齐次线性方程组基础解系

齐次线性方程组基础解系
齐次线性方程组基础解系

齐次线性方程组的基础解系及其应用

齐次线性方程组一般表示成AX=0的形式,其主要结论有:

(1)齐次线性方程组AX=0一定有解,解惟一的含义是只有零解,有非零解的含义是解不惟一(当然有无穷多解)。有非零解的充要条件是R(A)

(2)齐次线性方程组AX=0解的线性组合还是它的解,因而解集合构成向量空间,向量空间的极大线性无关组,叫基础解系;

(3)齐次线性方程组AX=0,当系数矩阵的秩r(A)小于未知量的个数n 时,存在基础解系,并且基础解系中含有n-r(A)个解向量;

(4)对于齐次线性方程组AX=0,如果r(A)

定理1:设A 是n m ?的矩阵,B 是s n ?的矩阵,并且AB=0,那么r(A)+r(B)n ≤

分析:这是一个非常重要的结论,多年考试题与它有关。同学们还要掌握本定理的证明方法。 证:设s B B B B ,,,21 的列向量为,则),,,(21s B B B B =,AB=0,即

0),,,(21=s B B B A 所以 s j AB j ,,2,1,0 ==

所以,s B B B ,,,21 都是齐次线性方程组AB=0的解

r(B)=秩)(),,,(21A r n B B B s -≤

所以 r(A)+r(B)n ≤

评论:AB=0,对B 依列分块,时处理此类问题的惯用方法。

例1:要使,110,20121????

? ??-=????? ??=ξξ都是线性方程组0=AX 的解,只要系数矩阵A 为

(A)[-2 1 1 ] (B)??????-110102 (C) ??????--110201 (D)????

??????---110224110 解:由答案之未知量的个数是3。,110,20121????

? ??-=????? ??=ξξ都是线性方程组0=AX 的解,并且

21,ξξ线性无关,

所以 1)(2)(3≤≥-A r A r ,从而,.只有(A )是正确的。

例2:设n 阶方阵A 的各行元素之和均为零,且A 的秩为n-1,则线性方程组AX=0的通解 为 .

解:记??????

? ??=111 ξ,由于n 阶方阵A 的各行元素之和均为零, 所以0=ξA ,0≠ξ 且A 的秩为n-1,所以ξ就是七次线性方程组AX=0的基础解系,

所以,线性方程组AX=0的通解为??????

? ??111 k

例3:已知Q=????

??????96342321t ,P 为3阶非零方阵,且满足PQ=0,则 (A)t=6时P 的秩必为1 (B) t=6时P 的秩必为2

(C)t ≠6时P 的秩必为1 (D)t ≠6时P 的秩必为2

解:记????

??????==96342321),,(321t Q Q Q Q ,因为所以,0=PQ 321,,Q Q Q 都是齐次线性方程组,0=PX 的解,当6≠t 时,31,Q Q 线性无关,所以1)(,

2)(3≤≥-P r P r 即 P 为非零方阵,所以1)(≥P r

因而:t ≠6时P 的秩必为1,选(C )

另解:因为所以,0=PQ 3)()(≤+Q r P r ,当6≠t 时,1)(,

2)(≤=P r Q r

P 为非零方阵,所以1)(≥P r

因而:t ≠6时P 的秩必为1,选(C )

例4:设A 是n (2≥)阶方阵,*A 是的伴随矩阵,那么:

?????=-=-<=n

A r n n A r n A r A r )(1)(1

1)(0)(*当当当 证明:1)(-

1)(-=n A r 当时,A 存在不为0的 n-1阶子式,所以1)(*≥A r 此时,0=A ,0*=AA ,所以,)()(*n A r A r <+1)(*≤A r

从而1)(*=A r

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; $ 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=++ +1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

齐次和非齐次线性方程组的解法

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】r(A)= r

【免费下载】线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间返回教案总目录6.7矩阵的秩,齐次线性方程组的解空间一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。三、教学过程 1、矩阵的秩的几何意义几个术语:设)(F M A n m ?∈,????? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

