西门子S7-200 PLC模拟量的使用

西门子S7-200 PLC模拟量的使用
西门子S7-200 PLC模拟量的使用

摘要:介绍S7-200 PLC在水处理设备给粉机上的应用,并重点介绍模拟量的处理。以及模拟量的稳定和抗干扰问题。

关键词:可编程控制器;给粉机;模拟量处理

一、引言

给粉机是一种机、电、水、气一体化粉(粒)料定量分切式全自动加药装置,它是现代科技发展新兴的一种技术产品。为达到全自动运转,采用了PLC控制,通过检测稀释罐中的液位高低来控制给粉机的工作,还控制计量泵将稀释罐中的液体药液送到凝集罐中,凝集罐中已有液体是来自高速过滤器的反冲洗水,药液使该反冲洗水的悬浮物凝集成大块状絮凝物以便进行下一步的水处理工作。

二、控制内容和要求

控制内容和要求取决于工艺要求、资源、及可操作性等。给粉机涉及到的工艺流程如图1所示,首先将粉状凝集助剂倒入料斗,给粉机工作时,通过粉位计检测料斗中是否有料,如果有料,先将干燥空气经气源三联件和气阀吹入出料口,延迟一段时间后,打开淋水器侧的水电磁阀,为送料作好准备,再延迟一段时间,启动给粉机运行。此时,给粉机将药液定量的连续的注进稀释罐,在稀释罐中,有搅拌机不停的搅拌,搅拌均匀后待用。使用药液时,用计量泵来运送,从稀释罐中注入到凝集罐一类的设备中。

给粉机、水阀、气阀、搅拌机、计量泵的工作状况都与稀释罐中的液位密切相关,一般讲,液位控制采用电极式的开关量信号,将有关的4个位置的液位信号送到PLC中参与控制。但当用户的液位检测装置是液位变送器时,就需采用模拟量模块,稀释罐中的液位是通过液位变送器来检测的,对应一定的液位,送出4-20mA电流信号(4-20mA对应着液位高度0-1M)。

?液位距池底为120mm时,为L2液位,低于L2液位时,报警,不能启动计量泵。

?液位距池底为120mm时,为L1液位,液位低于L1时要启动气阀、水阀、给粉机,当给粉机运行时,搅拌机也要运行。给粉机停止时,搅

拌机也停止。

?液位距池底为750mm时,为H1液位,高于H1液位,给粉机停。

?液位距池底为850mm时,为H2液位,高于H2液位时,报警。

三、PLC选用和硬件配置

综合上述情况考虑开关量输入输出的数量,模拟量输入,定时及连锁等各方面情况,选用西门子S7-200系列可编程控制器,型号为CPU-212。这种PLC 小型、紧凑,在CPU中配有1K的EEPROM,可永久性的存储用户程序和其他重要的系统参数;它还装有大容量的电容器,供长时间存储所有的数据,而不需要另外安装后备电池;外形尺寸小巧,塑料外壳紧凑坚固,可以直接装在电气控制常用的35mm标准导轨上;本机带有8个输入点和6个输出点,还可扩展2个模块,包括模拟量模块;机内有128个内部存储位,64个定时器,64个计数器,足够编程人员使用;内置24V直流电源,可供本机数字量、模拟量的输入使用,不必另设直流电源;指令执行速度快,每条指令执行时间为1.3us;编程可用小型手持式编程器,方便现场调试,也可用个人PC,方便在研制场所编制程序及归档文件和打印输出。

PLC配置见表1:

各个开关量控制、定时、计数、连锁等常规控制用顺序控制方式编在主程序中,这里不赘述。下面重点描述模拟量的处理问题。

作为一个主要控制条件,稀释罐液位,是通过液位传感器送出4-20mA模拟信号进到控制系统中,CPU通过模拟量扩展模块EM232读取该值,并分析、处理该值,在几个指定的液位高度时,输出信号去控制相应设备或发出报警信号。和该模拟量有关的几个基本数据:

?对于EM231和CPU212的规定,输入0-20mA对应数据为0-32000,每1mA增量,数据为1600。

?稀释罐液位0-1000mm对应着液位传感器输出4-20mA。液位增量

62.5mm,输出为1mA。

?考虑到液位的波动情况,设定最大波动在5mm(即增128个数),上升时取上限值,下降时取下限值。编好软件后,输入到PLC中,接上仿真开关、信号发生器等,开始调试程序。在调试中发现,模拟量的输入值变化太大,观察AIW0,随着信号源从4-20mA变化,应该从0-32000变化,观察时看到,AIW0的后三位数字都在跳动,这种情况无法参与控制。经分析和试验,从硬件和软件两方面着手解决。

1、硬件接线

从S7-200的安装手册中可以看出,模拟量模块A/D转换间无隔离,这样模块本身抗干扰能力弱。但没有该模块的详细电路,考虑从信号输入端着手,如果输入以参考端接到适当位置,可以减小干扰。最后作了3种接法实验:(1)A_端独立。

