ansys-二维悬臂梁有限元分析

ansys-二维悬臂梁有限元分析
ansys-二维悬臂梁有限元分析

1 研究目的与问题阐述

1.1 基本研究目的

(1) 掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。

(2) 熟悉有限元建模、求解及结果分析步骤和方法。

(3) 利用ANSYS软件对梁结构进行有限元计算。

(4) 研究不同泊松比对同一位置应力的影响。

1.2 基本问题提出

图1.1 模型示意图

如图1.1所示,当EX=3.01e6,F=5000N,悬臂梁杆一端固定,另一端为自由端。当悬臂梁的泊松比u为:0.2、0.25、0.3、0.35、0.4时,确定同一位置的应力分布,得出分布云图。

采用二维模型,3*0.09m。

2 软件知识学习

2.1 软件的使用与介绍

软件介绍:

ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE工具之一。

ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。

软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。

前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;

分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;

后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。

软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。

3 研究方法与过程

3.1 研究方法论证

经过查找相关资料,讨论研究后,确定了两种方案解决这一问题,对于方法一,可能比较简单,但是在最后确定固定点时准确度不够;对于方法二,虽然操作过程有点繁琐,但是在最后的节点选择上就会很准确,有利于研究结论的正确性与有效性;故本次研究采用方法二。

3.2 研究法方法一简要介绍

(1) Utility Menu→File→Clear&Start New

(2) Utility Menu→File→Change Jobname

(3) Utility Menu→ File→ Change Title

(4) Main Menu→Preprocessor→Element Type→Add/Edit/Delete

(5) Main Menu→Preprocessor→Material props→Material Models→Linear(线性)→Elastic(弹性)→Isotropic(各向同性)

(6) Main Menu→Preprocessor→Modeling→Create→Areas→Rectangle→By Dimensions

(7) Main Menu→Preprocessor→Meshing →MeshAttributes→All Areas

(8) Main Menu→Preprocessor→Meshing →SizeCntrls→SmartSize→Basic

(9) Main Menu→Preprocessor→Meshing →Mesh→Area→Free ANSYS

(10) Main Menu→Solution→Define Load(定义载荷)→ Apply(加载)→Structural (结构)→Displacement(位移)→On Ondes

(11) Main Menu→Solution→Define Load(定义载荷)→ Apply(加载)→Structural (结构)→Force/Moment(力/力矩)→On Ondes

(12) ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load Step window) →OK

(13) ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape…→select Def + Undeformed →OK

(14) Main Menu→General Postproc→Plot Results(绘制结果)→Contour Plot

(绘制等值图)→Nodal Solu(节点解)→Nodal Solution(节点解)→Elastic Strain (弹性应变)→Y-Component of elastic strain(弹性应变Y分量)

(15) ANSYS Main Menu: General Postproc → Query Results →Subgrid Solu →选择Stress → X-Component of stress →OK 在应力分布图中,选择一固定节点,点OK即可测出相应Y方向上应力。

3.3 主要研究方法二介绍

3.3.1 过滤菜单

(1) ANSYS Main Menu: Preferences →select Structural → OK

注:过滤菜单如图3.1所示

图3.1 过滤菜单

3.3.2 实体建模

(1) ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入4个点的坐标:input:1(0,0,0)→Apply → 2(3000,0,0)→Apply → 3(3000,90,0) →Apply → 4(0,90,0) →OK

注:在实体建模中,建立四个方位点,首先建立点1,如图3.2所示,然后选择Aplly应用,再依次输入点2、3、4方位。

图3.2 建立方位点

(2) 由4个关键点组成面

ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPs →依次拾取4个点→OK

注:在拾取关键点是要按顺序依次拾取,拾取完点击OK即可,如图3.3所示。

图3.3 依次拾取关键点组成图形

3.3.3 划分网格

(1) 定义单元类型

Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window) →Options→selelt K3: Plane Strsw/thk → Close (the Element Type window)

此处选用Solid Quad 4node 42。

注:选择单元类型,如图3.4所示。

图3.4 单元类型选择

(2) 定义实常数

ANSYS Main Menu: Preprocessor →Real Constants →Add →select Type 1→ OK→input THK:90 →OK →Close (the Real Constants Window) 注:定义悬臂梁的厚度,即在THK框中输入90(mm),如图3.5所示。

图3.5 定义悬臂梁宽度

(3) 定义材料(弹性模量,泊松比)

ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:3.01e6, PRXY:0.2 →OK

注:定义材料弹性模量及泊松比,EX为弹性模量,PRXY为泊松比,在第一次定义时在PRXY框中输入0.2,以后同理,依次输入0.25、0.3、0.35、0.4,如图3.6所示。

图3.6 定义弹性模量及泊松比

(4) 指定单元属性

ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool →Element Attributes →(select) Global→ Set →OK

