Excel计算欧式看涨期权的价格二叉树

Excel计算欧式看涨期权的价格二叉树
Excel计算欧式看涨期权的价格二叉树

bs期权定价与二叉树期权定价学习资料

b s期权定价与二叉树 期权定价

第三节 Black-Scholes期权定价模型 一与期权定价有关的基本假设: (一).关于金融市场的基本假设 假设一:市场不存在摩擦.这就是说金融市场没有交易成本(包括佣金费用,买卖价差,税赋,市场冲击等),没有保证金要求,也没有买空的限制.提出市场无摩擦的假设在于简化金融资产定价的分析过程,其主要理由有以下两点:第一,对于大的金融机构来说,这一假设是一个较好的近似,因为他们的交易成本很低,他们在保证金要求和卖空方面受的约束很少,他们能够以买卖差的中间价进行交易等.由于金融机构是市场价格的制定者,所以从描述性角度出发,上述假设是一个较为现实的假设.第二,对于小的市场参与者来说,他们首先需要了解的是无摩擦条件下金融市场将如何运作.在此基础上,才能对复杂场合下的市场规律进行进一步深入分析.因此,从规范性角度出发,上述假设也是绝对必要的. 假设二:市场参与者不承担对家风险.这就是说,对于市场参与者所涉及的任何一个金融合同交易,合同对家不存在违约的可能. 假设三:市场是完全竞争的这就是说,金融市场上任何一位参与者都是价格的承受者,而不是价格的制定者.此假设被现代财务金融学普遍采纳,相当于一条标准的公理.任何参与者都可以根据自己的愿望买入和卖出任何数量的证券,而不至于影响该证券的市场价格.显然市场规模越大,竞争性市场假设就越接近于现实.

假设四:市场参与者厌恶风险,而且希望财富越多越好. 假设五:市场不存在套利机会.如果市场上存在套利的机会,价格会迅速准确的进行调整,使得这种套利机会很快消失. (二).关于股利的假设 股利是影响期权价值的一个重要因素.不过,在研究期权定价问题时,股利是一个广义概念.首先,这一概念包含了通常意义上的股利,即发行标的股票公司向其股东定期支付的现金股利,我们称之为离散股利对于标的资产为股票的合同其大小一般用D 表示.一般来说,离散股利的支付发生在期权有效期内某些特定的时刻,它们往往是可以预先知道的.例如,公司将在每个季度末或每隔半年发放一定的股利.另一方面,对于标的资产为货币,股票指数,期货等的非股票期权来讲,所谓的的股利是指标的资产所有者在一段时间内,按一定的收益率所得到的报酬,如利息收入,因此它是一种连续的支付,我们称之为连续股利,其大小通常用股利支付率 二 模型假设与概述 (一)模型假设 Black 和Scholes 在推导B-S 模型时做了以下假设: (1)无风险利率r 已知,且为一个常数,不随时间变化. (2)标的资产为股票,其价格t s 的变化为一几何布朗运动,即 t t t t ds s dt s dz μσ=+ 或者说, t s 服从正态分布 21/20exp{(0.5)},0t t s s t t e t T μσσ=-+<<……… 由(18)式容易得到

欧式看涨期权二叉树定价

欧式看涨期权二叉树定价(含m a t l a b代码和结果图)实验概述 本实验首先介绍了二叉树方法的来源和主要理论基础,然后给出期权的二叉树定价方法的基本过程和MATLAB7. 0实现的过程。 19. 2 实验目的 (1)了解二叉树的定价机理; (2)掌握用MATLAB7. 0生成股票价格的二叉树格子方法; (3)掌握欧式期权和美式期权的二叉树定价方法。 19. 3 实验工具 MATLAB 7. 0。 19. 4 理论要点 构造二叉树图(Binomial Tree)是期权定价方法中最为常见的一种。这个树图表示了在期权有效期内股票价格可能遵循的路径。二叉树定价方法与风险中性定价理论是紧密联系的。Cox, Ross & Rubinstein (1979)首次提出了构造离散的风险中性概率可以给期权定价,在此基础上他们给出了二叉树定价方法。 1)一个简单的例子 假设当前(3月份)股票的价格So =50元,月利率是25%。4月份股票价格有两种可能:S高=100元,S低=25元。有一份看涨期权合约,合约约定在4月份可以以50元价格买进一股股票。现在考虑一个投资组合,进行几项操作:以价格C卖出3份看涨期权合约;以50元购入2股股票;以25%的月利率借人40元现金,借期为一个月。 根据上述组合,我们可以得到以下到期收益分布表,如表19. 1所示。 表19.1 投资组合的到期收益分布表 四月份 三月份

S低=25元S高=100元 卖出3份看涨期权合约3C 0 -150 买人两股股票-100 50 200 借人现金40 -50 -50 总计0 0 0 由一价定律3C-100+40=0,可得C= 20元,即为期权的价格。这个例子说明,可以用一个相当简单的方法为期权定价,唯一需要做的是假设对投资者而言不存在套利机会。我们可以通过某种方式构造一个股票和期权的组合,使得在4月份该组合的价值是确定的。于是我们可以说该组合无风险,它的收益率一定等于无风险收益率。二叉树方法正是基于上述思想构造了二项分布下的风险中性概率。 2)二叉树模型 考虑一个不支付红利的股票期权价格估值。我们把期权的有效期分为很多很小的时间间隔Δt。假设在每一个时间段内股票价格从开始的价格S以概率p上升到Su,以概率1-p下降到Sd,其中,u>1,O

