航空发动机整体叶盘结构及发展趋势

航空发动机整体叶盘结构及发展趋势
航空发动机整体叶盘结构及发展趋势

航空发动机原理与构造复习题

一、选择题 1.燃气涡轮发动机的核心机包括 C 。 A.压气机、燃烧室和加力燃室B.燃烧室、涡轮和加力燃室 C.压气机、燃烧室和涡轮D.燃烧室、加力燃室和喷管 2.在0~9截面划分法中,压气机出口截面是 B 。 A.1—1截面B.3—3截面C.4—4截面D.6—6截面 3.在0~9截面划分法中,燃烧室出口截面是。 C A.1—1截面B.3—3截面C.4—4截面D.6—6截面 4.发动机正常工作时,燃气涡轮发动机的涡轮是_____B____旋转的。 A.压气机带动B.燃气推动 C.电动机带动D.燃气涡轮起动机带动 5.气流在轴流式压气机基元级工作叶轮内流动,其_____C____。 A.相对速度增加,压力下降B.绝对速度增加,压力增加 C.相对速度降低,压力增加D.绝对速度下降,压力增加 6.气流在轴流式压气机基元级整流环内流动,其____C_____。 A.相对速度增加,压力下降B.绝对速度增加,压力增加 C.相对速度降低,压力增加D.绝对速度下降,压力增加 7.气流流过轴流式压气机,其____C_____。 A.压力下降,温度增加B.压力下降,温度下降 C.压力增加,温度上升D.压力增加,温度下降 8.轴流式压气机基元级工作叶轮叶片通道和整流环叶片通道的形状是____C_____。A.工作叶轮叶片通道是扩散形的,整流环叶片通道是收敛形的 B.工作叶轮叶片通道是收敛形的,整流环叶片通道是扩散形的 C.工作叶轮叶片通道是扩散形的,整流环叶片通道是扩散形的 D.工作叶轮叶片通道是收敛形的,整流环叶片通道是收敛形的 9.轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是_____B____。A.工作叶轮在前,不转动;整流环在后,转动 B.工作叶轮在前,转动;整流环在后,不转动 C.整流环在前,不转动;工作叶轮在后,转动 D.整流环在前,转动;工作叶轮在后,不转动 10.轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是_____B____。A.工作叶轮在前,不转动;整流环在后,转动 B.工作叶轮在前,转动;整流环在后,不转动 C.整流环在前,不转动;工作叶轮在后,转动 D.整流环在前,转动;工作叶轮在后,不转动 11.多级轴流式压气机由前向后,____A_____。 A.叶片长度逐渐减小,叶片数量逐渐增多 B.叶片长度逐渐减小,叶片数量逐渐减小 C.叶片长度逐渐增大,叶片数量逐渐增多 D.叶片长度逐渐增大,叶片数量逐渐减小 12.涡轮由导向器和工作叶轮等组成,它们的排列顺序和旋转情况是___A_____。A.导向器在前,不转动;工作叶轮在后,转动 B.导向器在前,转动;工作叶轮在后,不转动

中国全部国产航空发动机的型号及参数

涡喷-5 涡喷-5是沈阳航空发动机厂根据苏联BK-1φ发动机的技术资料仿制的第一种国产涡喷发动机。 涡喷-5是一种离心式?单转子?带加力式航空发动机,属于第一代喷气发动机。首批涡喷-5发动机在1956年6月通过鉴定,开始投入批量生产。截至1985年涡喷-5系列发动机停产,沈阳航空发动机厂和西安航空发动机厂共生产9658台,主要用于米格-15系列和国产歼-5系列战斗机。 涡喷-5发动机的研制成功,标志着中国航空发动机工业已从制造活塞式发动机时代发展到了喷气式发动机的时代,成为了当时世界上为数不多的几个可以批量生产喷气式发动机的国家之一。 涡喷-5发动机净重989公斤,最大推力状态26千牛(2650公斤),加力状态推力37千牛(3800公斤)涡喷-5系列主要有以下改型: 涡喷-5甲:沈阳黎明发动机公司于1957年仿制的ВК-1А发动机,命名为涡喷-5甲。1963年开始转到西安航空发动机公司生产,1965年6月首批涡喷-5甲通过考核验收试车,8月投入批生产,用于轰-5、轰教-5及轰侦-5飞机。 涡喷-5乙:西安航空发动机公司于1966年试制成功,用于米格-15比斯飞机。 涡喷-5丙:西安航空发动机公司于1976年试制成功,用于米格-17飞机。 涡喷-5丁:西安航空发动机公司于1965年试制成功,用于歼教-5飞机。