齐次线性方程组的基础解系(PPT)_1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 齐次线性方程组的基础解系(PPT) 齐次线性方程组的基础解系(PPT) 齐次线性方程组的基础解 系对于齐次线性方程组a11x1a12x2a1nxn0, a12x1a22x2a2nxn0, ax ax ax0. m22mnn m11 令a11a12 a21a22 , 1 2 am1 am2 a1n a2n ,,n amn 则上述方程组即为 x1 1 x2 2 xn n 0 (*) (其中 0 为零向量)。 将(*)的解视为 n 维向量,则所有解向量构成 K 中的一个向量组,记为 S。 n 命题 S 中的元素(解向量)的线性组合仍属于 S(仍是解)。 证明只需要证明 S 关于加法与数乘封闭。 设(k1,k2,,kn),(l1,l2,,ln)S,则k11k2 2 kn n 0 l1 1 l2 2 ln n 0 于是 (k1 l1) 1 (k2 l2) 2 (kn ln) n 0 故 (k1 l1,k2 l2, ,kn ln) S;又因为k K kk1 1 kk2 2 kkn n 0 所以(kk1,kk2, ,kkn) S。 证毕。 定义(线性方程组基础解系)齐次线性方程组(*)的一组解 1 / 7

向量1, 2, , s 如果满足如下条件: (1)1, 2, , s 线性无关;(2)方程组(*)的 任一解向量都可被1, 2, , s 线性表出,那么,就称1, 2, , s 是齐次线性方程组(*)的一个基础解系。 定理数域上的齐次线性方程组的基础解系中的向量个数等于变 元个数减去系数矩阵的秩。 证明记线性方程组为 x1 1 x2 2 xn n 0 其中a11a12 a21a22 , 1 2 am1 am2 a1n a2n , , n amn 设1, 2, , n 的秩为 r,无妨设1, 2, , n 为其极大线性无关部分组, 则r 1, r 2, , n 皆可被1, 2, , r 线性 表出,即存在 kij K(1 i n r,1 j r),使得r 1 k11 1 k1 2 2 k1r r r 2 k21 1 k22 2 k2r r n kn r1 1 kn r2 2 kn rr r, 即 ki1 1 ki2 2 kir r 1 r i 0, (i 1,2, n r)于是 S 中含 有向量1(k11,k12,,k1r,1,0,,0) 2 (k21,k22,,k2r,0,1,,0) n r(kn r1,kn r2, ,kn rr,0,0, ,1) 只需要证明1, 2, , n r 是解向量组的一个极大线性无关部分组即可。 易见,向量组1, 2, , n r 线性无关。 只需要再证明1, 2, , n r 能线性表出任意一个S 即

齐次和非齐次线性方程组的解法

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12L ξξξ; (3) 写出通解n r n r k k k --=+++1122L X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

解线性方程组的基本思想

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

解线性方程组基思想

解线性方程组基思想

————————————————————————————————作者:————————————————————————————————日期:

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

线性方程组的解空间

第六章 向量空间 6、1 定义与例子 6、2 子空间 6、3 向量的线性相关性 6、4 基与维数 6、5 坐标 6、6 向量空间的同构 6、7 矩阵的秩齐次线性方程组的解空间 返回教案总目录 6、7矩阵的秩,齐次线性方程组的解空间 一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。 2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。 3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。 三、教学过程 1、矩阵的秩的几何意义 几个术语:设)(F M A n m ?∈,??? ? ? ??=mn m n a a a a A ΛΛΛ ΛΛ 1111,A 的每一行瞧作n F 的一个元素,叫做A 的行向量,用),2,1(m i i Λ=α表示;由),2,1(m i i Λ=α生成的n F 的子空间 ),,(1m L ααΛ叫做矩阵A 的行空间。 类似地,A 的每一列瞧作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。 注:)(F M A n m ?∈的行空间与列空间一般不同,分别就是n F 与m F 的子空间;下证其维数相同。 引理6、7、1设)(F M A n m ?∈, 1)若PA B =,P 就是一个m 阶可逆矩阵,则B 与A 有相同的行空间; 2)若AQ C =,Q 就是一个n 阶可逆矩阵,则C 与A 有相同的列空间。 分析:设() ()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i Λ=α就是A 的行向