B-S期权定价公式

Black-Scholes 期权定价模型 一、Black-Scholes 期权定价模型的假设条件 Black-Scholes 期权定价模型的七个假设条件如下: 1、 风险资产(Black-Scholes 期权定价模型中为股票),当前时刻市场价格为S 。S 遵循几何布朗运动,即dz dt S dS σμ+=。 其中,dz 为均值为零,方差为dt 的无穷小的随机变化值(dt dz ε=,称为标准布朗运动,ε代表从标准正态分布(即均值为0、标准差为1的正态分布)中取的一个随机值),μ为股票价格在单位时间内的期望收益率,σ则就是股票价格的波动率,即证券收益率在单位时间内的标准差。μ与σ都就是已知的。 简单地分析几何布朗运动,意味着股票价格在短时期内的变动(即收益)来源于两个方面:一就是单位时间内已知的一个收益率变化μ,被称为漂移项,可以被瞧成一个总体的变化趋势;二就是随机波动项,即dz σ,可以瞧作随机波动使得股票价格变动偏离总体趋势的部分。 2.没有交易费用与税收,不考虑保证金问题,即不存在影响收益的任何外部因素。 3、 资产价格的变动就是连续而均匀的,不存在突然的跳跃。 4、 该标的资产可以被自由地买卖,即允许卖空,且所有证券都就是完全可分的。 5、 在期权有效期内,无风险利率r 保持不变,投资者可以此利率无限制地进行借贷。 6.在衍生品有效期间,股票不支付股利。 7.所有无风险套利机会均被消除。 二、Black-Scholes 期权定价模型 (一)B-S 期权定价公式 在上述假设条件的基础上,Black 与Scholes 得到了如下适用于无收益资产

欧式瞧涨期权的Black-Schole 微分方程: rf S f S S f rS t f =??+??+??2 22221σ 其中f 为期权价格,其她参数符号的意义同前。 通过这个微分方程,Black 与Scholes 得到了如下适用于无收益资产欧式瞧涨期权的定价公式:)()(2)(1d N Xe d SN c t T r ---= 其中, t T d t T t T r X S d t T t T r X S d --=---+=--++=σσσσσ12221))(2/()/ln() )(2/()/ln( c 为无收益资产欧式瞧涨期权价格;N(x)为标准正态分布变量的累计概率分布函数(即这个变量小于x 的概率),根据标准正态分布函数特性,我们有)(1)(x N x N -=-。 (二)Black-Scholes 期权定价公式的理解 1、 1()SN d 可瞧作证券或无价值瞧涨期权的多头;()2()r T t Ke N d --可瞧作K 份现金或无价值瞧涨期权的多头。 可以证明,1/()f S N d ??=。为构造一份欧式瞧涨期权,需持有1()N d 份证券多头,以及卖空数量为2 ()rT K e N d -的现金。 Black-Scholes 期权定价公式用于不支付股利的欧式瞧涨期权的定价。 注意: 该公式只在一定的假设条件下成立,如市场完美(无税、无交易成本、资产无限可分、允许卖空)、无风险利率保持不变、股价遵循几何布朗运动等。 2、风险中性定价原理 风险中性定价原理:我们可以注意到期权价格就是与标的资产的预期收益率无关的。C(S, t)与 S 、r 、t 、T 、σ以及 K 有关,而与股票的期望收益率μ无关。这说明欧式Call 的价格与投资者的风险偏好无关。 在对欧式Call 定价时,可假设投资者就是风险中性的(对所承担的风险不要求额外回报,所有证券的期望收益率等于无风险利率)。

期权定价

第八章期权定价的二叉树模型 8.1 一步二叉树模型 我们首先通过一个简单的例子介绍二叉树模型。 例8.1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18. 股票价格的这种变动过程可通过图8.1直观表示出来。 在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。这是最简单的二叉树模型。 一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。经过一个时间步(至到期日T)后该股票价 格有可能上升到相应的期权价格为;也有可能下降到相应的期权价格为. 这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。我们的问题是根据这个二叉树对该欧式股票期权定价。为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。构造一个该股票和期权 的组合(portfolio),组合中有股的多头股票和1股空头期权。如果该股票价格上升到,则该组合在期权到期 日的价值为;如果该股票价格下降到,则该组合在期权到期日的价值为。根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有 由此可得 (8.1) 上式意味着是两个节点之间的期权价格增量与股价增量之比率。在这种情况下,该组合是无风险的。以表示无风险 利率,则该组合的现值(the present value)为,又注意到该组合的当前价值是,故有