注:指定单元属性,依次点Set,Ok即可,如图3.7所示。

图3.7 指定单元属性

(5) 网格密度设置

Mesh Tool →Size Controls → select Lines→ Set →拾取长边的两条线→OK → input NDIV:6 →Apply →拾取短边的两条线→OK → input NDIV:2 →OK

分别等份划分长和宽

注:划分长,6等分,如图3.8所示。

图3.8 6等分长

注:划分宽,2等分,如图3.9所示。

图3.9 2等分宽

(6) 划分网格

Mesh Tool →Mesh : select Areas→ Shape:Quad→Free → Mesh → Pick All →Close( the Mesh Tool window)

注:释放网格,如图3.10所示。

图3.10 释放网格

(7) 显示单元与节点编号

Utility Menu:Plotctrls→Numbering →选项NODE Node numbers为On →在Elem/Attrib numbering选择Element numbers →OK

注:显示单元与节点,为以后应力分析打下基础,如图3.11,图3.12所示。

图3.11 显示节点操作

图3.12 节点显示示意图

3.3.4 求解

(1) 施加位移边界条件与加载

1)给节点1、10施加x和y方向的约束(即约束左边)

ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement → On Nodes →拾取节点1、10 →OK →select Lab2:ALL OFF → OK 注:悬臂梁固定一端,此处选择左端固定,如图3.13所示。

图3.13 固定悬臂梁左端

2)给节点8施加y方向载荷

ANSYS Main Menu: Solution →Define Loads →Apply →Structural →

Force/Moment →On Nodes →拾取节点8→OK →Lab: FY, Value: -5e3→OK

注:给悬臂梁右端施加方向向下,大小为5000N的力,如图3.14所示,综合效果图如图3.15所示。

图3.14 右端施加-5e3N力

图3.15 综合效果图

(2) 定义分析类型并求解

1)定义分析类型

Preprocessor → Solution →Analysis Type→ New Analysis

注:定义分析类型,选择Static,如图3.16所示。

图3.16 选择分析类型

2) 求解

ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load Step window) →OK

注:求解过程点击OK即可,每次变量的改变都必须都要求一次解,这一步至关重要,如图3.17所示。

图3.17 求解

3.3.5 后处理

(1) 结构的变形图

ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape→select Def + Undeformed →OK将在软件主界面显示结构变形图。

注:在后处理过程中中,首先应该看一下结构的变形图,以利于以后基本应力分

析,如图3.18所示。

图3.18 结构变形图

(2) 显示特定位置应力

ANSYS Main Menu: General Postproc → List Results →Nodal Solution →选择Stress → Y-Component of stress →OK

注:此处选择显示在Y方向上各关键点应力,基本操作流程如图3.19所示,显示结果如图3.20所示。

图3.19 基本操作

图3.20 显示结果

4 结论

4.1 数据记录

记录研究数据,转化为表格形式,如表4.1所示:

表4.1 研究记录数据

4.2 应力分布图

研究过程中主要看节点12 Y方向上应力,由上表中可以看出应力随悬臂梁泊松比u变化规律,在以下给出应力分布图:

(1)当u=0.2时,如图4.1所示:

图4.1 泊松比为0.2时应力分布图

(2)当u=0.25时,如图4.2所示:

(3)当u=0.3时,如图4.3所示:

(4)当u=0.35时,如图4.4所示:

(5)当u=0.4时,如图4.5所示:

图4.5 泊松比为0.4时应力分布图4.3 分布云图绘制

受力点12的分布云图,如图4.6所示:

图4.6 受力点12的分布云图

4.4 实验结论

由以上分析可知,在关键点12处,泊松比在0.2到0.4范围内变化时,受力基本随泊松比线性变化。

第9章 桁架和梁的有限元分析

第9章桁架和梁的有限元分析 第1节基本知识 一、桁架和梁的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中最常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表9-1。 通过对桁架和梁进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位

移动画等结果。 第2节桁架的有限元分析实例 一、案例1——2D桁架的有限元分析 图9-1 人字形屋架的示意图 问题 人字形屋架的几何尺寸如图9-1所示。杆件截面尺寸为0.01m2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0×1011 N/m2,泊松比为0.3。 解题过程 制定分析方案。材料弹性材料,结构静力分析,属2D桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图9-1所示,边界条件为1点和5点固定,6、7、8点各受1000 N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility>Menu>File>Clear & Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility>Menu> File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Utility>Menu>File>Change Title,弹出Change Title对话框,在Enter New Title项输入标题名,本例中输入“2D-spar problem”为标题名,然

悬臂梁分析报告

悬臂梁受力分析报告 高一博 2016.11.13 西安理工大学 机械与精密仪器工程学院

摘要 利用ANSYS对悬臂梁进行有限元静力学分析,得到悬臂梁的最大应力和挠度位移。从而校验结构强度和尺寸定义,从而对结构进行最优化设计修正。 关键词:悬臂梁,变形分析,应力分析

