配备有一个减温减压阀(先减压后减温),减温水来自凝结水泵出口管道,减温减压阀出口蒸汽多为汽水混合物,压力约在0.4MPa 左右,凝汽器上设置了二级减温减压器,可将汽水混合物进一步减温减压后后送入凝汽器。 (2)凝汽器 由于余热锅炉承担了常规电厂汽轮机系统中给水加热与除氧的任务,汽轮机不再需要设置抽汽级去加热给水。在常规电厂中加热给水的抽汽量一般占主蒸汽流量的10%~30%,即排入凝汽器的蒸汽只有主蒸汽流量的70%~90%左右。而在双压联合循环中,汽轮机非但不抽汽,还在低压缸内补入约占主蒸汽量15%的低压蒸汽。由于补汽的参数较低,体积较大,因此要求联合循环中的汽轮机的低压缸比常规电厂的汽轮机低压缸通流能力增大,联合循环的凝汽器比常规电厂凝汽器换热面积增大。 (3)轴封系统 轴封系统为适应快速启停的需要,汽封压力调节阀和汽封蒸汽减温调节阀的灵活可靠性就特别重要。汽封压力调节阀是控制汽封蒸汽压力保持适度的重要阀门,由高压供汽调节阀和溢流阀组成,由控制系统集中控制。汽封蒸汽在进入汽封之前,需用调节阀降低汽封供汽的温度,这是靠控制凝结水的喷入量实现温度控制的,以防止汽封壳体可能的变形和损坏汽轮机转子。为了简化系统结构,增加系统可靠性和灵活性,可采用压力和温度都能控制的特殊专用阀门。 (4)油系统 油系统主要包括润滑油系统和顶轴油系统及控制油系统,各系统自成体系。值得一提的是,此机组润滑油系统中的油箱采用组合油箱,电动辅助油泵、交流润滑油泵、直流润滑油泵、排油烟系统接口、液位指示器等都装在油箱顶部,注油 2011-02-24 1979-

燃气轮机与联合循环-姚秀平-课后题答案-第二单元

第二章 1、热力参数:压缩比π=p2*/p1*,温度比τ=T3*/T1*; 性能指标:比功ωn=ωt-ωc ; 燃气机循环热效率ηgt=ωn/(f*Hu ) 2、燃气轮机的比功大,说明在同样工质流量和同样的装置尺寸下,燃气轮机的功率大;在 同样的功率下,工质的流量下,燃气轮机的尺寸小。 3、1*11111k k n p k k c T ωτππ--???????? ?=--- ??? ??? ??????? 4、 1 11st k k ηπ-=- 5、 膨胀比πt=p3*/p4* 6、在一定的压比下,温比越高,比功越大;在一定的温比下,存在一个特定的压比πωmax ,使比功ωn 取得最大值;在一定的压比下,温比越高,效率越高,在一定的温比下,存在一 个特定的压比πηmax ,使效率ηgt 取得最大值。通常,πηmax>πωmax 。 7、联合循环中最佳压比都比简单循环要降低。简单循环燃气轮机的效率对燃气初温不很敏 感,而对压比较敏感;联合循环的效率对燃气初温较敏感而对压比不很敏感。 8 、 简单循环的效率只与压比有关,压比越大,效率越高。 联合循环时效率对压比不敏感。 9、如上图:简单循环的效率只与压比有关。联合循环效率随温度变化很大。 10、采用再热循环时,燃气轮机的最佳压比都将有所提高。 计算题 1.