即 将(8.1)代入上式,可得基于一步二叉树模型的期权定价公式为 (8.2) (8.3) 需要指出的是,由于我们是在无套利(no arbitrage)假设下讨论欧式股票期权的定价,因此无风险利率应该满足: . 现在回到前面的例子中,假设相应的期权是一个敲定价为$21,到期日为三个月的欧式看涨权,无风险的年利率为12%,求该期权的当前价值。 已知:且在期权到期日, 当时,该看涨权的价值为而当时,该看涨权的价值为 根据(8.3)和(8.2),可得 . 上述期权定价公式(8.2)和(8.3)似乎与股价上升或下降的概率无关,实际上,在我们推导期权价值时它已经隐含在股票价 格中了。不妨令股价上升的概率为,则股价下降的概率就是,在时间的期望股票价格为

BS期权定价模型

Black-Scholes期权定价模型 (重定向自Black—Scholes公式) Black-Scholes期权定价模型(Black-Scholes Option Pricing Model),布莱克-肖尔斯期权定价模型 Black-Scholes 期权定价模型概述 1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。他们创立和发展的布莱克——斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础。 斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。结果,两篇论文几乎同时在不同刊物上发表。所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。瑞典皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。 [编辑] B-S期权定价模型(以下简称B-S模型)及其假设条件 [编辑] (一)B-S模型有7个重要的假设 1、股票价格行为服从对数正态分布模式; 2、在期权有效期内,无风险利率和金融资产收益变量是恒定的; 3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割; 4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃); 5、该期权是欧式期权,即在期权到期前不可实施。 6、不存在无风险套利机会;

二叉树期权定价法22222

二叉树期权定价法 摘要上世纪七十年代以来金融衍生品得到了蓬勃的发展,在这之中,期权的地位尤为受到重视,居于核心地位,很多的新创的衍生品,都包含了期权的成分。所以一直以来,期权的定价问题受到了大量经济学家的探索。实物期权的定价模式的种类较多,理论界和实务界尚未形成通用的定价模型,主要估值方式有两种:一是B l a c k-S c h o l e s期权定价模型;二是二叉树期权定价模型。 1973年,布莱克和斯科尔斯(B l a c k a n d C s c h o l e s)提出了 B l a c k-S c h o l e s期权定价公式,对标的资产的价格服从正态分布的期权进行定价。随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。1976年,约翰·考克斯(J o h n C a r r i n g t o n C o x)、斯蒂芬·罗斯(S t e p h e n A.R o s s)在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。1979年,约翰·考克斯(J o h n C a r r i n g t o n C o x)、斯蒂芬·罗斯(S t e p h e n A.R o s s)、马克·鲁宾斯坦(M a r k R u b i n s t e i n)在《金融经济学杂志》上发表论文“期权定价:一种简单的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为C o x-R o s s-R u b i n s t e i n二项式期权定价模型。 关键词 B l a c k-S c h o l e s期权定价模型虽然有许多优点,但是它的推导过程却是难以为人们所接受;二叉树期权定价模型假设股价波动只有

期权定价

第二章期权定价 自从期权交易产生以来,尤其是股票期权交易产生以来,学者们一直致力于对期权定价问题的探讨。1973年,美国芝加哥大学教授F. Black和M. Scholes 发表《期权定价与公司负债》一文,提出了著名的Black-Scholes期权定价模型,在学术界和实务界引起强烈的反响,Scholes并由此获得1997年的诺贝尔经济学奖。在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J. Cox、S. Ross和M. Rubinstein三人提出的二叉树模型。在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨。 第一节二叉树与风险中性定价 对期权定价的研究而言,Black-Scholes模型的提出是具有开创性意义的。然而,由于该模型涉及到比较复杂的数学问题,对大多数人而言较难理解和操作。1979年,J. Cox、S. Ross和M. Rubinstein三人发表《期权定价:一种被简化的方法》一文,用一种比较浅显的方法导出了期权定价模型,这一模型被称为“二叉树定价模型(the Binomial Model)”,是期权数值定价方法的一种。二叉树模型的优点在于其比较简单直观,不需要太多的数学知识就可以加以应用。同时,它应用相当广泛,目前已经成为金融界最基本的期权定价方法之一。 1.1 二叉树模型概述 二叉树(binomial tree)是指用来描述在期权存续期内股票价格变动的可能路径。二叉树定价模型假定股票价格服从随机漫步,股票价格的波动只有向上和向下两个方向,且在树形的每一步,股票价格向上或者向下波动的概率和幅度保持不变。

欧式看涨期权二叉树定价

欧式看涨期权二叉树定价(含matlab代码和结果 图) 实验概述 本实验首先介绍了二叉树方法的来源和主要理论基础,然后给出期权的二叉树定价方法的基本过程和MATLAB7.0实现的过程。 19. 2 实验目的 (1)了解二叉树的定价机理; (2)掌握用MATLAB7. 0生成股票价格的二叉树格子方法; (3)掌握欧式期权和美式期权的二叉树定价方法。 19.3实验工具 MATLAB7. 0。 19. 4理论要点 构造二叉树图(Binomial Tree)是期权定价方法中最为常见的一种。这个树图表示了在期权有效期内股票价格可能遵循的路径。二叉树定价方法与风险中性定价理论是紧密联系的。Cox,Ross&Rubinstein(1979)首次提出了构造离散的风险中性概率可以给期权定价,在此基础上他们给出了二叉树定价方法。 1)一个简单的例子 假设当前(3月份)股票的价格So =50元,月利率是25%。4月份股票 价格有两种可能:S 高=100元,S 低 =25元。有一份看涨期权合约,合约约定在4月份