目录 一.问题描述: (4) 二.分析的目的和内容: (4) 三.分析方案和有限元建模方法: (4) 四.几何模型 (4) 五.有限元模型 (4) 六.计算结果: (5) 七.结果合理性的讨论、分析 (8) 八.结论 (8) 参考文献 (8)

一.问题描述: 现有一悬臂梁,长500MM,一端固定,另外一端施加一个竖直向下的集中力200N。 其截面20MMX20MM的矩形,现在要分析该梁的在集中力作用下产生的位移,应力和局部应力。 二.分析的目的和内容: 1.观察悬臂梁的变形情况; 2.观察分析悬臂梁的应力变化; 3.找出其最大变形和最大应力点,分析形成原因; 三.分析方案和有限元建模方法: 1.使用ANSYS-modeling-create-volumes-block建模, 2.对梁进行材料定义,网格划分。 3.一端固定,另外一端施加一个向下的200N的力。 4.后处理中查看梁的应力和变形情况。 四.几何模型 500X20X20的梁在在ANSYS中进行绘制.由于结构简单规则,无需简化。 五.有限元模型 单元类型:solid brick8node45 材料参数:弹性模量2e+11pa,泊松比0.3 边界条件:一端固定,一端施加载荷 载荷:F=200N 划分网格后的悬臂梁模型

梁结构应力分布ANSYS分析汇总

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062 2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,

悬臂梁的有限元建模与变形分析

悬臂梁的有限元建模与变形分析 摘要:应用有限元软件对矩形截面的悬臂梁受均匀载荷时采用三种不同的模型进 行分析,并且比较其有限元结果与理论结果,从而得之有限元分析需要进行合理的分析,建立合适的模型,才可以得到正确的结果。 关键词:建模,有限元 1计算分析模型如图1-1所示,左边完全约束,右边不约束。 图1-1梁的计算分析模型梁截面分别采用以下三种截面(单位:m): Name; Profile-1 Shape; Rectangular 图1-2矩形截面Cancel 1 a

Name: Profiled Shape: Circular shape;] 图1-4圆形截面 Cancel Name; Profile-3 图1-3圆形截面 + 2 b -* 1 b Cancel 2理论计算模型 取右端研究

5e4 3有限元计算结果 图1-5矩形截面变形位移图 qx .0e5 cy ax 200000 0.05 2.67 e8Pa 50000 400000 12 El 3 El 带入 2, y = 0得 m ax 8.5e - 3m 0.3 6 u 3 33T-333 3 333 -u oo oo.d c T-IT - T-lF ■ :57 912^ 6 8-q I ^680357^1^? 4 Is 630 7 4「二口 6 1.2-2 £ 4 5 IT 二b 77 R-

图1-6矩形截面应力图 U U2 +O.OOOeWO -7.4<>Cie*04 -1.4S0e-03 -2.220e-03 -2.960&-03 -3,700e-03 -4.440e-03 -5.180e-03 -5.920e-03 -6.660e'03 -7.400&-03 -S.140&-03 -8.S80e-03 ODB: Job-222.odb Abaqus/Standard 6.10-1 Tue Apr 10 16:53:04 GIVfT+08:0D 2012 ;何亡卵亡兀 L S MS TH MS * 103] 675e+07 ;■ saie+oa 517e+0S [A%>g 75%) 比叮币 Li? ft Comer 工 Mv&es 4实M j L> 3 + i + 1 + 1. * t 11 t - *€ ? I

ANSYS悬臂梁的自由端受力的有限元计算[1]

悬臂梁自由端受力的有限元计算 任柳杰10110290005 一、计算目的 1、掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 2、熟悉有限元建模、求解及结果分析步骤和方法。 3、利用ANSYS软件对梁结构进行有限元计算。 4、梁的变形、挠曲线等情况的分析。 5、一维梁单元,二维壳单元,三维实体单元对计算结果的影响。 6、载荷施加在不同的节点上对结果的影响。 二、计算设备 PC,ANSYS软件(版本为11.0) 三、计算内容 悬臂梁受力模型 如上图所示,一段长100[mm]的梁,一端固定,另一段受到平行于梁截面的集中力F的作用,F=100[N]。梁的截面为正方形,边长为10[mm]。梁所用的材料:弹性模量E=2.0 105[MPa],泊松比0.3。 四、计算步骤(以梁单元为例) 1、分析问题。 分析该物理模型可知,截面边长/梁长度=0.1是一个较小的值,我们可以用梁单元来分析这样的模型。当然,建立合适的壳单元模型和实体单元模型也是可以的。故拟采用这三种不同的 方式建立模型。以下主要阐述采用梁单元的模型的计算步骤。 2、建立有限元模型。 a)创建工作文件夹并添加标题; 在个人的工作目录下创建一个文件夹,命名为beam,用于保存分析过程中生成的各种文件。 启动ANSYS后,使用菜单“File”——“Change Directory…”将工作目录指向beam 文件夹;使用/FILNAME,BEAM命令将文件名改为BEAM,这样分析过程中生成的文件均 以BEAM为前缀。 偏好设定为结构分析,操作如下: GUI: Main Menu > Preferences > Structural b)选择单元; 进入单元类型库,操作如下: GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add… 对话框左侧选择Beam选项,在右侧列表中选择2D elastic 3选项,然后单击OK按钮。