齐次线性方程组基础解系

齐次线性方程组的基础解系及其应用 齐次线性方程组一般表示成AX=0的形式,其主要结论有: (1)齐次线性方程组AX=0一定有解,解惟一的含义是只有零解,有非零解的含义是解不惟一(当然有无穷多解)。有非零解的充要条件是R(A)

线性方程组解题方法技巧与题型归纳

线性方程组解题方法技巧与题型归纳 题型一 线性方程组解的基本概念 【例题1】如果α1、α2是方程组 123131233231 2104 x x ax x x x ax x --=?? -=??-++=? 的两 个不同的解向量,则a 的取值如何 解: 因为α1、α2是方程组的两个不同的解向量,故方程组有无穷多解,r(A)= r(Ab)<3, 对增广矩阵进行初等行变换: 21131132031022352104002314510a a a a a a a ----???? ? ?-→-- ? ? ? ?-----???? 易见仅当a=-2时,r(A)= r(Ab)=2<3, 故知a=-2。 【例题2】设A 是秩为3的5×4矩阵, α1、α2、 α3是非齐次线性方程组Ax=b 的三个不同的解,若α1+α2+2α3=(2,0,0,0)T , 3α1+α2= (2,4,6,8)T ,求方程组Ax=b 的通解。 解:因为r(A)= 3,所以齐次线性方程组Ax=0的基础解系由4- r(A)= 1个向量构成, 又因为(α1+α2+2α3)-(3α1+α2) =2(α3-α1)=(0,-4,-6,-8)T , 是Ax=0的解, 即其基础解系可以是(0,2,3,4)T , 由A (α1+α2+2α3)=Aα1+Aα2+2Aα3=4b 知1/4

(α1+α2+2α3)是Ax=b 的一个解, 故Ax=b 的通解是 ()1,0,0,00,2,3,42T T k ?? + ??? 【例题3】已知ξ1=(-9,1,2,11)T ,ξ2=(1,- 5,13,0)T ,ξ3=(-7,-9,24,11)T 是方程组 12234411223441 234432332494x a x x a x d x b x x b x x x x c x d +++=?? +++=??+++=?的三个解,求此方程组的通解。 分析:求Ax=b 的通解关键是求Ax=0的基础解系,判断r(A)的秩。 解:A 是3×4矩阵, r(A)≤3,由于A 中第2,3两行不成比例,故r(A)≥2,又因为 η1=ξ1-ξ2=(-10,6,-11,11)T , η2=ξ2-ξ3= (8,4,-11,-11)T 是Ax=0的两个线性无关的解向量, 于是4- r(A)≥2,因此r(A)=2,所以ξ1+k 1η1+k 2η2是通解。 总结: 不要花时间去求方程组,太繁琐,由于ξ1-ξ2,ξ1-ξ3或ξ3-ξ1,ξ3-ξ2等都可以构成齐次线性方程组的基础解系,ξ1,ξ2,ξ3都是特解,此类题答案不唯一。 题型2 线性方程组求解

齐次和非齐次线性方程组的解法精编日

齐次和非齐次线性方程组的解法精编日 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

线性方程组的解法 注意:考试以非齐次线性方程组的无穷多解为主要考查点,但是同学们学得时候要系统,要全面,要完整。下面是解线性方程组各种情况的标准格式,请同学们以此为准,进行练习。 一、齐次线性方程组的解法 定理齐次线性方程组一定有解: (1) 若齐次线性方程组() =,则只有零解; r A n (2) 齐次线性方程组有非零解的充要条件是() r A n <.(注:当=时,齐次线性方程组有非零解的充要条件是它的系数行列式 m n A=.) 注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于() -. n r A 2、非齐次线性方程组AX B =的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组AX O =所对应的同解方程组。 由上面的定理可知,若m是系数矩阵的行数(也即方程的个数),n 是未知量的个数,则有:(1)当m n <时,() ≤<,此时齐次线性方 r A m n 程组一定有非零解,即齐次方程组中未知量的个数大于方程的个数就一定有非零解; (2)当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式0 A=; (3)当m n A≠,故齐次线=且() =时,此时系数矩阵的行列式0 r A n 性方程组只有零解;