(2)A_接到M,而M又接地。

(3)A_接到M,而M不接地。

实验比较以上3种情况后,发现第3种情况结果最好,如图2所示。第1种情况,A独立,因EM231是单端输入,所以A如果悬空,信号没有基准,可能干扰大;第2种情况,A接M而又同时接地,但在这种水处理现场一般不设为仪表专做的地线,因而接地后,各种强电杂波信号都可以通过地线串进来,使干扰增强;第3种情况,A接M又不接地,形成了浮地输入,这种接地常被称为模拟地或小信号地,在一定情况下可以抑制某些干扰,实验证明使用这种处理方法有一定效果。从编程器读取AIW0值,基本上是后两位数字在跳。由于EM231的数据位是12位,而AIW0取值范围是0-32000,是16位,因此,在12位的8421码中,最后一位的一次跳变就是8,这样,后两位在跳变也属正常。

图2 EM231接线的改变

2、软件编程

针对上述情况,从软件入手,进一步调整了模拟量输入的稳定状况。方法是从AIW0取输入值,求多次采样的平均值依据计算出的平均值输出,去控制给粉机的运行。即:由于S7-200的指令处理较快,模数转换时间也短,在几十us,且模拟量读数灵敏度较高,而在本控制系统中,对转换时间要求不高,所以可以采用多次采样的平均值方法,来处理输入值。例如10次采样值如下:16848、16832、16808、16840、16864、16856、16872、16880、16824、16848,这些值最大为16800,最小为16808,差为72,如果10次采样为128次,求平均值后放到VW20中,这样VW20的每次读取时间还在ms级,完全满足实际

要求。(实际观察结果为AIW0的变化:164616-14672;VW20的变化:14647-14651)。经过上述软件的处理后,当AIW0中的值在后两位跳变时,经处理后的模拟量VW20中的值只是个位在跳变,且是一个一个跳变,通过调试证明,采集数据又提高了一个数量级。

五、结束语

在实际使用中发现,这种机型的模拟量模块的抗干扰性能还不尽人意,但最近,西门子公司又推出了S7-22X系列的小型机,据说模拟量的隔离性能好于

S7-21X系列,待下次选用时在作了解。但软件的这种处理模拟量输入的方法完全可以采用。

1、将模拟量通道AIW0的数据通过I_DI指令转换为DINT数据类型,并存放入AC0中

2、将AC0中的数据使用DI_R转换为浮点数,目的是为了提升计算精度,因为西门子不允许整型数据直接转换为浮点数,因此必须通过1,2步骤转换。

3、将AC0-6400,因为4-20mA的采集在西门子200系列中是通过坐标移动进行的,也就是因为对于0-20mA来说,西门子S7-200的采集数据在0-32000,也就是说每mA对应的数值为32000/20=1600,那么4-20mA就是6400-32000,因此要将输入值-6400来完

成坐标的移动。

4、然后除以(DIV_R)25600来得到输入值占用整个输入范围的百分比,32000-6400= 25600,25600就是4-20mA对应的输入范围。

5、然后通过乘以(MUL_R)100,就得到了0-100的数据。

通过上述程序,将输入的模拟量信号对应的6400-32000之间的数据转换为0-100之间的数据,这样做也称为线性转换。

工程量转换的方法

经常在论坛上看到网友提出工程量显示的问题,想在此做个专题,供各位网友参考。1、基本概念

我们生活在一个物质的世界中。世间所有的物质都包含了化学和物理特性,我们是通过对物质的表观性质来了解和表述物质的自有特性和运动特性。这些表观性质就是我们常说的质量、温度、速度、压力、电压、电流等用数学语言表述的物理量,在自控领域称为工程量。这种表述的优点是直观、容易理解。在电动传感技术出现之前,传统的检测仪器可以直接显示被测量的物理量,其中也包括机械式的电动仪表。

2、标准信号

在电动传感器时代,中央控制成为可能,这就需要检测信号的远距离传送。但是纷繁复杂的物理量信号直接传送会大大降低仪表的适用性。而且大多传感器属于弱信号型,远距离传送很容易出现衰减、干扰的问题。因此才出现了二次变送器和标准的电传送信号。二次变送器的作用就是将传感器的信号放大成为符合工业传输标准的电信号,如0-5V、0-10V或4-20mA(其中用得最多的是4-20mA)。而变送器通过对放大器电路的零点迁移以及增益调整,可以将标准信号准确的对应于物理量的被检测范围,如0-100℃或-10-100℃等等。这是用硬件电路对物理量进行数学变换。中央控制室的仪表将这些电信号驱动机械式的电压表、电流表就能显示被测的物理量。对于不同的量程范围,只要更换指针后面的刻度盘就可以了。更换刻度盘不会影响仪表的根本性质,这就给仪表的标准化、通用性和规模化生产带来的无可限量的好处。