基于midas的张弦梁结构有限元分析

基于MIDAS的张弦梁结构有限元分析 基于MIDAS的张弦梁结构有限元分析 摘要:本文结合某社区游泳馆屋盖的张弦直梁的选型进行了分析。运用有限元软件MIDAS分别从张弦梁的高跨比以及撑杆个数与下弦预拉力的关系,分析自振模态与撑杆数目的关系,从而综合各个指标对梁结构进行了优化设计。 关键词:张弦梁,梁截面高度,撑杆数量,自振频率 Abstract: In this paper, the selection of a straight beam-string in a community swimming pool has been studied using FEM software MIDAS. The height-span ratio and the relationship between pole number and the pre-tension as well as self-vibration modes is research based on FEM method. Based on the result, the design of the structure is optimized. Key words: string beam, beam section height, pole number, self-vibration frequency 中图分类号:TB482.2 文献标识码:A文章编号:2095-2104(2012) 1 引言 某社区游泳馆的跨度为20.8m,原方案的屋盖为H型钢梁为主承重构件,次梁也为H型钢,屋面板为压型钢板为衬板的组合屋面板。由于跨度和空间的局限,原方案采用了较为传统的屋架梁作为主承重构件,为满足结构的应力和挠度要求,选择截面高度为1.6m。相对来说占据了较大的游泳馆的使用净空,而且从观感来说整个结构会欠缺轻盈。为此,本文提出一种较为新型的梁形式,张弦梁结构。由于该工程跨度较小,在原方案的基础上,上弦依然采用H型钢梁,增加了下弦的高强张拉索,所以降低了整个梁截面的高度和上弦梁H型钢梁的截面厚度。 2 张弦梁概念 张弦结构体系中最早出现的是张弦梁结构,它是由梁、柔性下杆、撑杆三类构件组成[1],属于刚柔并济的结构形式。当张拉下弦的高

有限元悬臂梁仿真

有限元方法大作业 课程设计题目: 若干个质量不等的仪器要安装在均匀悬臂梁(或板)不同位置上,仪器间要有预留安全距离,试确定一种安装方法,使梁(或板)的变形最小或第一阶固有频率最高。 题目分析: 1 题目中没有给定梁的材料和形状、仪器的数量和质量,以及仪器的安全距离。在这里不妨假定,梁的材料为结构钢,其密度为、杨氏模量为Pa、泊松比为0.3,梁的形状为。仪器的数量为3个,均匀的安装在梁上,其质量及其组合如表1所示。 表1 仪器的质量、及其组合 2 本次采用solidworks建立梁的实体模型,并导入ansys workbench软件中进行计算。梁模型左端固定,仪器安装顺序依次从左到右。 3 在题目中,需要找到一种安装组合使得梁的变形最小或第一阶固有频率最高,这分别是静力学分析问题和模态分析问题。在静力学分析中,如图2-1所示,在梁上安装仪器的位置上,加上一个加力面(半径为20mm的圆)。在加力面上可以施加均布载荷,这里将仪器的质量换算成相应的均布载荷,施加到相应的加力面上,如图2-2所示。 图2-1 ansys workbench实体梁的静力学分析

图2-2 加力面和加力面上的均布载荷 采用solid187单元对模型进行网格划分,solid187单元是一个高阶3维10节点固体结构单元,如图2-3所示,单元通过10个节点来定义,每个节点有3个沿着xyz方向平移的自由度。并对加力面附近进行加密,如图2-4所示。进而进行静力学分析,得到梁的总体变形量(total-Deformation)。 图2-3 solid187单元 图2-4 梁模型网格划分和加力面加密 4 梁的固有频率可由无阻尼自由振动方程求解: 令: 得到: 当: 从而求的梁的自振频率。在ansys workbench中,将仪器的质量用质量点代替,并安置在相应的位置上,如图2-5所示。采用solid186单元对模型进行网格划分,其结果如图2-6所示,solid186是一个高阶3维20节点固体结构单元,如图2-7所示,单元通过20个节点来定义,每个节点有3个沿着xyz方向平移的自由度。然后,求解梁模型的前6阶的固有频率。