(4)当m n >时,此时()r A n ≤,故存在齐次线性方程组的同解方程组,使“m n ≤”. 例 解线性方程组12 341 23412341 2 3 4 2350,320,4360,2470. x x x x x x x x x x x x x x x x +-+=??++-=? ?+-+=??-+-=? 解法一:将系数矩阵A 化为阶梯形矩阵 显然有()4r A n ==,则方程组仅有零解,即12340x x x x ====. 解法二:由于方程组的个数等于未知量的个数(即m n =)(注意:方程组的个数不等于未知量的个数(即m n ≠),不可以用行列式的方法来判断),从而可计算系数矩阵A 的行列式: 231531 2132704 13 6 1247 A --= =≠---,知方程组仅有零解,即12340x x x x ====. 例 解线性方程组123 451 2 3452 34512 3 4 5 0,3230,2260,54330. x x x x x x x x x x x x x x x x x x x ++++=??+++-=??+++=??+++-=? 解:将系数矩阵A 化为简化阶梯形矩阵 可得()2r A n =<,则方程组有无穷多解,其同解方程组为 134523 4 55,226. x x x x x x x x =++??=---?(其中3x ,4x ,5x 为自由未知 量) 令31x =,40x =,50x =,得121,2x x ==-;令30x =,41x =,50x =,得121,2x x ==-;令30x =,40x =,51x =,得125,6x x ==-,于是得到原方程组的一个基础解系为

线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间 返回教案总目录 6.7矩阵的秩,齐次线性方程组的解空间 一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。 2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。 3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。 三、教学过程 1、矩阵的秩的几何意义 几个术语:设)(F M A n m ?∈,???? ? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一 个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。 注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈, 1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间; 2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。 分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

线性方程组求解

第三章 线性方程组 §1 消元法 一、线性方程组的初等变换 现在讨论一般线性方程组.所谓一般线性方程组是指形式为 ?? ? ?? ? ?=+++=+++=+++s n sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111, , (1) 的方程组,其中n x x x ,,,21 代表n 个未知量,s 是方程的个数, ),,2,1;,,2,1(n j s i a ij ==称为线性方程组的系数,) ,,2,1(s j b j =称为常数项. 方程组中未知量的个数n 与方程的个数s 不一定相等.系数ij a 的第一个指标i 表示它在第i 个方程,第二个指标j 表示它是j x 的系数. 所谓方程组(1)的一个解就是指由n 个数n k k k ,,,21 组成的有序数组 ),,,(21n k k k ,当n x x x ,,,21 分别用n k k k ,,,21 代入后,(1)中每个等式都变成恒 等式. 方程组(1)的解的全体称为它的解集合.解方程组实际上就是找出它全部的解,或者说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的. 显然,如果知道了一个线性方程组的全部系数和常数项,那么这个线性方程组就基本上确定了.确切地说,线性方程组(1)可以用下面的矩阵 ???? ?? ? ??s sn s s n n b a a a b a a a b a a a 21 222221111211 (2) 来表示.实际上,有了(2)之后,除去代表未知量的文字外线性方程组(1)就确定了,而采用什么文字来代表未知量当然不是实质性的.在中学所学代数里学过用加减消元法和代入消元法解二元、三元线性方程组.实际上,这个方法比用行列式解线性方程组更有普遍性.下面就来介绍如何用一般消元法解一般线性方程组. 例如,解方程组

浅析线性方程组的解法

目录 摘要................................................................................... I Abstract. ............................................................................. II 第一章绪论............................................................................ I 1.1引言 (1) 1.2线性方程组解的求解方法的研究现状 (1) 1.3本文对线性方程组解法的研究结构 (1) 第二章线性方程组理论基础 (2) 2.1 线性方程组概念 (2) 2.2 线性方程组的解的情况分析 (2) 2.3 齐次线性方程组解的结构 (4) 2.4非齐次线性方程组解的结构 (4) 第三章线性方程组的数值解 (5) 3.1 迭代法 (5) 3.1.1 Jacobi方法 (6) 3.2.2 高斯-赛德尔方法 (8) 第四章全文总结和展望 (10) 4.1 全文总结 (10) 4.2 未来展望 (10) 参考文献 (11) 致谢................................................................. 错误!未定义书签。