3、数字化仪表

到了数字化时代,指针式显示表变成了更直观、更精确的数字显示方式。在数字化仪表中,这种显示方式实际上是用纯数学的方式对标准信号进行逆变换,成为大家习惯的物理量表达方式。这种变换就是依靠软件做数学运算。这些运算可能是线性方程,也可能是非线性方程,现在的电脑对这些运算是易如反掌。

4、信号变换中的数学问题

信号的变换需要经过以下过程:物理量-传感器信号-标准电信号-A/D转换-数值显示。

声明:为简单起见,我们在此讨论的是线性的信号变换。同时略过传感器的信号变换过程。

假定物理量为A,范围即为A0-Am,实时物理量为X;标准电信号是B0-Bm,实时电信号为Y;A/D转换数值为C0-Cm,实时数值为Z。

如此,B0对应于A0,Bm对应于Am,Y对应于X,及Y=f(X)。由于是线性关系,得出方程式为Y=(Bm-B0)*(X-A0)/(Am-A0)+B0。又由于是线性关系,经过A/D转换后的数学方程Z=f(X)可以表示为Z=(Cm-C0)*(X-A0)/(Am-A0)+C0。那么就很容易得出逆变换的数学方程为X=(Am-A0)*(Z-C0)/(Cm-C0)+A0。方程中计算出来的X就可以在显示器上直接表达为被检测的物理量。

5、PLC中逆变换的计算方法

以S7-200和4-20mA为例,经A/D转换后,我们得到的数值是6400-32000,及C0=64 00,Cm=32000。于是,X=(Am-A0)*(Z-6400)/(32000-6400)+A0。

例如某温度传感器和变送器检测的是-10-60℃,用上述的方程表达为X=70*(Z-6400)/ 25600-10。经过PLC的数学运算指令计算后,HMI可以从结果寄存器中读取并直接显示为工程量。

用同样的原理,我们可以在HMI上输入工程量,然后由软件转换成控制系统使用的标准化数值。

在S7-200中,(Z-6400)/25600的计算结果是非常重要的数值。这是一个0-1.0(100%)的实数,可以直接送到PID指令(不是指令向导)的检测值输入端。PID指令输出的也是0-1.0的实数,通过前面的计算式的反计算,可以转换成6400-32000,送到D/A

端口变成4-20mA输出。

西门子S7-200模拟量编程

西门子S7-200模拟量编程 本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容: 1、模拟量扩展模块接线图及模块设置 2、模拟量扩展模块的寻址 3、模拟量值和A/D转换值的转换 4、编程实例 模拟量扩展模块接线图及模块设置 EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。下面以EM235为例讲解模拟量扩展模块接线图,如图1。 图1 图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;

未连接传感器的通道要将X+和X-短接。 对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。(后面将详细介绍) 量的单/双极性、增益和衰减。 时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。

SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。 6个DIP开关决定了所有的输入设置。也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。 输入校准 模拟量输入模块使用前应进行输入校准。其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。其步骤如下: A、切断模块电源,选择需要的输入范围。 B、接通CPU和模块电源,使模块稳定15分钟。 C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输入端。 D、读取适当的输入通道在CPU中的测量值。 E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据值。 F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。 G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据值。 H、必要时,重复偏置和增益校准过程。 EM235输入数据字格式 下图给出了12位数据值在CPU的模拟量输入字中的位置

关于西门子模拟量输入模块接线的阐述

关于西门子模拟量输入模 块接线的阐述 Prepared on 24 November 2020

关于西门子模拟量输入模块接线的阐述 关于西门子模拟量输入模块6ES7 331-7KF02-0AB0接线图的阐 述 1.问题概述 我们公司所采用的很多模拟量输入模块的订货号是6ES7 331- 7KF02-0AB0, 认真研究该模块接线图后发现很多问题,通过网络查资料,向西门子咨询和同事讨论问题基本解决,经整理后写成本文件,供同事参考,具体描述如下 具体问题: ①端子10(COMP)和端子11(MANA)为什么要短接。 ②端子11(MANA)和端子20(M)为什么要短接。 ③两线制具体怎么接,为什么要这样接。 ④四线制具体怎么接,为什么要这样接。 ⑤两线制和四线制的区别重点在什么地方。 ⑥西门子设备手册中的“使用非隔离电源的接地4线制传感器时,不需要互连MANA和M-(端子11、13、15、17、19)。”这句话怎么理解,我们该怎样处理。 ⑦功能性接地是什么作用。 参考图片 图1西门子设备手册提供的6ES7 331-7KF02-0AB0接线图 图2 6ES7 331-7KF02-0AB0接线端子说明