可以以50元价格买进一股股票。现在考虑一个投资组合,进行几项操作:以价格C卖出3份看涨期权合约;以50元购入2股股票;以25%的月利率借人40元现金,借期为一个月。 根据上述组合,我们可以得到以下到期收益分布表,如表19.1所示。 表19.1投资组合的到期收益分布表 四月份 三月份 =25元 S 低=100元 S 高 卖出3份看涨期权合约3C 0 -150 买人两股股票-10050 200 借人现金40 -50 -50 总计0 00 由一价定律3C-100+40=0,可得C=20元,即为期权的价格。这个例子说明,可以用一个相当简单的方法为期权定价,唯一需要做的是假设对投资者而言不存在套利机会。我们可以通过某种方式构造一个股票和期权的组合,使得在4月份该组合的价值是确定的。于是我们可以说该组合无风险,它的收益率一定等于无风险收益率。二叉树方法正是基于上述思想构造了二项分布下的风险中性概率。 2)二叉树模型 考虑一个不支付红利的股票期权价格估值。我们把期权的有效期分为很多很小的时间间隔Δt。假设在每一个时间段内股票价格从开始的价格S以概率p 上升到Su,以概率1-p下降到Sd,其中,u>1,O

期权的价值和损益计算

购进在一定期间内、行权价格为美元地卖方期权.假设成本为美元.此时该股票期权组合地收益曲线如图所示.

文股票价格 一、单项选择题 、下列各项中,最低折旧年限为年地固定资产是(). 、房屋 、飞机 、与生产经营活动有关地器具 、电子设备文档收集自网络,仅用于个人学习 【正确答案】 【答案解析】 房屋地最低折旧年限为年;飞机地最低折旧年限为年;电子设备地最低折旧年限为年. 、某企业购入政府发行地年利率为地一年期国债万元,持有天时以万元地价格转让,该企业此笔交易地应纳税所得额为()万元. 、

、 、 、文档收集自网络,仅用于个人学习 【正确答案】 【答案解析】 国债利息收入国债金额×(适用年利率÷)×持有天数×()×(万元) 国债利息收入免税,国债转让收入应计入应纳税所得额. 该笔交易地应纳税所得额(万元)文档收集自网络,仅用于个人学习 、根据企业所得税法律制度规定,下列关于不同方式下销售商品收入金额确定地表述中,正确地是(). 、采用商业折扣方式销售商品地,按照扣除折扣后地金额确定销售商品收入金额、采用以旧换新方式销售商品地,按照扣除回收商品公允价值后地余额确定销售商品收入金额 、采用买一赠一方式销售商品地,按照总地销售金额确定销售商品收入金额 、采用现金折扣方式销售商品地,按照扣除现金折扣后地金额确定销售商品收入金额文档收集自网络,仅用于个人学习 【正确答案】 【答案解析】 选项,销售商品以旧换新地,销售商品应当按照销售商品收入确认条件确认收入,回收地商品作为购进商品处理;选项,采用买一赠一方式销售商品地,应将总地销售金额按各项商品地公允价值地比例来分摊确认各项地销售收入;选项,采用现金折扣方式销售商品地,按照扣除现金折扣前地金额确定销售商品收入金额.文档收集自网络,仅用于个人学习 、张先生年将万元交付给公司(居民企业)用以购买非流通股,公司属于代持股公司.后通过股权分置改革,成为限售股.年月,公司将限售股转让,取得转让收入万元,但是不能准确计算限售股原值,则公司就此项业务而言当月应缴纳企业所得税()万元. 、 、 、 、文档收集自网络,仅用于个人学习 【正确答案】 【答案解析】 根据规定,企业未能提供完整、真实地限售股原值凭证,不能准确计算该限售股原值地,主管税务机关一律按该限售股转让收入地,核定为该限售股原值和合理税费.公司应缴纳企业所得税×()×(万元)文档收集自网络,仅用于个人学习、根据企业所得税地规定,以下收入中属于不征税收入地是(). 、财政拨款 、在中国境内设立机构、场所地非居民企业连续持有居民企业公开发行并上市流通地股票不足个月取得投资收益 、非营利组织从事营利性活动取得地收入 、国债利息收入文档收集自网络,仅用于个人学习 【正确答案】 【答案解析】

第九章 期权估价-二叉树期权定价模型

2015年注册会计师资格考试内部资料 财务成本管理 第九章 期权估价 知识点:二叉树期权定价模型 ● 详细描述: 一、单期二叉树模型 关于单期二叉树模型,其计算结果与前面介绍的复制组合原理和风险中性原理是一样的。 以风险中性原理为例: 根据前面推导的结果: 代入(1)式有: 二、两期二叉树模型 如果把单期二叉树模型的到期时间分割成两部分,就形成了两期二叉树模型。由单期模型向两期模型的扩展,不过是单期模型的两次应用。 三、多期二叉树模型