线性方程组的求解方法 学生:指导教师: 摘要:本文在对线性方程组解的结构的研究背景与意义分析的基础上,对线性方程组的求解方法的研究现状进行了介绍,之后针对线性方程组展开了研究,包括线性方程组的概念、线性方程组的求解方法以及线性方程组的作用等,在对线性方程组有了全面的认识后,基于线性方程组解的结构展开了研究,包括线性方程组解的基本定理,齐次和非齐次线性方程组解的结构形式,以及齐次和非齐次线性方程组解的结构,我们用迭代法中最常用的Jacobi方法中的相似上三角矩阵定理和迭代法中的收敛性讨论线性方程组的数值解法,并用高斯-赛德尔方法进行验证。得到线性方程组的数值解的一般方法。最后,对全文进行了总结和展望。 关键词:线性方程组;数值解;迭代法;Jacobi方法;高斯-赛德尔方法

非齐次线性方程组同解的判定和同解类

非齐次线性方程组同解的判定和同解类 摘要 本文主要讨论两个非齐次线性方程组同解的条件及当两个非齐次线性方程组的导出组的解空间相同时解集之间的关系。 关键词 非齐次线性方程组 同解 陪集 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题. 预备知识 定理1设,A B 是向量组C 两个线性无关的极大组,则存在可逆矩阵P ,使得 B PA =。 定理2设A 、B 为m n ?矩阵,且秩A =秩B ,如果存在矩阵C ,使得 CA B = 则存在m m ?可逆矩阵P ,使得 PA B = 证明 设秩A =秩B =r ,则存在可逆矩阵1P 与Q 使 011A P A A ??=????, 01B QB B ??=???? 其中0A ,0B 分别为秩数等于r 的r n ?矩阵,由于B CA =,则B 的行可由A 的行线性表出,从而B 的行可由0A 的行线性表出,进而0B 的行可由0A 的行线性表出, 于是矩阵00A B ?? ???? 的行向量组的极大线性无关组为0A 的各行,因为0B 的各行线性无 关且秩0B r =,所以0B 的各行亦构成一个线性无关组,则存在可逆矩阵r P 使得 00r B P A = 又设 110A C A =,12020r B C B C P A == 令 221 0r r n r P P C P C I -?? =? ?-?? 则1P 为可逆矩阵,且

第三章线性方程组与线性子空间

第三章 线性方程组 §1 §2消元法和线性方程组解的情况 1 线性方程组的初等变换 现在讨论一般线性方程组 11112211211222221122,,n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????++ += ? 其中n x x x ,,,21 代表n 个未知量,m 是方程的个数,(1,2,,;1,2,,)ij a i m j n ==称为 线性方程组的系数,(1,2, ,)j b j m =称为常数项.方程组中未知量的个数n 与方程的个数 m 不一定相等.系数ij a 的第一个指标i 表示它在第i 个方程,第二个指标j 表示它是j x 的系 数. 所谓方程组的一个解就是指由n 个数n k k k ,,,21 组成的有序数组),,,(21n k k k ,当 n x x x ,,,21 分别用n k k k ,,,21 代入后,方程组中每个等式都变成恒等式. 方程组解的全 体称为解集合. 解方程组实际上就是找出它全部的解,即:求出它的解集合. 如果两个方程组有相同的解集合,它们就称为同解的. 如果知道了一个线性方程组的全部系数和常数项,那么这个线性方程组就基本上确定了.确切地说,线性方程组(1)可以用下面的矩阵 11121121222212 n n m m mn m a a a b a a a b a a a b ?? ? ? ? ??? 来表示. 例如,解方程组 ??? ??=++=++=+-. 522,4524,132321 321321x x x x x x x x x 第二个方程组减去第一个方程的2倍,第三个方程减去第一个方程,就变成

线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间 返回教案总目录 6.7矩阵的秩,齐次线性方程组的解空间 一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。 2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。 3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、容要求 1、容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。 三、教学过程 1、矩阵的秩的几何意义 几个术语:设)(F M A n m ?∈,??? ? ? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一 个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。 注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈, 1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间; 2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。 分析:设()()() m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量, ),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

齐次和非齐次线性方程组的解法日

齐次和非齐次线性方程组 的解法日 This manuscript was revised by the office on December 10, 2020.