问题讲解 ①问题“①端子10(COMP)为什么和端子11(MANA)短接。” 端子10(COMP)是用于外部补偿,而Mana是参考电位,一般模拟量输入模块6ES7 331-7KF02-0AB0使用内部补偿,所以必须将端子10(COMP)与参考电位Mana短接。 ②问题“②端子11(Mana)和端子20(M)为什么要短接。” 端子11(Mana)作为模拟测量电路参考电位,参考电位就是模块供电的DC24V负(-),所以端子11(Mana)和端子20(M)短接。 ③问题“⑤两线制和四线制的区别重点在什么地方。” 区别1:有无独立供电 两线制没有独立外部供电,由模块测量回路供电。 四线制有独立外部供电。 区别2:电流流向 两线制电流由模块流向仪表后流回模块。 四线制电流由仪表流向模块后流回仪表。 图3四线制和两线制电流流向 ④问题“③两线制具体怎么接,为什么要这样接。” 两线制仪表把测量的正M0连接到端子2上,测量的负M0-连接到端子3上,端子3无需接地。 ⑤问题“④四线制具体怎么接,为什么要这样接。” 四线制分为两种情况:

西门子S7-200模拟量模块使用问题

资料由群友:最幸福的人提供,感谢他! 所在群号为:86082393 (转帖)西门子S7-200模拟量模块使用问题 工控类2009-06-29 09:58 阅读133 评论0 字号:大中小西门子S7-200模拟量模块使用问题(2009-05-04 20:52:09) 标签:模拟量模块共模电压西门子s7-200编程plc em235em231教 育 1.S7-200模拟量输入模块(EM231,EM235)寻址 l 每个模拟量扩展模块,按扩展模块的先后顺序进行排序,其中,模拟量根据输入、输出不同分别排序。模拟量的数据格式为一个字长,所以地址必须从偶数字节开始,精度为12位;模拟量值为0-32000的数值。输入格式: AIW[起始字节地址] 如AIW0输出格式: AQW[起始字节地址] AQW0 每个模拟量输入模块,按模块的先后顺序地址为固定的,顺序向后排。例::AIW0,AIW2,AIW4……、AQW0,AQW2……。 l 每个模拟量扩展模块至少占两个通道,即使第一个模块只有一个输出 AQW0(EM235只有一个模拟量输出),第二个模块模拟量输出地址也应从AQW4开始寻址,以此类推。 2.传感器连接到S7-200 模拟量输入模块(EM231,EM235)有哪些注意事项?

l 模拟量输入模块可以通过拨码开关设置为不同的测量方式(电流电压)。模块开关的设置应用于整个模块,一个模块只能设置为一种测量范围;而且开关设置只有在重新上电后才能生效。只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。 l EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。EM235模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X -;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。 l 注意:为避免共模电压,须将M端与所有信号负端连接,未连接传感器的通道要短接。当模拟量输入PLC接收到一个变动很大的不稳定的值时,原因之一:你可能使用了一个自供电或隔离的传感器电源,两个电源没有彼此连接,所以由此产生了一个很高的上下振动的共模电压,影响模拟量输入值。原因之二:可能是模拟量输入模块接线太长或绝缘不好。所以解决方法:1.连接传感器输入的负端与模块上的公共M 端以补偿此种波动。(注意:事前要确定这是两个电源间的唯一连接。如果另外一个连接已经存在了,当再添加公共连接时可能会产生一个多余的补偿电流。) l 当出现模拟量输入PLC接收到信号变化很慢,这可能是你使用了滤波器,可以通过降低滤波采样数,或取消模拟量滤波方式解决。 3.关于EM235是否能用于热电阻测温问题? EM235不是用于与热电阻连接测量温度的模块,勉强使用容易带来故障。 4.关于EM235输入校准问题: 模拟量输入模块使用前应进行输入校准。其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。其步骤如下: A、切断模块电源,选择需要的输入范围。 B、接通CPU和模块电源,使模块稳定15分钟。 C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输入端。

西门子S7-200模拟量模块使用问题

1、S7-200模拟量输入模块(EM231,EM235)寻址 每个模拟量扩展模块,按扩展模块的先后顺序进行排序,其中,模拟量根据输入、输出不同分别排序。模拟量的数据格式为一个字长,所以地址必须从偶数字节开始,精度为12位;模拟量值为0-32000的数值。输入格式: AIW[起始字节地址] 如AIW0输出格式: AQW[起始字节地址] AQW0 每个模拟量输入模块,按模块的先后顺序地址为固定的,顺序向后排。例::AIW0,AIW2,AIW4……、AQW0,AQW2……。 每个模拟量扩展模块至少占两个通道,即使第一个模块只有一个输出AQW0(EM235只有一个模拟量输出),第二个模块模拟量输出地址也应从AQW4开始寻址,以此类推。 2、传感器连接到S7-200 模拟量输入模块(EM231,EM235)有哪些注意事项? 模拟量输入模块可以通过拨码开关设置为不同的测量方式(电流电压)。模块开关的设置应用于整个模块,一个模块只能设置为一种测量范围;而且开关设置只有在重新上电后才能生效。只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。 EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。EM235模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。 注意:为避免共模电压,须将M端与所有信号负端连接,未连接传感器的通道要短接。当模拟量输入PLC接收到一个变动很大的不稳定的值时,原因之一:你可能使用了一个自供电或隔离的传感器电源,两个电源没有彼此连接,所以由此产生了一个很高的上下振动的共模电压,影响模拟量输入值。原因之二:可能是模拟量输入模块接线太长或绝缘不好。所以解决方法:1.连接传感器输入的负端与模块上的公共M 端以补偿此种波动。(注意:事前要确定这是两个电源间的唯一连接。如果另外一个连接已经存在了,当再添加公共连接时可能会产生一个多余的补偿电流。) 当出现模拟量输入PLC接收到信号变化很慢,这可能是你使用了滤波器,可以通过降低滤波采样数,或取消模拟量滤波方式解决。 3、关于EM235是否能用于热电阻测温问题? EM235不是用于与热电阻连接测量温度的模块,勉强使用容易带来故障。 4、关于EM235输入校准问题: 模拟量输入模块使用前应进行输入校准。其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。其步骤如下: A、切断模块电源,选择需要的输入范围。