原理从原理上看,与两期模型一样 ,从后向前逐级推进 乘数确定期数增加以后带来的主要问题 是股价上升与下降的百分比如 何确定问题。期数增加以后 ,要调整价格变化的升降幅度 ,以保证年收益率的标准差不 变。把年收益率标准差和升降 百分比联系起来的公式是: u=1+上升百分比= d=1-下 降百分比= 其中:e=自然常 数,约等于2.7183 σ=标的资 产连续复利收益率的标准差 t=以年表示的时间长度(每期 时间长度用年表示) 做题程序: (1)根据标准差和每期时间间隔确定每期股价变动乘数(应用上述的两个公式) (2)建立股票价格二叉树模型 (3)根据股票价格二叉树和执行价格,构建期权价值的二叉树。 构建顺序由后向前,逐级推进。——复制组合定价或者风险中性定价。 (4)确定期权的现值 例题: 1.如果股票目前市价为50元,半年后的股价为51元,假设没有股利分红,则 连续复利年股票投资收益率等于()。 A.4% B.3.96% C.7.92% D.4.12% 正确答案:B 解析:r=ln(51/50)/0.5=3.96%

(定价策略)期权定价理论

期权定价理论 期权定价是所有金融应用领域数学上最复杂的问题之一。第一个完整的期权定价模型由Fisher Black和Myron Scholes创立并于1973年公之于世(有关期权定价的发展历史大家可以参考书上第358页,有兴趣的同学也可以自己查找一下书上所列出的经典文章,不过这要求你有非常深厚的数学功底才能够看懂)。B—S期权定价模型发表的时间和芝加哥期权交易所正式挂牌交易标准化期权合约几乎是同时。不久,德克萨斯仪器公司就推出了装有根据这一模型计算期权价值程序的计算器。现在,几乎所有从事期权交易的经纪人都持有各家公司出品的此类计算机,利用按照这一模型开发的程序对交易估价。这项工作对金融创新和各种新兴金融产品的面世起到了重大的推动作用。为此,对期权定价理论的完善和推广作出了巨大贡献的默顿和Scholes在1997年一起荣获了诺贝尔经济学奖(Black在1995年去世,否则他也会一起获得这份殊荣)。 原始的B—S模型仅限于这类期权:资产可用于卖出期权;能够评估价值,资产价格行为随时间连续运动。随后建立在原始的B—S模型上的研究以及许多其他期权定价模型的变体相继出现,用于处理其他类型的标的资产以及其他类型的价格行为。在大多数情况下,期权定价模型的推倒基于随机微积分(Stochastic Calculus)的数学知识。没有严密的数学推演,演示这种模型只是摸棱两可的。可是,这并非要紧的问题,因为确定期权公平价格的必要计算已自动化,且达到上述目的的软件在大型计算机及微机中均可获得。因此,在这里,我只简单介绍一下B—S模型的关键几个要素,至于具体的数学推导(非常复杂),感兴趣的同学可以在课后阅读一下相关资料(一般都是在期权定价理论章节的附录中)。 首先,我们来回顾一下套利的含义 套利 套利(arbitrage)通常是指在金融市场上利用金融产品在不同的时间和空间上所存在的定价差异、或不同金融产品之间在风险程度和定价上的差异,同时进行一系列组合交易,获取无风险利润的行为。注意,这种利润是无风险的。 现代金融交易的目的主要可以分为套利、投机和保值,这也是我们在以前的课程中接触过的。那么,我们怎样来理解套利理论的含义呢? 我们说,市场一般是均衡的,商品的价格与它的价值是相一致的。如果有时候因为某种原因使得价格与价值不相符,出现了无风险套利的机会,我们说这种套利的机会就会马上被聪明的人所发现和利用,低买高卖,赚取利润,那么通过投机者不断的买卖交易,原来价值被低估的商品,它的价格会上涨(投机者低价买入);原来价值被高估的商品,它的价格会下跌(投机者高价卖出),交易的结果最终会使得市场价格重新回到均衡状态。(就像书中列举的两家书店卖书的例子一样…) 同样的道理我们不难理解,现代期权定价技术就是以无风险套利原理为基础而建立起来的。我们可以设计一个证券资产组合,使得它的价值(收益)与另外一个证券资产组合的价值相等。那么,根据无风险套利理论,这两种证券资产组合应该以同样的价格出售。从而,可以帮助我们确定,在价格均衡状态下,期权的公平定价方式。 具体来说,对期权跌——涨平价原理的推导就采用了无风险套利的原理。 跌——涨平价原理(put——call parity) 看涨期权的价格与看跌期权的价格(也就是期权费)之间存在着非常密切的联系,因此,只要知道看涨期权的价格,我们就可以推出看跌期权的价格(通过平价原理)。这样,就省去我们再费心研究看跌期权的定价公式了。只要我们通过B——S模型计算出看涨欧式期权的定价之后,我们就可以相应地推出欧式看跌期权的定价(注意,B——S模型只适用于欧式看涨期权)。