涡喷-6是沈阳发动机厂在苏制PA-9B喷气发动机基础上仿制并发展而形成的一个发动机系列型号。涡喷-6于1959年7月定型,是中国首型超音速航空发动机,属于轴流式单转子带加力燃烧室的涡轮喷气发动机。1984年沈航首次将中国独创的沙丘驻涡火焰稳定器(北航高歌发明)成功应用于涡喷-6的改进型,彻底解决了PA-9B所固有的振荡燃烧现象。涡喷-6系列发动机是产量最大国产航空发动机,总产量高达29316台,主要用于歼-6系列和强-5系列国产战机,目前仍有相当数量在役。 最主要的是沈阳航空发动机厂研制的涡喷6甲和成都航空发动机厂研制的涡喷6A/B性能: 直径:0.6686 米、长度:2.91 米、净重:708.1公斤 空气流量:43.3 公斤/秒 转速:11150 转/分 增压比:7.14 涡轮前温度:870摄氏度 耗油率:1.63公斤/公斤/小时 推力:3187公斤 推重比:4.59 WP-6为我国首型超音速航空发动机。其压气机由离心式发展至轴流式,技术上是一次重大进步。1984年沈航首次将我国独创的沙丘驻涡稳定性理论(北航高歌发明)成功应用于WP-6甲改进型,彻底解决了PⅡ-9B所固有的振荡燃烧现象。

我国涡扇10航空发动机内幕

我国涡扇10航空发动机内幕 八十年代初期,中国航空研究院606所(中国航空工业第一集团公司沈阳发动机设计研究所)因七十年代上马的歼九、歼十三、强六、大型运输机等项目的纷纷下马,与之配套的研发长达二十年的涡扇六系列发动机也因无装配对象被迫下马,令人扼腕,而此时中国在航空动力方面与世界发达国家的差距拉到二十年之上。面对中国航空界的严峻局面,国家于八十年代中期决定发展新一代大推力涡扇发动机,这就是涡扇10系列发动机。依据装配对象的不同,涡扇10系列有涡扇10、涡扇10A、涡扇10B、涡扇10C、涡扇10D等型号,其中涡扇10A是专门为中国为赶超世界先进水平而上马的新歼配套的。中国为加快发展涡扇10系列发动机,采取两条腿走路方针。一是引进国外成熟的核心机技术。中美关系改善的八十年代,中国从美国进口了与F100同级的航改陆用燃汽轮机,这是涡扇10A核心机的重要技术来源之一;二是自研改进。中国充分运用当时正在进行的高推预研部分成果(如92年试车成功的624所中推核心机技术,性能要求全面超过F404),对引进的核心机加以改进,使核心机技术与美国原型机发生了较大变化,性能大为增强。这里说句题外话,网上有人说涡扇10是在F404 基础上放大而成,性能直逼F414,似乎也不无道理,因为核心机技术来源较多,不能单纯说由那一家发展而来

结构: 涡扇10/10A是一种采用三级风扇,九级整流,一级高压,一级低压共十二级,单级高效高功高低压涡轮,即所谓的3+9+1+1结构结构的大推力高推重比低涵道比先进发动机。黎明在研制该发动机机时成功地采用了跨音速风扇;气冷高温叶片,电子束焊整体风扇转子,钛合金精铸中介机匣;,挤压油膜轴承,刷式密封,高能点火电嘴,气芯式加力燃油泵,带

航空发动机结构分析思考题答案

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2 2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静

子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子? 答:P40 图3.6 _c\d 8.工作叶片主要由哪两部分组成 答:叶身、榫头(有些有凸台) 9.风扇叶片叶身凸台的作用是什么? 答:减振凸台,通过摩擦减少振动,避免发生危险的共振或颤振。 10.叶片的榫头有哪几种基本形式?压气机常用哪一种?答: a)销钉式榫头; b)枞树型榫头;

国产高性能航空发动机及燃气轮机

中国国产高性能航空发动机及燃气轮机系列汇总(修正至2008年) 阅读提示:帖子是转的,由于是2008年的老帖了,帖中有些地方已与现实略有不符。 注:带“★”的为重点型号。 1、湖南株洲南方公司: 【WS11】(仿乌克兰AI25),小推力不加力涡扇,推力16千牛,2002年已批量生产,用于K8/JL8、无人机。 【WS16】(引进乌克兰AI-222-25F),小推力加力涡扇,加力推力42千牛,预计2009年批量生产,用于L15/JL15系列。 【WZ8G】★(引自法国-WZ8A改),小功率涡轴,功率560千瓦,2005已年批量生产,用于Z9系列、Z11系列升级。 【WZ6】(仿法国TM-3C),中功率涡轴,功率1160千瓦,2000年批量生产,用于Z8系列。 【WZ9】★(仿加拿大普惠PT6C),中功率涡轴,功率1200~1450千瓦,预计2008年批量生产,用于 Z10、Z15(6吨机)、Z8F系列。 【WJ6C】★,中功率涡浆,功率3600千瓦,2006年已批量生产,用于Y9(国产6桨机)系列。 【WJ9】(WZ8核心),小功率涡浆,功率550千瓦,1995年已批量生产,用于Y12系列。 【WJ5E】(东安动力-通用),中功率涡浆,功率2000千瓦,1990年已批量生产,用于Y7系列。 2、四川燃气涡轮院(预研基地): 【WS500】★,小推力涡扇,推力5~10千牛,2005年已批量生产,用于无人机、巡航导弹。 【WS15】★,高推重比大推力涡扇,加力推力达180千牛,在研,用于未来四代战机。 3、陕西西安航发公司: 【WS9秦岭】(仿改英国斯贝202),中推力涡扇,加力推力92千牛,2002年已批量生产,用于JH7A(飞豹)系列。 ------- 【QC260】★(引自乌克兰DA80),大功率燃气轮机,功率25000千瓦,2007 年已批量生产,用于052B/C(双发6000T)大驱系列等。 4、贵州黎阳航发公司: 【WS12泰山】★(中推核心),中推力涡扇,加力推力80千牛,2008年批量生产,用于J7、JL9和J8系列升级换代及双发型J10C。 【WS12B】(WS12加大涵道比加力改型),中推力涡扇,加力推力100千牛,预计2009年批量生产,用于JH7B(飞豹)。 【WS12C】(WS12大涵道比不加力改型),中推力涡扇,推力80千牛,预计2010