悬臂梁—有限元ABAQUS线性静力学分析实例-精选.pdf

线性静力学分析实例——以悬臂梁为例 线性静力学问题是简单且常见的有限元分析类型, 不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。在 ABAQUS 中,该类问题通常采用静态通用( Static ,General )分析步或静态线性摄动(Static ,Linear perturbation )分析步进行分析。 线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I 、C3D8I )的性价比很高。对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。 悬臂梁的线性静力学分析 1.1 问题的描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图 1-1所示,求梁受载后 的Mises 应力、位移分布。 材料性质:弹性模量32e E ,泊松比3.0均布载荷:F=103N 图1-1 悬臂梁受均布载荷图 1.2 启动ABAQUS 启动ABAQUS 有两种方法,用户可以任选一种。 (1)在Windows 操作系统中单击“开始” --“程序”--ABAQUS 6.10 --

ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 1.3 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建悬臂梁的几何模型。 (1)创建部件。对于如图1-1所示的悬臂梁模型,可以先画出梁结构的二维截面(矩形),再通过拉伸得到。 单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。 图1-2 Create Part对话框 在Name(部件名称)后面输入Beam,Modeling Space(模型所在空间)设

梁单元的分析

梁单元有限元法分析 关键词:梁单元有限元分析 1.摘要:二维平面梁单元是梁单元中最简单的单元之一,这次作业旨在学习如何运用有限元分析法分析梁单元。 2.目的:运用MATLAB软件分析二维梁单元。 3.题目:设一方形的截面梁,截面每边长为5cm,长度为10m,在左端约束固定,在右端施以一个沿y方向的集中力ω=100N,求其挠度与转角。 3.建立有限元分析模型: (1).结构离散化: 单元的选择:由于为悬臂梁,且横向的长度远远小于轴向的长度,所以在这选择平面梁单元; 单元的数量:将这个梁从中间划分为两个单元; 建立坐标系,坐标系包括结构的整体坐标系与单元的局部坐标系; (2.)建立平面梁单元的位移模式: 建立整体坐标系: 建立一个有两个单元组成的模型,由于X方向的位移U1,U2,U3太小所以我们略去这三个自由度的变化;节点坐标码: 单元编码: 同样出1号单元,建立局部坐标系:

4.具体的MATLAB求解过程与结果:>> clear x1=0; x2=sym('L'); x=sym('x'); j=0:3; v=x.^j v = [ 1, x, x^2, x^3] >> %计算形函数矩阵 m=... [1 x1 x1^2 x1^3 0 1 2*x1 3*x1^2 1 x 2 x2^2 x2^3 0 1 2*x2 3*x2^2] m = [ 1, 0, 0, 0] [ 0, 1, 0, 0] [ 1, L, L^2, L^3] [ 0, 1, 2*L, 3*L^2] >> mm=inv(m) mm = [ 1, 0, 0, 0] [ 0, 1, 0, 0] [ -3/L^2, -2/L, 3/L^2, -1/L] [ 2/L^3, 1/L^2, -2/L^3, 1/L^2] >> mm=inv(m);

有限元分析及应用报告-利用ANSYS软件分析带孔悬臂梁

有限元分析及应用报告 题目:利用ANSY软件分析带孔悬臂梁 姓名:xxx 学号:xxx 班级:机械xxx 学院: 机械学院 指导老师:xxx 二零一五年一月

问题概述 图示为一隧道断面,其内受均布水压力q,外受土壤均 布压力p;试采用不同单元计算断面内的位移及应力,并分别分析q=0或p=0时的位移和应力分布情况。(材料为钢,隧道几何尺寸和压力大小自行确定) 本例假定内圆半径为1m,外圆半径为2m,外受均布 压力p=10000pa ,内受均布压力为q=20000pa 。 问题分析 由题目可知,隧道的的长度尺寸远远大于截面尺寸,并且压力在长度方向上均匀分布,因此本问题可以看作为平面应变问题。由于在一个截面内,压力沿截面四周均匀分布,且截面是对称的圆环,所以可以只取截面1/4进行有限元建模分析,这样不仅简化了建模分析过程,也能保证得到精确的结果。由以上分析,可以选取单元类型plane42进行有限元分析,在option中选择K3 为plane strain。

三.有限元建模 1.设置计算类型 由问题分析可知本问题属于平面静应力问题,所以选择preferences 为structure 。 2.单元类型选定 选取平面四节点常应变单元plane42,来计算分析隧道截面的位移和应力。由于此问题为平面应变问题,在设置element type的K3时将其设置为plane strain。 3.材料参数 隧道的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比(T =0.3 4.几何建模 按照题目所给尺寸利用ansys的modeling依次建立keypoint : 1(0,0),2(1,0),3(2,0),4(0,2),5(0,1) , create LINES 依次连接keypoint 2、3和4、5即可创建两条直线,使用create article 的By cent & radius 创建两条圆弧。create AREAS依次选择四条线即建立了所需的1/4截面。 5.网格划分