期权价格计算公式

期权价格计算公式 股票的价格变化遵循一维维纳过程,其微分方程如下 dz t s b dt t s a ds ),(),(+= 式中:dz 的差分?Z 满足如下条件的正态分布 t z ?=∈? 在一般情况下,ds 可用下式表示: sdz sdt ds σμ+=----------- (1) 或表示为: dz dt s ds σμ+= 式中:s μ股票价格的期望漂移率,μ 为一个恒定参数;2)(s σ为股票价格波动的方差, σ 为股票价格的波动率,可以通过观察股票价格的动态系列数据获得。 如果存在一个变量 G ,它是股票S 的一种衍生证卷,它的价格是S 和 t 的函数,G(s,t),那么,S 和G 都受到同一个基本的不确定性因素的影响。根据ITO 定理,函数G 的行为遵循如下微分方程描述的过程: Sdz S G dt S S G t G S S G dG σσμ??+??+??+??=)21(2222 -------------(2) 函数G 的漂移率为 222221S S G t G S S G σμ??+??+?? 方差为 222)(S S G σ??

如果G 代表股票S 的一种期权,我们想用S 和G 构造一组风险中性的证卷组合。为此,首先将公式(1)、(2)改写成对应的差分形式: z S t S S ?+?=?σμ ---------------(3) z S S G t S G t G S S G G ???+???+??+??=?σμ)21(22 ----------(4) 由于公式(3)、(4)中的z ?t ?=∈()是相同的维纳过程,只要证卷数量的搭配合理,整卷组合就可以消除z ?。 恰当的证卷组合是: -1; 卖空一个期权 S G ??+;买入期权价值变化对股票价格的敏感度,也就是他的偏微分那样多的股票。定义这个证卷组合的价值为∏,表达式为 S S G G ∏??+-= ---------(5) t ?时间后,这个证卷组合的价值变化为: S S G G ???+?-=?∏ -----------(6) 将(3)、(4)带入(6),消去z ?,得: t S S G t G ???-??-=?∏)21(2222σ ---------(7) 由于这个证卷组合是风险中性的,所以,它的收益一定与任何一个无风险证卷的收益相同,就是 ∏∏?=?t r ---------(8) 将(5)、(7)带入(8),得:

有限差分方法计算欧式期权价格

假设当前股票价格为50美元,股票价格波动率sigma=0.3;以该股票为标的资产的欧式看跌期权的执行价格为50美元,期权有效期为5个月;市场上的无风险利率为10%。利用显示差分格式为该期权进行定价。 %%% 显示法求解欧式看跌期权%%% s0=50; %股价 k=50; %执行价 r=0.1; %无风险利率 T=5/12; %存续期 sigma=0.3; %股票波动率 Smax=100; %确定股票价格最大价格 ds=2; %确定股价离散步长 dt=5/1200; %确定时间离散步长 M=round(Smax/ds); %计算股价离散步数,对Smax/ds取整运算 ds=Smax/M; %计算股价离散实际步长 N=round(T/dt); %计算时间离散步数 dt=T/N; %计算时间离散实际步长 matval=zeros(M+1,N+1); vets=linspace(0,Smax,M+1); %将区间[0,Smax]分成M段 veti=0:N; vetj=0:M; %建立偏微分方程边界条件 matval(:,N+1)=max(k-vets,0); matval(1,:)=k*exp(-r*dt*(N-veti)); matval(M+1,:)=0; %确定叠代矩阵系数 a=0.5*dt*(sigma^2*vetj-r).*vetj; b=1-dt*(sigma^2*vetj.^2+r); c=0.5*dt*(sigma^2*vetj+r).*vetj; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% L=zeros(M-1,M+1); for i=2:M %%建立递推关系 L(i-1,i-1)=a(i); L(i-1,i)=b(i); L(i-1,i+1)=c(i); end for i=N:-1:1 matval(2:M,i)=L*matval(:,i+1); end matval %寻找期权价格进行插值。 Jdown=floor(s0/ds);

二叉树定价模型

二项式期权定价模型 1.实验名称: 二项式期权定价模型 2.实验目的: 利用二叉树期权定价模型公式Excel 模板计算期权价格。 3.基本原理 计算到期时资产价值的分布,求出资产的期望值,用适当的贴现率计算现值,得到资产的当前价值。 (1) 计算n 期中上升i 次的概率: ()(1 )i i n i i n P n C p p -=-; (2) 计算在终期时的价格分布: ()0i n i ni S S u d -= (3) 计算期权的价值: ()0max(,0)i n i ni Call S u d K -=-,()0max(,0)i n i ni Put K S u d -=-; (4)计算终期时的期望值:0()n n ni i ECall P i Call == ∑,0()n n ni i EPut P i put ==∑; (5)计算期权在起初时刻的价值: ()00 (1)max(,0)n RT RT i i n i i n i n i Call e ECall e C p p S u d K ----===--∑ ()00(1)max(,0)n RT RT i i n i i n i n i Put e EPut e C p p K S u d ----===--∑。 4. 实验数据域内容 已知股票价格为50,执行价格为50,时间为半年,无风险利率为5%,波动率为20%,分为10个时间段,利用二叉树定价模型计算看涨看跌期权的价格。 5. 操作过程与结果 (1)定义变量的符号 在单元格B2—B14中分别输入S 、K 、T 、R 、VOL 、n 、dt 、u 、d 、G-factor 、D-factor 、p 分别表示股票价格、期权执行价格、期权有效期、无风险利率、股价波动率、时段数、时段、上升因子、下降因子、增长因子、贴现因子、风险中性概率。如图:

欧式期权二叉树定价MATLAB代码

调用函数代码 function Price=EuroOption(S0,K,T,r,M,type,sigma) dt = T/M; u=exp(sqrt(dt)*sigma); d=1/u; p = (exp(r*dt)-d)/(u-d); S=zeros(M+1,M+1); S(1,1)=S0; for j=1:M for i=0:j S(i+1,j+1)= S0*u^(j-i)*d^i; end end V=zeros(M+1,M+1); for i=0:M switch type case'call' V(i+1,M+1)=max(S(i+1,M+1)-K,0); case'put' V(i+1,M+1)=max(K-S(i+1,M+1),0); case'stra' V(i+1,M+1)=max(S(i+1,M+1)-K,0)+max(K-S(i+1,M +1),0); case'bino' V(i+1,M+1) =(S(i+1,M+1)>K); end end

for j=M-1:-1:0 for i=0:j V(i+1,j+1)=exp(-r*dt)*(p*V(i+1,j+2)+(1-p)*V( i+2,j+2)); end end Price=V(1,1); 数据作图 S0 = 6; K = 5; T = 1; r = 0.05; sigma = 0.20; for M=1:100 type='call'; Price=EuroOption(S0,K,T,r,M,type,sigma); Vec(M)=Price; end for M=1:100 type='put'; Price=EuroOption(S0,K,T,r,M,type,sigma); Vep(M)=Price; end for M=1:100 type='call'; Price=AmOption(S0,K,T,r,M,type,sigma); Vac(M)=Price; end for M=1:100 type= 'put'; Price=AmOption(S0,K,T,r,M,type,sigma);

第07章 布莱克-舒尔斯期权定价公式的扩展

第七章布莱克-舒尔斯期权定价公式的扩展 在第六章中,我们在一系列假定条件下推导得到了著名的布莱克-舒尔斯期权定价公式,在现实生活中,这些假设条件往往是无法成立的,本章的主要目的,就是从多个方面逐一放松这些假设,对布莱克-舒尔斯期权定价公式进行扩展。但是我们也将看到,在有些时候,模型在精确度方面确实获得了相当的改进,但其所带来的收益却无法弥补为达到改进而付出的成本,或是这些改进本身也存在问题,这使得布莱克-舒尔斯期权定价公式仍然在现实中占据重要的地位。 第一节布莱克-舒尔斯期权定价模型的缺陷 在实际经济生活中,布莱克-舒尔斯期权定价模型(为简便起见,我们后文都称之为BS 模型)应用得非常广泛,对金融市场具有很大的影响。其三个作者中的两个更是曾经因此获得诺贝尔奖。因此,无论是从商业上还是从学术上来说,这个模型都非常成功。但是理论模型和现实生活终究会有所差异,对于大多数理论模型来说,模型假设的非现实性往往成为模型主要缺陷之所在,BS公式也不例外。本章的主要内容,就是从多方面逐一放松BS模型的假设,使之更符合实际情况,从而实现对BS定价公式的修正和扩展。 BS模型最基本的假设包括: 1.没有交易成本或税收。 2.股票价格服从波动率 和无风险利率r为常数的对数正态分布。 3.所有证券都是高度可分的且可以自由买卖,可以连续进行证券交易。 4.不存在无风险套利机会。 在现实生活中,这些假设显然都是无法成立的。本章的后面几节,将分别讨论这些假设放松之后的期权定价模型。 1. 交易成本的假设:BS模型假定交易成本为零,可以连续进行动态的套期保值,从而保证无风险组合的存在和期权定价的正确性。但事实上交易成本总是客观存在的,这使得我们无法以我们所希望的频率进行套期保值;同时,理论上可行的价格,考虑了交易成本之后就无法实现预期的收益。我们将在第二节中介绍一些对这一假设进行修正的模型。 2. 波动率为常数的假设:BS模型假定标的资产的波动率是一个已知的常数或者是一个确定的已知函数。这一点在标的资产价格的实证检验中被否定,期权市场本身反映的隐含波动率也提出了相反的证据。实际上波动率本身就是一个随机变量。为了解决这个问题,人们从两个角度来对BS模型进行修正:从期权价格的隐含波动率中获取波动率的信息,来为期权定价;从标的资产市场出发获取波动率变化过程的信息,对BS公式进行修正和扩展。我们将在第三节和第四节讨论这个问题。 3. 不确定的参数:BS模型假设波动率、利率、股利等参数都是已知的常数(或是已知的确定函数)。但事实上它们都不是一个常数,甚至也不是一个时间和标的资产价格的确定函数,波动率甚至完全无法在市场观察到,也无法预测。这时可以采取的方法之一是为这些参数的价值确定一个变动区间,从而在最糟糕的情景下为期权定价。我们将在第五节介绍这一方法。 4. 资产价格的连续变动:BS模型假定标的资产的价格是连续变动的,服从对数正态分布。然而在我们的市场中,不连续是常见的:资产价格常常跳跃,并且经常是向下跳跃。这在对数正态分布的资产定价模型中并没有体现出来:对于正态分布来说,这些突然变动的幅