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.$ 6.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 7.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。8.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 9.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 < 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 10.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 11.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 12.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 13.| 14.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 15.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 16.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源;

西工大航空发动机结构分析课后作业答案

第六章加力燃烧室 1.加力燃烧室由哪些基本结构组成? 答:加力燃烧室由扩压器、预燃室、火焰稳定器、喷嘴和加力输油总管、加力燃烧室壳体等组成。 2.加力燃烧室(预燃)点火方式有哪几种类型?说明相应的预燃点火装置的组 成和特点。 答:①电嘴点火:WP6发动机采用这种点火方式,其预燃室由内外锥体,内外壁,点火电嘴,导流板和火焰喷口等组成。内外壁之间是助燃冷却的二股气流通道,内壁上两排交错的16个小孔使二股气流进入预燃室。当接通加力时,用专门的汽化器形成混合气,输入预燃室,经过内外锥体组成的环形气流通道后,截面突然扩张,在预燃室头部内锥体后的凹面内形成强烈的涡流:用电嘴点燃后,火舌从预燃室喷出,点燃后输油圈上两个喷嘴喷出的燃油,形成中心火焰稳定区,然后火焰经过V型支柱点燃环形状火焰稳定器迥流区的混合气。经过8.5~14秒后,在加力燃烧室内形成稳定的点火源,预燃室便自动停止工作。 ②火舌点火系统:当启动加力燃烧室时,由专门的附件将附加的燃油喷入主燃烧室中的某个火焰筒内,这股附加燃油形成的火焰穿过涡轮,点燃加力燃烧室的混合气。这种点火方式的优点是:点火能量大,高空性能好,迅速可靠,不能添加附加机构件,只要主燃烧室不熄火就总能点燃,缺点是:火舌传递路程远,流程复杂尤其在穿过多级涡轮时,受到强烈的扰动,在调试加力燃烧室时相应地要做大量的点火试验。 ③催化点火系统:利用铂能吸附氧气和氢气的特性,使点火用的混合气借助铂铑丝网的催化作用,在较低的温度下点燃。这种点火装置结构简单,重量轻,点火方便,但铂铑丝价格贵,易受污染而失效,影响其工作可靠性。 5.为什么加力燃烧室的输油圈常有主副之分? 答:加力燃烧室的供油为分圈分压式供油,当加力泵后的油压小于0.98MPa时,副油路供油,主油路关闭;加力泵后油压大于0.98MPa时,主、副油路同时供油。故一般有主副之分。 7.为什么说高温陶瓷适合于作未来加力燃烧室材料? 答:未来先进发动机燃烧室的单位推力将比F110高70%~80%,对所用的材料也提出了更高的要求。在推重比为15~20的发动机加力燃烧室中,火焰稳定器的工作温度是1200摄氏度左右,加力燃烧室的喷嘴也要在1530摄氏度以上的温度工作,高温陶瓷具有非常好的耐高温特性,是其他金属无可替代的。