西门子300PLC所有模拟量模块接线问题汇总情况——精编

抓住一点,模拟量接线问题迎刃而解(一)——确定基准电位点很重要 今天,一个新来的热线同事找我讨论模拟量模块的问题,他在热线上遇到了一些麻烦,用户打电话反映在现场的S7 300模拟量模块读数不变化,怎么折腾都读数是32767。尽管模拟量模块大家都很熟悉,但是类似的问题还经常有用户反应。翻了翻手边的资料,似乎没有系统讲解这个问题的,于是把自己的经验归纳总结一下。既然是经验,放在下载中心似乎不太合适,就放在自己的故事里吧。故事写完,想必也会有个比较正式的版本放在下载中心。 在我看来,想解决这样的问题,最根本的是要抓住一点。有的用户可能迫不及待地想知道哪一点了,但是这一点涉及的知识面还是有些宽。平时也忙,我会断断续续的写,大家耐心看完这个系列,就可以抓住这一点了。 关于读不出值的问题,如果总是32767没有变化,其实值已经有了,只不过是超量程了。如果值为0,那就要注意模拟量是否有问题了,使用万用表测量现场信号并没有超限。为什么会出现这两种现象呢?这是因为选择的参考电位不同,例如,现场过来的信号为5V,那首先要问一下,基准点是几伏?10~15是5V,-10~ -5同样也是5V,如果测量端基准点是0V,那么测量就会有问题,所以一定要保证两端等电位。模拟量模块的基准电位点就是M ANA ,所有的接线都与之有关。在接下来的故事中,咱们就仔细讲讲接线的问题。 抓住一点,模拟量接线问题迎刃而解(二):隔离与非隔离问题系 列 2013-03-11 这里的隔离是指模拟量模块的基准电位点M ANA 与地(也是PLC的数据地)隔离。 隔离模块M ANA 与地M可以不连接,以M ANA 作为测量端的参考电位;非隔离模 块M ANA 与地M必须连接,这样地M 变为M ANA 作为测量端的参考电位。隔离模 块的好处就是可以避免共模干扰。如何知道模块是否是隔离模块,例如SM331模块,可以从模板规范中查到。S7-300中只有一款SM334(SM355除外)模块是非隔离的,此外CPU31XC集成的模拟量也是非隔离的,共同特点就是模块的输出和输入公用M端。 同样传感器也有隔离与非隔离的问题。通常非隔离的传感器电源的负端与信号的负端公用一个端子,例如传感器有三个端子 L, M 和S+,通过L, M端子向传感器供电,S+,M为信号的输出,公用M端。判断传感器是否隔离最好还是参考手册。隔离传感器信号负端与地M可以不连接,以信号负端作为信号源端的参考电位。非隔离传感器信号负端必须在源端(设备端)接地,以源端的地作为信号的参考电位。 下面就是如何保证测量端与信号源端等电位接线的问题。在下面建议的连接图中所用的缩写词和助记符含义如下: M +:测量导线(正) M -:测量导线(负) M ANA :模拟量模块基准电位点 这里需要注意M ANA ,不同的接线方式都是以M ANA 为参考基准电位。