* 1*31 1.3861 * * 1.38621**21288,10, 1.386, 1.315,0.8,0.85 1.03/, 1.20/,125028810546.9546.9288258.9258.9323.60.8 1.03323.6a a a g c t pa pg k k s cs s cs c c c pa c K k k C KJ Kg C KJ Kg T K T T K T T T K T T K w c T T πηηπη--===========?==-=-======?** 34 1.3151 1 1.315**34333.3/10 1250 7201012507205300.85530450.51.20450.5540.6/540.6333.3207.3/g g t s k k t ts s t t ts t pg t n t c KJ Kg T T K T T T K T T K w c T KJ Kg w w w KJ Kg πππη--=======-=-===?===?==-=-= 2. ***134**34**43 1.315*1 1.31513*4288,1600,860,0.85,0.881.386, 1.315 1600860740740840.90.881600840.9759.1160022.48759.1g g c t a g t t ts t s ts k k t s t T K T K T K k k T T T K T T K T T T K T T ηηηππ--========-=-=== ==-=-=????=== ? ????? =1 1.3861** 1.38621**21**2122.48 28822.48685.3685.3288397.3 397.3467.40.85 288467.4755.4a a k k s cs s cs c c c T T K T T T T T K T T T K ππη--===?==-=-=====+=+=

HE型联合循环汽轮机结构特点分析

第38卷 第3期 2009年9月 热力透平THERMAL TURBINE Vol.38No.3S ept.2009 HE 型联合循环汽轮机结构特点分析 陈 倪,董 真,沈 坚 (上海电气电站设备有限公司上海汽轮机厂,上海200240) 摘 要:通过对引进西门子HE 型联合循环汽轮机的总体布置和结构特点的描述,分析了该汽轮机的独特性和先进性所在,为今后同类型汽轮机的自主设计起到引导和借鉴作用。关键词:H E 汽轮机;联合循环;结构特点;先进性 中图分类号:T K 263 文献标识码:A 文章编号:1672-5549(2009)03-0153-03 Structure Characteristics of HE Combined Cycle Steam Turbines CH E N N i,DON G Zhen,SH EN J ian (Shanghai Electric Power Generati on Equipm ent Co.,Ltd.Shanghai Turbine Plant,Shanghai 200240,China) Abstract: T his paper pr esents the particular cha racteristics of Siemens H E combined cycle steam tur bines, and analyzes its uniqueness and adv antag e,w hich can g ive a r efer ence to t he design of similar steam tur bines.Key words: H E steam turbine;combined cycle;structure characterist ic;advantage 收稿日期:2008-05-16 作者简介:陈倪(1965-),1985年毕业于上海机械学院动力系,现任上汽轮机厂设计研究所设计二室主任,多年来一直从事汽轮机结构 设计开发。 0 前言 上海电气在我国第二捆燃机项目中向西门子引进了配F 级燃机的H E 型联合循环汽轮机的技术,并陆续生产了9台,已在4个电厂全部投入运行。该汽轮机在结构合理性、运行灵活性、高效节能方面都是非常出色的,在同类型机组中居世界先进水平。其结构设计从总体到局部都经过了缜密的构思,先进、独特而又合理,这些先进的设计方法可供借鉴以提高自身设计水平。本文从总体布置和结构特点这两大方面对该型号汽轮机最主要的特点进行描述和分析。 1 总体布置 1.1 单层同轴布置 该型号汽轮机为双缸、三压再热型。与西门子其它同类产品一样,该汽轮机采用了模块化的设计,即采用了H 和E 两个模块(亦称H 缸和E 缸)。除了这两个模块之外,该机组还配置了一个 自同步离合器。使得整套联合循环机组自前到后 由燃气轮机、发电机、自同步离合器、汽轮机H 缸、汽轮机E 缸几大部分构成同轴布置,如图1所示。这也正是西门子H E 型联合循环机组总体布置的一大特点。 图1 燃气轮机、发电机、汽轮机布置示意图 由于汽轮机部分为双缸结构,汽轮机转子由高压和中低压2根转子组成,两者之间刚性连接,采用三支点支承方式。考虑了自同步离合器的支承后,汽轮机部分共有4个轴承,分别装在落地式的前轴承座、中轴承座和座缸式的后轴承座内。其中,中轴承为袋式轴承,集径向轴承和推力轴承为一体,为机组相对死点;汽轮机的绝对死点也设在中轴承座处。

相关文档
最新文档