航空发动机构造

航空发动机构造 课堂测试-1 1.航空发动机的研究和发展工作具有那些特点? 技术难度大;周期长;费用高 2.简述航空燃气涡轮发动机的作用。 是现代飞机与直升机的主要动力(少数轻型、小型飞机和直升机采用航空活塞式发动机),为飞机提供推进力,为直升机提供转动旋翼的功率。 3.航空燃气涡轮发动机包括哪几类?民航发动机主要采用哪种? 涡喷、涡桨、涡扇、涡轴、桨扇、齿扇等;涡扇。 4.高涵道比民用涡扇发动机的涵道比范围是多少? 5-12 课堂测试-2 1.发动机吊舱包括(进气道)、(整流罩)和(尾喷管)等。 2.对于民用飞机来说,动力装置的安装位置应该考虑到以下几点: 不影响进气道的效率;排气远离机身;容易接近,便于维护 3.在现代民用飞机上,发动机在飞机上的安装布局常见的有(翼下安装)、(翼下吊装和垂直尾翼安装)和(机身尾部安装)。 4.发动机安装节分两种:(主安装节)与(辅助安装节)。前者传递轴向力、径向力、扭矩,后者传递径向力、扭矩。一般主安装节装于(温度较低,靠近转子止推轴承处的压气机或风扇机匣上)上,辅助安装节装于(涡轮或喷管的外壳上)上。 5.涡轮喷气发动机的进气道可分为(亚音速)进气道和(超音速)进气道两大类。我国民航主要使用亚音速飞机,其发动机的进气道大多采用(亚音速)进气道。 6.通常在涡轮喷气和涡轮风扇发动机上采用(热空气)防冰的方式,在涡轮螺旋桨发动机上采用(电加热)防冰,或是两种结合的方式。 7.对于涡轮螺旋桨发动机来说,需要防冰的部位有(进气道)、(桨叶)和(进气锥)。 8.为了对吊舱进行通风冷却,一般把吊舱分成不同区域,各区之间靠(防火墙)隔开,以阻挡火焰的传播。9.发动机防火系统包括(火情探测)、(火情警告)和(灭火)三部分。 课堂测试-3 1.现代涡轮喷气发动机由(进气道)、(压气机)、(燃烧室)、(涡轮)、(尾喷管)五大部件和附件传动装置 与附属系统所组成。 2.发动机工作时,在所有的零部件上都作用着各种负荷。根据这些负荷的性质可以分为(气动)、(质量) 和(温度)三种。 3.航空燃气涡轮发动机主轴承均采用(滚动)轴承,其中(滚棒轴承)仅承受径向载荷,(滚珠轴承)可承 受径向载荷与轴向载荷。 4.转子上的止推支点除承受转子的(轴向)负荷、(径向)负荷外,还决定了转子相对于机匣的(轴向)位 置。因此每个转子有(一)个止推支点,一般置于温度较(低)的地方。 5.压气机转子轴和涡轮转子轴由(联轴器)连接形成发动机转子,分为(柔性联轴器)和(刚性联轴器)。 其中(柔性联轴器)允许涡轮转子相对压气机转子轴线有一定的偏斜角。 6.结合图3.9,简述发动机的减荷措施有哪些?这些措施是否会减少发动机推力? 减荷措施:

我国航空发动机行业现状及发展趋势预测分析

2016年我国航空发动机行业现状及2017市场发展趋势预测分析 中商情报网讯:近年来,我国已经形成较完整的航空发动机产业链和相应的 生产布局。2011年我国整个航空发动机市场规模约为200亿元人民币,其中军 用约占70%;民用约占30%,预计到2020年,我国航空发动机产业市场规模将 突破千亿元大关。 中国航空发动机市场规模及预测,2011年-2020年如下图所示: 一、航空发动机整体情况 航空发动机作为飞机动力源,是决定飞机性能的重要因素。航空发动机集中 了机械制造行业几乎所有的高精尖技术,因此航空发动机技术水平的高低是一个 国家工业实力的重要标志。目前世界上能制造飞机的国家很多,但是能独立研制 航空发动机的只有美国、俄罗斯、英国、法国、中国等少数几个国家,而全球民 用航空发动机市场基本被欧美企业垄断。 航空发动机产业空间广阔,未来20年全球民用航空发动机市场规模将达到 14,360亿美元,军用航空发动机市场规模将达到4,300亿美元。 二、航空发动机电子技术 随着发动机测试技术和控制技术的快速发展,发动机系统已从传统的机械系 统向机电系统发展,而且发动机电子技术所占比例不断提高。在航空发动机领域, 以发动机参数采集器和发动机电子控制系统为代表的发动机电子系统的采用极 大推动了发动机电子技术的发展。 (一)发动机参数采集器基本情况 发动机参数采集器属于发动机状态监视装置。这类设备主要进行发动机重要 参数的采集、处理和存储,发动机气路参数趋势分析,发动使用寿命监视,发动 机振动监视,发动机健康管理等。发动机参数采集器可以跟踪采集航空发动机运 行中的工作状态和故障信息,并进行处理,分析出航空发动机部件的性能退化情 况或者根据处理后的数据对故障进行诊断、分析故障原因、性质、部位及发展趋 势,根据具体情况采取必要的维护措施。这类电子状态监视与故障诊断系统对航 空发动机早期故障诊断征兆的及时发现与及时处理具有重要作用,可以避免相关 事故的发生,保障飞行安全,同时还可以“视情维修”,大大节省维修成本与维修 时间,对使用方和维修商都会带来明显的经济效益。 目前国内外飞机都逐渐采用发动机参数采集器取代传统的发动机仪表,新飞 机制造和老飞机改造产生了较大容量的市场。晨曦航空是国内率先研制发动机参 数采集器的企业之一,是国内直升机发动机参数采集器最大供应商。 (二)航空发动机电子控制领域基本情况

2016新编航空发动机控制系统的研究目的与发展

2016新编航空发动机控制系统的研究目的与发展航空发动机控制系统的研究目的与发展 目录 1.1(课题研究的目的和要求...................................................................... . (1) 1.2(航空发动机控制系统的发展...................................................................... (2) 1.2.1(经典控制理论和现代控制理论在发动机控制中的应用 (2) 1.2.2(航空推进系统机械液压式控制器和数字式电子控制器 (4) 1.2.3(航空推进系统各部分独立控制与综合控 制 (6) 1.3.航空发动机控制系统的基本类 型 ..................................................................... .. (6) 1.3.1.机械液压式控制系 统 ..................................................................... . (7)