S7-200模拟量输入输出实例

对输入、输出模拟量的PLC编程的探讨及编程实例解析 3134人阅读| 4条评论发布于:2011-12-29 9:03:42 对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。不同的传感变送器,通过不同的模拟量输入输出模块进行转换,其转换公式是不一样的,如果选用的转换公式不对,编出的程序肯定是错误的。比如有3个温度传感变送器:(1)、测温范围为0~200 ,变送器输出信号为4~20ma (2)、测温范围为0~200 ,变送器输出信号为0~5V (3)、测温范围为-100 ~500 ,变送器输出信号为4~20ma (1)和(2)二个温度传感变送器,测温范围一样,但输出信号不同,(1)和(3)传感变送器输出信号一样,但测温范围不同,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同。 一、转换公式的推导 下面选用S7-200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导: 对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号,20ma 对应数子量=32000,4 ma对应数字量=6400; 对于(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V对应数字量=32000,0V对应数字量=0; 这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助,请见下图:上面推导出的(2-1)、(2-2)、(2-3)三式就是对应(1)、(2)、(3)三种温度传感变送器经过模块转换成数字量后再换算为被测量的转换公式。编程者依据正确的转换公式进行编程,就会获得满意的效果。 二、变送器与模块的连接 通常输出4~20ma电流信号的传感变送器,对外输出只有+、- 二根连线,它需要外接24V电源电压才能工作,如将它的+、- 二根连线分别与24V电源的正负极相连,在被测量正常变化范围内,此回路将产生4~20ma电流,见下左图。下右图粉色虚线框内为EM235 模块第一路模拟输入的框图,它有3个输入端,其A+与A-为A/D转换器的+ - 输入端,RA 与A-之间并接250Ω标准电阻。A/D转换器是正逻辑电路,它的输入是0~5V电压信号,A-为公共端,与PLC的24V电源的负极相连。 那么24V电源、传感变送器、模块的输入口三者应如何连接才是正确的?正确的连线是这样的:将左图电源负极与传感器输出的负极连线断开,将电源的负极接模块的A-端,将传感器输出负极接RA端,RA端与A+端并接一起,这样由传感器负极输出的4~20ma电流由RA流入250Ω标准电阻产生0~5V 电压并加在A+与A-输入端。 切记:不可从左图的24V正极处断开,去接模块的信号输入端,如这样连接,模块是不会正常工作的。 对第(2)种电压输出的传感変送器,模块的输入应设置为0~5V电压模式,连线时,变送器输出负极只连A+,RA端空悬即可。 三、按转换公式编程: 根据转换后变量的精度要求,对转换公式编程有二种形式:1、整数运算,2、实数运算。 请见下面梯形图: (A)、整数运算的梯形图:

西门子S7-200_PLC模拟量的使用

摘要:介绍S7-200 PLC在水处理设备给粉机上的应用,并重点介绍模拟量的处理。以及模拟量的稳定和抗干扰问题。 关键词:可编程控制器;给粉机;模拟量处理 一、引言 给粉机是一种机、电、水、气一体化粉(粒)料定量分切式全自动加药装置,它是现代科技发展新兴的一种技术产品。为达到全自动运转,采用了PLC控制,通过检测稀释罐中的液位高低来控制给粉机的工作,还控制计量泵将稀释罐中的液体药液送到凝集罐中,凝集罐中已有液体是来自高速过滤器的反冲洗水,药液使该反冲洗水的悬浮物凝集成大块状絮凝物以便进行下一步的水处理工作。 二、控制内容和要求 控制内容和要求取决于工艺要求、资源、及可操作性等。给粉机涉及到的工艺流程如图1所示,首先将粉状凝集助剂倒入料斗,给粉机工作时,通过粉位计检测料斗中是否有料,如果有料,先将干燥空气经气源三联件和气阀吹入出料口,延迟一段时间后,打开淋水器侧的水电磁阀,为送料作好准备,再延迟一段时间,启动给粉机运行。此时,给粉机将药液定量的连续的注进稀释罐,在稀释罐中,有搅拌机不停的搅拌,搅拌均匀后待用。使用药液时,用计量泵来运送,从稀释罐中注入到凝集罐一类的设备中。 给粉机、水阀、气阀、搅拌机、计量泵的工作状况都与稀释罐中的液位密切相关,一般讲,液位控制采用电极式的开关量信号,将有关的4个位置的液位信号送到PLC中参与控制。但当用户的液位检测装置是液位变送器时,就需采用模拟量模块,稀释罐中的液位是通过液位变送器来检测的,对应一定的液位,送出4-20mA电流信号(4-20mA对应着液位高度0-1M)。 ?液位距池底为120mm时,为L2液位,低于L2液位时,报警,不能启动计量泵。 ?液位距池底为120mm时,为L1液位,液位低于L1时要启动气阀、水阀、给粉机,当给粉机运行时,搅拌机也要运行。给粉机停止时,搅 拌机也停止。 ?液位距池底为750mm时,为H1液位,高于H1液位,给粉机停。 ?液位距池底为850mm时,为H2液位,高于H2液位时,报警。 三、PLC选用和硬件配置

关于西门子模拟量输入模块接线的阐述

关于西门子模拟量输入 模块接线的阐述 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

关于西门子模拟量输入模块接线的阐述 关于西门子模拟量输入模块6ES7 331-7KF02-0AB0接线图的阐 述 1.问题概述 我们公司所采用的很多模拟量输入模块的订货号是6ES7 331- 7KF02-0AB0, 认真研究该模块接线图后发现很多问题,通过网络查资料,向西门子咨询和同事讨论问题基本解决,经整理后写成本文件,供同事参考,具体描述如下 具体问题: ①端子10(COMP)和端子11(MANA)为什么要短接。 ②端子11(MANA)和端子20(M)为什么要短接。 ③两线制具体怎么接,为什么要这样接。 ④四线制具体怎么接,为什么要这样接。 ⑤两线制和四线制的区别重点在什么地方。 ⑥西门子设备手册中的“使用非隔离电源的接地4线制传感器时,不需要互连MANA和M-(端子11、13、15、17、19)。”这句话怎么理解,我们该怎样处理。 ⑦功能性接地是什么作用。 参考图片 图1西门子设备手册提供的6ES7 331-7KF02-0AB0接线图 图2 6ES7 331-7KF02-0AB0接线端子说明