悬臂梁ansys有限元分析求最大挠度

(一) 悬臂梁ansys 有限元分析求最大挠度 问题:悬臂梁长1000mm ,宽50mm ,高10mm ,左端固定,求其在自重作用下的最大挠度? 解:弯矩方程: 221) ()(x l q x M --= 微分方程: 22 1'')(x l q y EI z -= 积分求解:D Cx qx qlx x ql y EI C qx qlx x ql y EI z z +++-=++-=4322322'24 1 6125.06 1 5.05.0 由边界条件:0; 0, 0' ' ====A A A y y x θ 得:C=0, D=0 I=1/12*h^3*b,h 为梁截面的高,b 为梁截面的宽。 q=ρ*g*a*h*l 材料力学公式求:Y=EI 85 gahl^ρ=5.733mm L

ANSYS 模拟求:Y=5.5392mm,详细见下步骤 ANSYS 软件设置及其具体过程如下: 步骤1:建立一个模型,在model下creat一个长1,宽0.05,高0.01的长方体实体。(单位默认为m) 步骤2:材料属性设置。密度:7800,杨氏模量:2E11,泊松比0.3。

步骤3:划分网格。设置网格单元为structure solid brick 8node 185,mesh tool中设置网格大小为0.002,HEX下点击mesh。

步骤4:施加载荷;在preprocessor中inertia中设置重力加速度Y方向为9.8。在左面施加固定约束(三个方向固定)

步骤5::求解。在solve下solve current LS。 步骤6:后处理查看。在result中plot result,查看nodes displacement。List查看文本,观察nodes的最大位移点。

ansys-二维悬臂梁有限元分析

1 研究目的与问题阐述 1.1 基本研究目的 (1) 掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 (2) 熟悉有限元建模、求解及结果分析步骤和方法。 (3) 利用ANSYS软件对梁结构进行有限元计算。 (4) 研究不同泊松比对同一位置应力的影响。 1.2 基本问题提出 图1.1 模型示意图 如图1.1所示,当EX=3.01e6,F=5000N,悬臂梁杆一端固定,另一端为自由端。当悬臂梁的泊松比u为:0.2、0.25、0.3、0.35、0.4时,确定同一位置的应力分布,得出分布云图。 采用二维模型,3*0.09m。

2 软件知识学习 2.1 软件的使用与介绍 软件介绍: ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE工具之一。 ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。 软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。 前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型; 分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力; 后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。 软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。

悬臂梁有限元模拟分析步骤

Introduction to Simulation I-DEAS Tutorials: Simulation Projects Simulation involves three major steps: Pre-processing (modeling, applying boundary conditions, meshing); solving the model; and post-processing (displaying the results). Learn how to: ?create a finite element model ?apply boundary conditions ?mesh the FE model ?solve the FE model ?display the results

Before you begin... Prerequisite tutorials:?Introducing the I-DEAS Interface Quick Tips to Using I-DEAS –and– Creating Parts ?Extruding and Revolving Features

If you didn’t start I-DEAS with a new (empty) model file, open a new one now and give it a unique name. File Open Open Model File form Model File name: any unique name OK Simulation Master Modeler Set your units to mm. Options Units mm (milli newton)

试验三结构梁的有限元分析

实验三结构梁的有限元分析 (一) 实验目的 1.了解ANSYS在有限元分析中的作用; 2.理解ANSYS的工作机理; 3.掌握ANSYS的建模及分析方法; 4.掌握梁结构的有限元分析方法。 (二) 实验设备和工具 装有ANSYS软件的计算机 (三) 实验原理 1.有限元建模的基本原则 建模时需要考虑两条基本原则:一是保证计算结果的精度,二是控制模型的规模。在保证精度的前提下,减小模型规模是必要的,它可在有限的条件下使有限元计算更好、更快地完成。 (1) 保证精度原则 ① 适当增加单元数量,即划分比较密集的网格。实际计算时,可以比较两种网格的计算结果,如果相差较大,可以继续增加单元数量。如果结果变化不大,则可以停止增加。 ②在划分网格特别是在应力精度要求很高的区域时尽量划分比较规则的网格形状。一般情况下,使单元形状为正多边形(等边三角形或正方形)和正多面体。 (2) 控制规模原则 模型规模是指模型的大小,直观上可用节点数和单元数来衡量。 ①可以通过控制节点和单元数量来控制模型规模。此外,模型规模还受节点和单元编号的影响。 ② 在估计模型规模时,除了考虑节点的多少外,还应考虑节点的自由度数。 2.有限元建模的一般步骤 不同问题的有限元建模过程和内容不完全相同,在具体实施分析之前,首先弄清分析对象的几何形状、约束特点和载荷规律,以明确结构型式、分析类型、计算结果的大致规律、精度要求、模型规模大小等情况,以确定合理的建模策略和分析方案。 3.形状处理方法 几何模型对分网过程、网格形式和网格数量都有直接影响。几何建模时,对原有结构进