1.3. 2.数字式电子控制系 统 ..................................................................... . (7) 1.1(课题研究的目的和要求 航空发动机的工作过程是一个非常复杂的气动热力过程,随着环境条件和工作状态(如最大、巡航、加力及减速等)的变化,它要给飞机提供所需的时变推力和力矩,对这样一个复杂且多变的过程,如不加以控制,航空发动机是根本不能工作的。例如:某发动机在地面最大状态工作时,需油量是每小时2400kg;在15km高空、马赫数Ma为0.8时只有每小时500kg,需油量变化达5倍。若对供油量不加以控制,则发动机在飞机升高过程中,将发生严重的超温、超转,会使发动机严重损坏。因此,发动机控制的目的就是使其在任何环境条件和任何工作状态下都能稳定、可靠地运行,并且充分发挥其性能效益。 概括来说,航空发动机对控制的基本要求有: (1) 在各种工作状态及飞行条件下,能最大限度地发挥动 力装置的潜力,能有效的使用动力装置,以满足飞机 1 航空发动机控制系统的研究目的与发展 对动力装置的要求。具体来说,就是在最大状态下, 要能发出最大推力,以满足飞机起飞、爬高的要求; 在巡航状态下,耗油率要小,以满足经济性要求(即 飞机的航程要大);慢车状态时则要求转速尽可能的 小,但又能保证发动机连续稳定的工作。 (2) 过渡过程(启动、加速、减速、加力启动等)的调节 时间尽可能地短,但又要保证动力装置能稳定、可靠

中国航空发动机现状·症结·差距

中国航空发动机现状·症结·差距 近年来,中国的航空事业呈现井喷发展之势,每年各型新飞机以超过大众想象的速度展现在人们的面前,但是,一个不可回避的问题也常常被业内外人士提出:现在中国的航空发动机到底怎么样?何时能迎头赶上?中国航发有值得珍视的“家底” 我国航空发动机事业创建于抗美援朝时期,历经维护修理、测绘仿制、改进改型、自主研制等发展阶段,从无到有、由小到大。如果从开始整机研制的1956年算起,至今恰好62年。回顾往昔,在极为困难的情况下,航发事业不仅为航空武器装备发展和国民经济建设做出了重要贡献,也为其进一步发展奠定了技术与产业基础。这是不争的事实,有值得我们高度珍视的“家底”。家底1.基本建成航空发动机研制生产体系 以发动机设计研究院所和主机生产企业为核心,建成了包括一批专业化配套生产企业和科研所在内的航空发动机研制生产体系。迄今,我国以航空发动机为主业的企事业单位共26家,其中设计研究所4家,主机生产企业6家。年销售收入大约300亿元,军航发和民航发之比大致7:3,其中军航发的制造与维修比例5:1,民航发维修与零部件转包

比例接近1:1。中国航空发动机集团公司(AECC)成立时,对外公布的集团从业人员9.6万,总资产1100亿元。家底2.基本具备研制生产所有种类航空发动机的能力 关于中国航发的产能似乎一直未作正式发布。笔者从2009年的中国航空博物馆空军装备展上获得了一组公开数 据(截止时间应为2008年),在对未列品种和产量数据进行补正后,笔者估算:从1956年至2008年的52年间,涡扇、涡喷、涡桨、涡轴和活塞式发动机等5类航空发动机总产量约57000台。按年平均数外推10年,即从1956年到2018年的62年间,我国航空发动机的总产量不低于67000台,即年产量大约1100台。国产航空发动机数量占现役军用配套总数的90%以上,基本满足了国产歼击机、强击机、轰炸机、运输机、教练机和直升机等航空装备的需求。近年来,一批新的高性能发动机开始研制,有的已经获得突破,如“太行”系列大推力、推重比8一级涡扇发动机,并有了2的量产能力。家底3.构建7基本完整的科研条件与基础设施即使是在国家财力不够、投入不足的过去,仍然构建了包括高空试验台等在内的一大批高水平基础科研设施。近十多年来,国家对航空发动机的投入大幅增加,科研设施条件得到全局性的显著改善。 中国上海的COMAC的总装厂内,C919第一架机正在安装CFM国际LEAP-1C发动机的推力反向装置。