问题讲解 ①问题“①端子10(COMP)为什么和端子11(MANA)短接。” 端子10(COMP)是用于外部补偿,而Mana是参考电位,一般模拟量输入模块6ES7 331-7KF02-0AB0使用内部补偿,所以必须将端子10(COMP)与参考电位Mana短接。 ②问题“②端子11(Mana)和端子20(M)为什么要短接。” 端子11(Mana)作为模拟测量电路参考电位,参考电位就是模块供电的DC24V负(-),所以端子11(Mana)和端子20(M)短接。 ③问题“⑤两线制和四线制的区别重点在什么地方。” 区别1:有无独立供电 两线制没有独立外部供电,由模块测量回路供电。 四线制有独立外部供电。 区别2:电流流向 两线制电流由模块流向仪表后流回模块。 四线制电流由仪表流向模块后流回仪表。 图3四线制和两线制电流流向 ④问题“③两线制具体怎么接,为什么要这样接。” 两线制仪表把测量的正M0连接到端子2上,测量的负M0-连接到端子3上,端子3无需接地。 ⑤问题“④四线制具体怎么接,为什么要这样接。” 四线制分为两种情况:

西门子S7-200PLC模拟量波动问题解决

西门子S7-200PLC模拟量 问题1: S7-200模拟量输入模块(EM231,EM235)如何寻址? 回答: 模拟量输入和输出为一个字长,所以地址必须从偶数字节开始, 精度为12位,模拟量值为0-32000的数值。 格式: AIW[起始字节地址] AIW6 ; AQW[起始字节地址] AQW0 每个模拟量输入模块,按模块的先后顺序地址为固定的,顺序向后排。例: AIW0 AIW2 AIW4 AIW6每个模拟量输出模块占两个通道,即使第一个模块只有一个输出AQW0 (EM235只有一个模拟量输出), 第二个模块模拟量输出地址也应从AQW4开始寻址,依此类推。(注: 每一模块的起始地址都可在step7 micro/win 中Plc/Inf ormation里在线读到)。 问题2: 如何将传感器连接到S7-200 模拟量输入模块(EM231,EM23 5)以及有哪些注意事项? 回答: 模拟量输入模块可以通过拨码开关设置为不同的测量方法。开关的设置应用于整个模块,一个模块只能设置为一种测量范围。(注:开关设置只有在重新上电后才能生效) 输入阻抗与连接有关:电压测量时,输入是高阻抗为10 MOh

m ;电流测量时,需要将Rx 和x 短接,阻抗降到250 Ohm 。 注意: 为避免共模电压,须将M端与所有信号负端连接, 未连接传感器的通道要短接, 如下列各图。 下列各图是各种传感器连接到S7-200 模拟量输入模块的示例 图1: 4线制-外供电-测量

图2: 2线制-测量 为了防止模拟量模块短路,可以串入传感器一个750 Ohm电阻。它将串接在内部250 Ohm电阻上并保证电流在32 m A以下。

西门子模拟量计算

变频电机与工频电机有什么区别 一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。以下为变频器对电机的影响1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。其次,普通异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。 二、变频电动机的特点1、电磁设计对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:1) 尽可能的减小定子和转子电阻。减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增2)为抑制电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。2、结构设计再结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般注意以下问题:1)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。2)对电机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以

西门子300PLC模拟量模块接线

西门子300PLC所有模拟量模块接线问题汇总 1、确定基准电位点很重要 近期有学员咨询关于模拟量模块的问题,反映在现场的S7-300模拟量模块读数不变化,怎么弄都读数是32767。尽管模拟量模块大家都很熟悉,但是类似的问题还经常有用户反应。为此小编特意咨询了老师,老师将自己的经验归纳总结一下。 关于读不出值的问题,如果总是32767没有变化,其实值已经有了,只不过是超量程了。如果值为0,那就要注意模拟量是否有问题了,使用万用表测量现场信号并没有超限。为什么会出现这两种现象呢?这是因为选择的参考电位不同,例如,现场过来的信号为5V,那首先要问一下,基准点是几伏?10~15是5V,-10~ -5同样也是5V,如果测量端基准点是0V,那么测量就会有问题,所以一定要保证两端等电位。模拟量模块的基准电位点就是MANA ,所有的接线都与之有关。 2、隔离与非隔离问题系列 这里的隔离是指模拟量模块的基准电位点MANA 与地(也是PLC的数据地)隔离。隔离模块MANA 与地M可以不连接,以MANA 作为测量端的参考电位;非隔离模块MANA 与地M必须连接,这样地M 变为MANA作为测量端的参考电位。隔离模块的好处就是可以避免共模干扰。如何知道模块是否是隔离模块,例如SM331模块,可以从模板规范中查到。S7-300中只有一款SM334(SM355除外)模块是非隔离的,此外CPU31XC集成的模拟量也是非隔离的,共同特点就是模块的输出和输入公用M端。 同样传感器也有隔离与非隔离的问题。通常非隔离的传感器电源的负端与信号的负端公用一个端子,例如传感器有三个端子 L, M 和S+,通过L, M端子向传感器供电,S+,M为信号的输出,公用M端。判断传感器是否隔离最好还是参考手册。隔离传感器信号负端与地M可以不连接,以信号负端作为信号源端的参考电位。非隔离传感器信号负端必须在源端(设备端)接地,以源端的地作为信号的参考电位。 下面就是如何保证测量端与信号源端等电位接线的问题。在下面建议的连接图中所用的缩写词和助记符含义如下:

西门子200SMART模拟量模块怎么接线(汇编)

西门子200SMART模拟量模块怎么接线 1.普通模拟量模块接线 模拟量类型的模块有三种:普通模拟量模块、RTD模块和TC模块。 普通模拟量模块可以采集标准电流和电压信号。其中,电流包括:0-20mA、4-20mA 两种信号,电压包括:+/-2.5V、+/-5V、+/-10V三种信号。 注意: S7-200 SMART CPU普通模拟量通道值范围是0~27648或-27648~27648。 普通模拟量模块接线端子分布如下图 1 模拟量模块接线所示,每个模拟量通道都有两个接线端。 图1 模拟量模块接线 模拟量电流、电压信号根据模拟量仪表或设备线缆个数分成四线制、三线制、两线制三种类型,不同类型的信号其接线方式不同。 四线制信号指的是模拟量仪表或设备上信号线和电源线加起来有4根线。仪表或设备有单独的供电电源,除了两个电源线还有两个信号线。四线制信号的接线方

式如下图2模拟量电压/电流四线制接线所示。 图2 模拟量电压/电流四线制接线 三线制信号是指仪表或设备上信号线和电源线加起来有3根线,负信号线与供电电源M线为公共线。三线制信号的接线方式如下图3 模拟量电压/电流三线制接线所示。 图3 模拟量电压/电流三线制接线 两线制信号指的是仪表或设备上信号线和电源线加起来只有两个接线端子。由于S7-200 SMART CPU模拟量模块通道没有供电功能,仪表或设备需要外接24V

直流电源。两线制信号的接线方式如下图4 模拟量电压/电流两线制接线所示。 图4 模拟量电压/电流两线制接线 不使用的模拟量通道要将通道的两个信号端短接,接线方式如下图 5 不使用的通道需要短接所示。 图5 不使用的通道需要短接

西门子S7-200模拟量模块说明

西门子S7-200模拟量编程 PLC 2009-09-16 20:05 阅读77 评论0 字号:大中小 西门子S7-200模拟量编程 韩耀旭 本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容: 1、模拟量扩展模块接线图及模块设置 2、模拟量扩展模块的寻址 3、模拟量值和A/D转换值的转换 4、编程实例 模拟量扩展模块接线图及模块设置 EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。下面以EM235为例讲解模拟量扩展模块接线图,如图1。 图1 图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端; 未连接传感器的通道要将X+和X-短接。 对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量 程和分辨率。(后面将详细介绍)

量的单/双极性、增益和衰减。 模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。 SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟 量的衰减选择。 根据上表6个DIP开关的功能进行排列组合,所有的输入设置如下表:

6个DIP开关决定了所有的输入设置。也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。 输入校准 模拟量输入模块使用前应进行输入校准。其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。其步骤如下: A、切断模块电源,选择需要的输入范围。 B、接通CPU和模块电源,使模块稳定15分钟。 C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输 入端。 D、读取适当的输入通道在CPU中的测量值。 E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据 值。 F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。 G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据 值。 H、必要时,重复偏置和增益校准过程。 EM235输入数据字格式 下图给出了12位数据值在CPU的模拟量输入字中的位置 图2

西门子模拟量输入模块SM331接线方法总结

两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当PLC的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。 传感器型号: 1、两线制(本身需要供给24vDC电源的,输出信号为4-20MA,电流)即+接24vdc,负输出4-20mA电流。 2、四线制(有自己的供电电源,一般是220vac ,信号线输出+为4-20ma正,-为4-20ma负。PLC: (以2正、3负为例)1、两线制时正极2输出24VDC电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24vdc;跳线为两线制电流信号。 (以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,pl c跳线为4线制电流。 (以2正、3负为例)3、四线制传感器与pl c两线制跳线接法:信号线负与柜内M线相连。将传感器正与plc的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,pl c跳线为电压信号。

相关文档
最新文档