线性方程组的解法 注意:考试以非齐次线性方程组的无穷多解为主要考查点,但是同学们学得时候要系统,要全面,要完整。下面是解线性方程组各种情况的标准格式,请同学们以此为准,进行练习。 一、齐次线性方程组的解法 定理 齐次线性方程组一定有解: (1) 若齐次线性方程组()r A n =,则只有零解; (2) 齐次线性方程组有非零解的充要条件是()r A n <.(注:当m n =时, 齐次线性方程组有非零解的充要条件是它的系数行列式0A =.) 注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于()n r A -. 2、非齐次线性方程组AX B =的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组AX O =所对应的同解方程组。 由上面的定理可知,若m 是系数矩阵的行数(也即方程的个数),n 是未知量的个数,则有:(1)当m n <时,()r A m n ≤<,此时齐次线性方程组一定有非零解,即齐次方程组中未知量的个数大于方程的个数就一定有非零解; (2)当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式 0A =; (3)当m n =且()r A n =时,此时系数矩阵的行列式0A ≠,故齐次线性方程组只有零解; (4)当m n >时,此时()r A n ≤,故存在齐次线性方程组的同解方程组,使“m n ≤”. 例 解线性方程组12 341 23412341 2 3 4 2350,320,4360,2470. x x x x x x x x x x x x x x x x +-+=??++-=? ?+-+=??-+-=?

线性方程组的解及其应用

编号08005110107 南阳师范学院2012届毕业生 毕业论文(设计) 题目:线性方程组的解及其应用 目录 摘要 (1) 0引言 (1) 1线性方程组解的结构 (1) 2 线性方程组的解法及相关结论 (3) 2.1 线性方程组的解法 (3) 2.1.1 线性方程组的个数和未知量的个数相等 (3) 2.1.2 线性方程组的个数和未知量的个数不相等 (5) 2.2 线性方程组解得的几个结论 (7)

3线性方程组解的应用 (8) 3.1 在矩阵理论中的应用 (9) 3.2 在多项式理论中的应用 (9) 3.3 在欧氏空间上的应用 (9) 3.4 在解空间理论上的应用 (10) 参考文献 (10) Abstract (11)

线性方程组的解及其应用 作 者:段蕴蕴 指导教师:马淑云 摘要:介绍线性方程组解的结构及其几种解法,如初等行变换法,初等列变换法等,通过对线性方程的解法的探讨,揭示了线性方程组的求解规律,并在此基础上研究了它的应用. 关键词:线性方程组,解的结构,初等行变换法,应用 0引言 线性方程组是高等代数或基础数学的一个组成部分,在整个数学大厦中占据着重要位置,学好线性方程组基本理论与方法对进一步学习研究数学理论和实际应用均非常重要.对于线性方程组的初等解法,既是线性方程组理论中有自身特色的部分,也与实际问题密切相关.恰当对初等解法进行归类,能正确而又敏捷地判断一个给定的方程属于何种类型,从而能按照所介绍的方法解题.文献[1-4]已经有了研究,下面着重讨论线性方程组的结构,求解规律及其在矩阵,多项式,欧式空间及线性空间等几个方面的应用. 1 线性方程组解的结构 定理1[5] 设A 是一个m n ?矩阵,P ,Q 是满足00 0r I PAQ ?? = ??? 的两矩阵,令()1 21,,...,,,...,r r n Q α αααα+=. (ⅰ) 1,...,n αα是0AX =的一基础解系; (ⅱ) 方程组 mn n1m1 A X =b ( * ) 有解的充分必要条件是()0,0n r I Pb -=; (ⅲ) 若方程组( * )有解,则(*)的解的集合{}1,...,r n W Span γαα+=+.

相关文档
最新文档