行适当处理是必要的。 (1) 降维处理:对某些结构作近似处理,按平面问题或轴对称问题来计算,把三维问题简化或近似为二维问题来处理。 (2) 细节简化:结构中存在的一些相对尺寸很小、处于结构的非高应力区的细节,如倒圆、倒角、退刀槽、加工凸台等,可以简化处理。 (3) 局部结构的利用:当有些结构尺寸很大,但受力或同时受力的却是某些相对很小的局部,结构只是在局部发生变形,应力也分布在局部区域内时,可以从整个结构中划分出一部分进行分析。 (4) 对称性的利用:当结构形状和边界条件具有某种对称性,应力和变形呈相应的对称分布时,可以只取出结构的一半计算。 4.单元类型 单元类型的选择应根据分析类型、形状特征、计算数据特点、精度要求和计算条件等因素综合考虑。在结构分析领域,不同的结构类型需要相应的单元进行离散。因此单元通常是按结构类型进行分类的,即根据结构的特点选择相应单元。 5.单元特性 单元特性定义了单元内部数据,包括材料数据、截面数据等。 (1) 材料特性 材料特性用于定义分析对象的材料在力学、热学等方面的性能,如弹性模量E、泊松比、密度、导热系数、热膨胀系数等。 (2) 物理特性 物理特性用于定义单元物理参数或辅助几何特征,在ANSYS中称为实常数。 (3) 截面特性 杆、梁这类一维单元需要定义其截面特性。杆件结构只承受拉压,其截面特性只有截面积。梁结构可以承受拉压、弯曲和扭转,其截面特性包括截面积、主惯矩、极惯矩等截面性质。 (4) 单元相关几何数据 某些单元具有一些相关几何数据,以对单元作进一步说明。 6.网格划分原则 (1) 网格数量 网格数量的多少主要影响以下两个因素。 ①结果精度 网格数量增加,结果精度一般会随之提高,但当网格数量太大时,数值计算的累积误差反而会降低计算精度。 ②计算规模 网格数量增加,将会增加计算时间。并不是网格分得越多越好,应该考虑网格增加的经济性,在实际计算时应权衡两个因素综合考虑。 (2) 网格疏密 网格疏密是指结构不同部位采用不同大小的网格,又称相对网格密度。应力集中区域采用较密集的网格,而在其它非应力集中区域,则采用较稀疏的网格。采用疏密不同的网格划分,既可保持相当的精度,又可使网格数量减小。 (3) 单元阶次 采用高阶单元可以提高计算精度,但高阶单元的节点较多,使用时也应权衡精度和规 模综合考虑。 (4) 网格质量

专业课设,悬臂梁有限元分析

1 研究目的与问题阐述 1.1 基本研究目的 (1) 掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 (2) 熟悉有限元建模、求解及结果分析步骤和方法。 (3) 利用ANSYS软件对梁结构进行有限元计算。 (4) 研究不同泊松比对同一位置应力的影响。 1.2 基本问题提出 图1.1 模型示意图 如图1.1所示,当EX=3.01e6,F=5000N,悬臂梁杆一端固定,另一端为自由端。当悬臂梁的泊松比u为:0.2、0.25、0.3、0.35、0.4时,确定同一位置的应力分布,得出分布云图。 二维模型,3*0.09m。 2 软件的介绍与使用 2.1 ANSYS 简介 ANSYS程序是一个功能强大的灵活的设计分析及优化、融结构、流体、电场、磁场、声场分析于一体的大型通用有限元商用分析软件,可广泛应用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等一般工业及科学研究。该软件提供了一个不断改进的功能清单,集体包括:结构高度非线性分析、电磁分析、计算流体动力分析、设计优化、接触分析、自适应网格划分、大应变/有限转动工功能一接利用ANSYS参数设计的扩展宏命令功能。 ANSYS由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数