航空发动机行业现状及发展趋势预测分析

航空发动机行业现状及发 展趋势预测分析 Prepared on 24 November 2020

2016年我国航空发动机行业现状及2017市场发展趋势预测分析 中商情报网讯:近年来,我国已经形成较完整的航空发动机产业链和相应 的生产布局。2011年我国整个航空发动机市场规模约为200亿元人民币,其中 军用约占70%;民用约占30%,预计到2020年,我国航空发动机产业市场规 模将突破千亿元大关。 中国航空发动机市场规模及预测,2011年-2020年如下图所示: 一、航空发动机整体情况 航空发动机作为飞机动力源,是决定飞机性能的重要因素。航空发动机集 中了机械制造行业几乎所有的高精尖技术,因此航空发动机技术水平的高低是 一个国家工业实力的重要标志。目前世界上能制造飞机的国家很多,但是能独 立研制航空发动机的只有美国、俄罗斯、英国、法国、中国等少数几个国家, 而全球民用航空发动机市场基本被欧美企业垄断。 航空发动机产业空间广阔,未来20年全球民用航空发动机市场规模将达到 14,360亿美元,军用航空发动机市场规模将达到4,300亿美元。 二、航空发动机电子技术 随着发动机测试技术和控制技术的快速发展,发动机系统已从传统的机械 系统向机电系统发展,而且发动机电子技术所占比例不断提高。在航空发动机 领域,以发动机参数采集器和发动机电子控制系统为代表的发动机电子系统的 采用极大推动了发动机电子技术的发展。 (一)发动机参数采集器基本情况 发动机参数采集器属于发动机状态监视装置。这类设备主要进行发动机重 要参数的采集、处理和存储,发动机气路参数趋势分析,发动使用寿命监视, 发动机振动监视,发动机健康管理等。发动机参数采集器可以跟踪采集航空发 动机运行中的工作状态和故障信息,并进行处理,分析出航空发动机部件的性 能退化情况或者根据处理后的数据对故障进行诊断、分析故障原因、性质、部 位及发展趋势,根据具体情况采取必要的维护措施。这类电子状态监视与故障 诊断系统对航空发动机早期故障诊断征兆的及时发现与及时处理具有重要作 用,可以避免相关事故的发生,保障飞行安全,同时还可以“视情维修”,大大 节省维修成本与维修时间,对使用方和维修商都会带来明显的经济效益。 目前国内外飞机都逐渐采用发动机参数采集器取代传统的发动机仪表,新 飞机制造和老飞机改造产生了较大容量的市场。晨曦航空是国内率先研制发动 机参数采集器的企业之一,是国内直升机发动机参数采集器最大供应商。 (二)航空发动机电子控制领域基本情况

航空发动机原理与构造知识点

航空发动机原理与构造知识点 1.热力系 2.热力学状态参数 3.热力学温标表示方法 4.滞止参数在流动中的变化规律 5.连续方程、伯努利方程 6.激波 7.燃气涡轮发动机分类及应用 8.燃气涡轮喷气发动机即使热机也是推进器 9.涡喷发动机结构、组成部件及工作原理 10.涡扇发动机结构、组成部件及工作原理 11.涡桨发动机结构、组成部件及工作原理 12.涡轴发动机结构、组成部件及工作原理 13.EPR、EGT、涡轮前燃气总温含义 14.喷气发动机热力循环(理想循环、实际循环) 15.最佳增压比、最经济增压比 16.热效率、推进效率、总效率 17.喷气发动机推力指标 18.发动机中各部件推力方向 19.喷气发动机经济指标 20.涡扇发动机中N1、涡扇发动机涵道比的定义 21.涡扇发动机的优缺点及质量附加原理 22.发动机的工作原理(涡喷、涡扇、涡轴和涡桨) 23.发动机各主要部件功用和原理,各部件热力过程和热力循环 24.进气道的分类及功用 25.总压恢复系数和冲压比的定义 26.超音速进气道三种类型 27.超音速进气道工作原理(参数变化) 28.离心式压气机组成部件 29.离心式压气机增压原理 30.离心式压气机优缺点 31.轴流式压气机组成部件 32.轴流式压气机优缺点 33.压气机叶片做成扭转的原因 34.压气机基元级速度三角形及基元级增压原理 35.扭速 36.多级轴流式压气机特点 37.喘振现象原因及防喘措施(原因) 38.轴流式压气机转子结构形式、优缺点 39.鼓盘式转子级间连接形式 40.叶片榫头类型、优缺点

41.减振凸台的作用以及优缺点 42.压气机级的流动损失 43.多级轴流压气机流程形式,机匣结构形式 44.压气机喘振现象、根本原因、机理过程 45.压气机防喘措施、防喘措施原理 46.燃烧室的功用和基本要求 47.余气系数、油气比、容热强度的定义 48.燃烧室出口温度分布要求 49.燃烧室分类及优缺点 50.环形燃烧室的分类及区别 51.燃烧室稳定燃烧的条件和如何实现 52.燃烧室分股进气作用 53.燃烧室的组成基本构件及功用 54.旋流器功用 55.涡轮的功用和特点(与压气机比较) 56.涡轮叶片的分类和结构 57.一级涡轮为何可以带动更多级压气机 58.提高涡轮前温度措施 59.带冠叶片优缺点 60.间歇控制定义、发动机在起动巡航、停车时间隙变化情况 61.如何实现涡轮主动间隙控制 62.涡轮叶片冷却方式 63.喷管功用 64.亚音速喷管工作原理(参数变化) 65.亚音速喷管三种工作状态(亚临界、临界和超临界)的判别 66.超音速喷管形状 67.发动机噪声源及解决措施 68.发动机的基本工作状态 69.发动机特性(定义、表述) 70.涡喷发动机稳态工作条件(4个)举例说明如何保持稳态工作 71.稳态下涡轮前温度随转速变化规律 72.剩余功率的定义 73.发动机加速的条件 74.联轴器的分类及作用 75.封严装置的作用、基本类型 76.双转子、三转子支承方案 77.中介支点、止推支点作用 78.封严件作用和主要类型 79.燃油系统功用和主要组件功用 80.燃油泵分类和特点 81.燃油喷嘴分类和特点 82.发动机控制系统分类 83.滑油系统功用、主要部件及分类,滑油性能指标 84.起动过程的定义