欧式看涨期权二叉树定价

欧式看涨期权二叉树定价(含matlab代码和结果图)实验概述 本实验首先介绍了二叉树方法的来源和主要理论基础,然后给出期权的二叉树定价方法的基本过程和MATLAB7. 0实现的过程。 19. 2 实验目的 (1)了解二叉树的定价机理; (2)掌握用MATLAB7. 0生成股票价格的二叉树格子方法; (3)掌握欧式期权和美式期权的二叉树定价方法。 19. 3 实验工具 MATLAB 7. 0。 19. 4 理论要点 构造二叉树图(Binomial Tree)是期权定价方法中最为常见的一种。这个树图表示了在期权有效期内股票价格可能遵循的路径。二叉树定价方法与风险中性定价理论是紧密联系的。Cox, Ross & Rubinstein (1979)首次提出了构造离散的风险中性概率可以给期权定价,在此基础上他们给出了二叉树定价方法。

1)一个简单的例子 假设当前(3月份)股票的价格So =50元,月利率是25%。4月份股票价格有两种可能:S高=100元,S低=25元。有一份看涨期权合约,合约约定在4月份可以以50元价格买进一股股票。现在考虑一个投资组合,进行几项操作:以价格C卖出3份看涨期权合约;以50元购入2股股票;以25%的月利率借人40元现金,借期为一个月。 根据上述组合,我们可以得到以下到期收益分布表,如表19. 1所示。 表19.1 投资组合的到期收益分布表 四月份 三月份 S低=25元S高=100元卖出3份看涨期权合约3C 0 -150 买人两股股票-100 50 200 借人现金40 -50 -50 总计0 0 0 由一价定律3C-100+40=0,可得C= 20元,即为期权的价格。这个例子说明,可以用一个相当简单的方法为期权定价,唯一需要做的是假设对投资者而言不存在套利机会。我们可以通过某种方式构造一个股票和期权的组合,使得在4月份该组合的价值是确定的。于是我们可以说该组合无风险,它的收益率一定等于无风险收益率。二叉树方法正是基于上述思想构造了二项分布下的风险中性概率。

bs期权定价

第三节Black-Scholes期权定价模型 一与期权定价有关的基本假设: (一).关于金融市场的基本假设 假设一:市场不存在摩擦.这就是说金融市场没有交易成本(包括佣金费用,买卖价差,税赋,市场冲击等),没有保证金要求,也没有买空的限制.提出市场无摩擦的假设在于简化金融资产定价的分析过程,其主要理由有以下两点:第一,对于大的金融机构来说,这一假设是一个较好的近似,因为他们的交易成本很低,他们在保证金要求和卖空方面受的约束很少,他们能够以买卖差的中间价进行交易等.由于金融机构是市场价格的制定者,所以从描述性角度出发,上述假设是一个较为现实的假设.第二,对于小的市场参与者来说,他们首先需要了解的是无摩擦条件下金融市场将如何运作.在此基础上,才能对复杂场合下的市场规律进行进一步深入分析.因此,从规范性角度出发,上述假设也是绝对必要的. 假设二:市场参与者不承担对家风险.这就是说,对于市场参与者所涉及的任何一个金融合同交易,合同对家不存在违约的可能. 假设三:市场是完全竞争的这就是说,金融市场上任何一位参与者都是价格的承受者,而不是价格的制定者.此假设被现代财务金融学普遍采纳,相当于一条标准的公理.任何参与者都可以根据自己的愿望买入和卖出任何数量的证券,而不至于影响该证券的市场价格.显然市场规模越大,竞争性市场假设就越接近于现实.

假设四:市场参与者厌恶风险,而且希望财富越多越好. 假设五:市场不存在套利机会.如果市场上存在套利的机会,价格会迅速准确的进行调整,使得这种套利机会很快消失. (二).关于股利的假设 股利是影响期权价值的一个重要因素.不过,在研究期权定价问题时,股利是一个广义概念.首先,这一概念包含了通常意义上的股利,即发行标的股票公司向其股东定期支付的现金股利,我们称之为离散股利对于标的资产为股票的合同其大小一般用D 表示.一般来说,离散股利的支付发生在期权有效期内某些特定的时刻,它们往往是可以预先知道的.例如,公司将在每个季度末或每隔半年发放一定的股利.另一方面,对于标的资产为货币,股票指数,期货等的非股票期权来讲,所谓的的股利是指标的资产所有者在一段时间内,按一定的收益率所得到的报酬,如利息收入,因此它是一种连续的支付,我们称之为连续股利,其大小通常用股利支付率 二 模型假设与概述 (一)模型假设 Black 和Scholes 在推导B-S 模型时做了以下假设: (1)无风险利率r 已知,且为一个常数,不随时间变化. (2)标的资产为股票,其价格t s 的变化为一几何布朗运动,即 t t t t ds s dt s dz μσ=+ 或者说, t s 服从正态分布 21/20exp{(0.5)},0t t s s t t e t T μσσ=-+<<……… 由(18)式容易得到

相关文档
最新文档