系统下生成的集合数据传入ANSYS,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,并通过必要的修补可准确地在该模型上划分网格并求解。 2.2 ANSYS软件的功能介绍 ANSYS软件含有多种有限元分析的能力,包括从简单线性静态分析到复杂非线性动态分析。一个典型的ANSYS分析过程可分为以下三个步骤: 创建有限元模型; 施加载荷进行求解; 查看分析结果; 在有限元的分析过程中,程序通常使用以下三个部分:前处理模块,分析求解模块和后处理模块。 前处理模块提供了一个强大的实体建模及网格划分工具,通过这个模块用户可以建立自己想要的工程有限模型。 分析求解模块即是对已建立好的模型在一定的载荷和边界条件下进行有限元计算,求解平衡微分方程。包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析(热-应力耦合、流-固耦合以及电-磁-热-应力耦合)等,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力; 后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。 下面对ANSYS软件的三种模块的功能进行简要介绍: 1.前处理模块 ANSYS软件的前处理模块主要实现三种功能:参数定义、实体建模和网格划分。 (1)参数定义 ANSYS程序在进行结构建模的过程中,首先要对所有被建模型的材料进行参数定义。包括定义使用单位制,定义所有使用单元的类型,定义单元的实常数,定义材料的特性以及使用材料库文件等。 (2)实体建模

实验一梁结构静力有限元分析(精)

实验一 梁结构静力有限元分析 一、实验目的: 1、 加深有限元理论关于网格划分概念、划分原则等的理解。 2、 熟悉有限元建模、求解及结果分析步骤和方法。 3、 能利用ANSYS 软件对梁结构进行静力有限元分析。 二、实验设备: 微机,ANSYS 软件(教学版)。 三、实验内容: 利用ANSYS 软件对图示由工字钢组成的梁结构进行静力学分析,以获得其应力分布情况。 A-A B-B 四、实验步骤: 1、建立有限元模型: (1) 建立工作文件夹: 在运行ANSYS 之前,在默认工作目录下建立一个文件夹,名称为beam ,在随后的分析过程中所生成的所有文件都将保存在这个文件夹中。 启动ANSYS 后,使用菜单“File ”——“Change Directory …”将工作目录指向beam 文件夹;使用“Change Jobname …”输入beam 为初始文件名,使分析过程中生成的文件均以beam 为前缀。 选择结构分析,操作如下: GUI: Main Menu > Preferences > Structural (2) 选择单元: 操作如下: GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Structural Beam >3D 3 node 189 然后关闭Element Types 对话框。 (3) 定义材料属性: 定义弹性模量和泊松比,操作如下: GUI: Main Menu > Preprocessor > Material Props > Material Models > Structural > linear > Elastic > Isotropic 在弹出的对话框中输入材料参数: 杨氏模量(EX): 2.06e11 泊松比(PRXY): 0.3 (4) 定义梁的截面类型和尺寸: 操作如下: GUI: Main Menu > Preprocessor > Sections > Beam > Common Sections 选择“工”字型,W1=W2=0.4,W3=0.6,t1=t2=t3=0.015 (5)创建实体模型: F=10000N 6m 6m A A B B

梁结构静力有限元分析论文

梁结构静力有限元分析论文 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力 时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立好梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键字:ANSYS ,梁结构,有限元,静力分析。 0引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,且能保证准确性。另外,有限元法分析梁结构时,建模简单,施加应力和约束也相对容易,能分析梁结构应力状况的具体分布、最大变形量以及中性面位置,优势明显。以下介绍一种常见梁的受力状况,并采用有限元法进行静力分析,得出了与手动计算基本吻合的结论。以下为此次分析对象。 梁的截面形状为梯形截面,各个截面尺寸相同。两端受弯矩沿中性面发生弯曲,如图2-1所示。试利用ANSYS 软件对此梯形截面梁进行静力学分析,以获得沿梁AA 截面的应力分布情况。 r θ A A M M A -A 截面 D,B 1#面 2#面 C A B D

C,A 1 有限元模型的建立 首先进入ANSYS中,采用自下而上的建模方式,创建梁结构有限元分析模型,同时定义模型的材料单元为Brick 8-node 45,弹性模量为200e9,泊松比为0.3。由于分析不需要定义实常数,因此可忽略提示,关闭Real Constants菜单。 建立的切片模型如下:

ansys桁架和梁的有限元分析

桁架和梁的有限元分析 第一节基本知识 一、桁架和粱的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中晕常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表7-1。 通过对桁架和粱进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。 第128页

第二节桁架的有限元分析实例案例1--2D桁架的有限元分析 问题 人字形屋架的几何尺寸如图7—1所示。杆件截面尺寸为0.01m^2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0x10^11N/m^2,泊松比为0.3。 解题过程 制定分析方案。材料为弹性材料,结构静力分析,属21)桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图7-1所示,边界条件为1点和5点固定,6、7、8点各受1000N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear&Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility Menu>File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Ufility Menu>File>Change Title,弹出ChangeTitle对话框,在Enter New Tifie项输入标题名,本例中输入“2D-spar problem'’为标题名,然后单击OK按钮完成分析标题的定义。 (4)重新刷新图形窗9 选取Utility Menu>Plot>Replot,定义的信息显示在图形窗口中。 (5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,赋值分析模块为Structure结构分析,单击OK按钮完成分析类型的定义。 2.定义单元类型 运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择

相关文档
最新文档