航空发动机控制系统浅析

航空发动机控制系统浅析 【摘要】航空发动机控制系统是一个多变量、时变、非线性、多功能的复杂系统,其性能的优劣直接影响发动机及飞机的性能。本文主要论述了航空发动机控制系统的发展历程、相关技术及其技术优缺点,并预测了国际发动机控制技术的未来发展。 【关键词】航空发动机控制系统;机械液压;FADEC;分布式;综合控制 1.概述 发动机的工作过程是极其复杂的气动热力过程,在其工作范围内随着发动机的工作条件和工作状态(如巡航、加速及减速等)的变化,它的气动热力过程将发生很大的变化,对于这样一个复杂而且多变的过程如果不加以控制,可以想象系统不但达不到设计的性能要求,而且根本无法正常工作。所以,航空发动机控制系统的目的就是使其在允许的环境条件和工作状态下都能稳定、可靠地运行,充分发挥其性能效益。 2.发展历程 随着航空发动机技术的不断进步和性能不断提高,其控制系统也由简单到复杂。航空发动机控制系统发展阶段的分类方法有很多种,目前,按发动机控制技术的发展和应用阶段大致分为以下4种,作简要介绍:(1)机械液压控制;(2)数字电子式控制;(3)分布式控制;(4)综合控制。 2.1 机械液压控制系统 机械液压控制系统:是使用基于开环控制或单输入单输出(SISO)闭环反馈控制等经典控制理论,采用由凸轮和机械液压装置组成的机械液压控制器即可成功地对发动机进行控制。 机械液压控制系统典型应用的机种:最典型的就是俄罗斯AN-*系列飞机。 这种简单的单输入单输出控制系统优点:(1)方法简单;(2)易于实现;(3)能保证发动机在一定使用范围内具有较好的性能。因此这种控制方法目前仍然应用于许多发动机的控制中。目前,国内运输机飞机上,发动机控制仍然用的是凸轮和机械液压装置组成的机械液压控制器。 随着发动机控制功能的增加,控制系统的复杂度也越来越大。这种简单的液压机械控制系统的缺点就显现了出来:(1)仅适用于:飞行速度比较小、飞行高度比较低、发动机的推力不大的飞机。(2)机械液压流量控制和伺服部件变得越来越大、越来越重、越来越昂贵。

航空发动机控制系统的研究目的与发展

目录 1.1.课题研究的目的和要求 (1) 1.2.航空发动机控制系统的发展 (2) 1.2.1.经典控制理论和现代控制理论在发动机控制中的应用 (2) 1.2.2.航空推进系统机械液压式控制器和数字式电子控制器 (4) 1.2.3.航空推进系统各部分独立控制与综合控制 (6) 1.3.航空发动机控制系统的基本类型 (6) 1.3.1.机械液压式控制系统 (7) 1.3.2.数字式电子控制系统 (7) 1.1.课题研究的目的和要求 航空发动机的工作过程是一个非常复杂的气动热力过程,随着环境条件和工作状态(如最大、巡航、加力及减速等)的变化,它要给飞机提供所需的时变推力和力矩,对这样一个复杂且多变的过程,如不加以控制,航空发动机是根本不能工作的。例如:某发动机在地面最大状态工作时,需油量是每小时2400kg;在15km高空、马赫数Ma为0.8时只有每小时500kg,需油量变化达5倍。若对供油量不加以控制,则发动机在飞机升高过程中,将发生严重的超温、超转,会使发动机严重损坏。因此,发动机控制的目的就是使其在任何环境条件和任何工作状态下都能稳定、可靠地运行,并且充分发挥其性能效益。 概括来说,航空发动机对控制的基本要求有: (1)在各种工作状态及飞行条件下,能最大限度地发挥动力装置的潜力,能有效的使用动力装置,以满足飞机

对动力装置的要求。具体来说,就是在最大状态下, 要能发出最大推力,以满足飞机起飞、爬高的要求; 在巡航状态下,耗油率要小,以满足经济性要求(即 飞机的航程要大);慢车状态时则要求转速尽可能的 小,但又能保证发动机连续稳定的工作。 (2)过渡过程(启动、加速、减速、加力启动等)的调节时间尽可能地短,但又要保证动力装置能稳定、可靠 地工作。 (3)在各种工作状态及飞行条件下,保证动力装置不出现超转、过热、超载、喘振、熄火等不安全现象。 1.2.航空发动机控制系统的发展 航空发动机控制系统的发展大致可归纳为:由基于经典控制理论的单变量控制系统发展到基于现代控制理论的多变量控制系统,由机械液压式控制系统发展到数字式电子控制系统,由动力装置各部分的独立控制发展到各部分的综合控制。 1.2.1.经典控制理论和现代控制理论在发动机控制中的应用(一)经典反馈控制 早期飞机的飞行速度不高,发动机的推力也不大,所采用的亚声速进气道和收敛型喷管也不需要控制,这时的航空发动机采用的控制

飞行学院《航空发动机原理与构造》复习

飞行学院《航空发动机原理与构造》复习资料 第一部分:航空发动机构造 一、单项选择题(每题2分) 1.涡喷涡扇涡桨涡轴发动机中,耗油率或当量耗油率的关系是(A) 2.A.sfc涡喷>sfc涡扇>sfc涡桨>sfc涡轴B.sfc涡扇>sfc涡桨>sfc涡轴>sfc涡喷 3.C.sfc涡桨>sfc涡轴>sfc涡喷>sfc涡扇D.sfc涡轴>sfc涡喷>sfc涡扇>sfc涡桨 4.发动机转子卸荷措施的目的是(B)。 5.A.减少发动机转子负荷,降低了发动机推力,以提高发动机运行可靠性 6.B.减少发动机转子轴向力,减少止推轴承数量,提高转子工作可靠性 7.C.减少发动机转子负荷,提高发动机推力 8.D.减少发动机转子负荷,降低转子应力水平,提高转子结构强度 9.涡扇发动机中,忽略附件传动功率,涡轮转子与压气机转子扭矩之间的关系是(D)。 10.A.M涡轮>-M压气机B.M涡轮<-M压气机 11.C.M涡轮=M压气机D.M涡轮=-M压气机 12.压气机转子结构中,加强盘式转子是为了(B)。 13.A.加强转子强度,提高转子可靠性 14.B.加强转子刚度,提高转子运行稳定性 15.C.加强转子冷却效果,降低温度应力 16.D.加强转子流通能力,提高压气机效率 17.压气机转子结构中(B)。 18.A.鼓式转子的强度>盘式转子的强度 19.B.鼓式转子的强度<盘式转子的强度 20.C.鼓式转子的强度=盘式转子的强度 21.D.鼓式转子与盘式转子强度比较关系不确定 22.压气机转子结构中的刚度(A) 23.A.盘鼓混合式转子>盘式转子 24.B.盘鼓混合式转子<盘式转子 25.C.盘鼓混合式转子=盘式转子 26.D.盘鼓混合式与盘式转子刚度大小关系不确定

航空发动机控制系统发展概述

航空发动机控制系统发展概述 摘要:发动机作为飞机的心脏为飞机提供前进的动力,而动力来自于发动机通过进气道、压气机、燃烧室、涡轮及尾喷管共同工作提供的推力。但是这些部分的工作参数是无法通过自身进行调节的,需要采用智能调控系统进行控制,这就是航空发动机的控制系统。本文主要就航空发动机控制系统发展进行探讨。 关键词:航空发动机;控制系统;发展 1航空发动机控制系统组成和原理 1.1航空发动机控制系统组成 发动机是飞机的重要系统,除了发动机本体单元体之外,还包括控制系统、传动系统及润滑系统等。其中控制系统是航空发动机的重要组成部分,现代航空发动机基本都采用全权限数字电子控制(FADEC)系统。 FADEC系统由感受航空发动机工作状态和环境信息的传感装置、对信息进行逻辑判断和控制运算的计算装置、把计算结果施加给航空发动机的控制装置,以及在它们之间传递信息的机械、电缆和管路等组成。FADEC系统--般可分为控制计算机子系统、燃油与作动子系统、传感器子系统、电气子系统等。图1为某型发动机FADEC系统的组成图。 控制计算机子系统分为电子控制器和嵌入式软件两部分。数字电子控制器(EEC)是FADEC系统的核心部件,它处理来自各种传感器和开关装置的信号,经模/数转换为数字量,由其内部机载的控制软件对输入数字量进行诊断、处理,实现各种控制算法、控制逻辑的计算,产生输出数字量,再经过数/模转换成模拟信号,经放大处理,生成控制器输出驱动信号,经电缆传输给相应的液压机械装置。燃油与作动子系统包括燃油子系统和伺服作动子系统。燃油子系统包括增压泵、主燃油泵、燃油计量装置、燃油滤、燃油管路、喷嘴等。伺服作动子系统包括伺服控制单元、伺服作动器及相应附件。传感器子系统包括控制用传感器和状态监视用传感器等。 1.2航空发动机控制系统原理 FADEC系统-般包括转速、压力、温度等多个控制回路,每个控制回路根据相应的输入闭环计算出控制输出,进而实现控制发动机状态的目的。 电子控制器根据发动机工作过程的转速、温度、压力等参数及外部条件(如飞行高度、速度,发动机进口温度、压力,驾驶员指令等)和控制系统内部某些参数(如温度、压力、位移等)的变化,通过控制律计算,产生控制信号,经过电子控制器输出处理电路,输出给液压机械装置,将电信号转换为液压信号,驱动相应作动器,以改变燃油流量、导叶角度、放气开度等,进而达到控制发动机的目的。 飞机油箱来油经过低压泵增压后,进入主燃滑油散热器进行热交换。经主燃滑油散热器再回到燃油泵后通过主燃油滤进入高压泵再次进行增压。高压泵出口油分为两路:-路经自洗油滤和伺服燃油加热器后进入液压机械装置(HMU)的伺服燃油系统,按照EEC指令控制燃油计量系统和作动部件;另一路进入液压机械装置(HMU)的燃油计量系统,计量后的燃油经过燃油流量传感器和喷嘴油滤后进入喷嘴向燃烧室供油。 2发动机控制系统的发展 总体来说,为了适应高性能和高精度的要求,发动机控制技术经过了从传统的液压机械式控制向数字电子控制的转变阶段,并且经历了从单个部件到整体、

相关文档
最新文档