单片机控制的DC-DC变换器设计

单片机控制的DC-DC变换器设计
单片机控制的DC-DC变换器设计

电流模式控制反激变换器反馈环路的设计

电流模式控制反激变换器反馈环路的设计 首先要搞清系统稳定所必需的几个条件: 系统稳定的原则: A,系统环路总增益在穿越频率(或叫剪切频率,截止频率,交越频率,带宽都是它)处的增益为1或0Db。高的穿越频率能保正电源快速响应线性和负载的突变,穿越频率受 到开关频率的限制,根据采样定理穿越频率必需小于开关频率的一半,因为开关频率可以在输出端开出来,但这个频率必须不被反馈环传递,否则系统将会振荡并如此恶性循环。实际应用中一般取开关频率的1/4或1/5。 B,在系统在穿越频率处的总相位延迟必需小于(360-45)315度。 45度为相位裕量。当相位裕量大于45度时,能提供最好的动态响应,高的相位裕量能阻尼振荡并缩短瞬态调节时间获得最少的过冲。 C,系统的开环增益曲线在穿越频率附近的斜率应为-1过0Db。 因为具有-1增益斜率的电路,相位延迟不会超过90度(这里指的是系统总的开环增益曲线)。 要满足上面的三个准则,必需知道如何计算系统中各环节的增益和相位延迟。要知道如何计算必需先搞清楚以下几个概念: 1.系统的传递函数:系统的传递函数定义为输出变动量除以输入变动量也叫增益。每一部份的传递函数均为该部份的输出除以输入,也叫该部份的增益。系统的增益即为各环节部份增益的乘积。增益可以用数值方式表示也可以用Db(分贝)方式表示。传递函数由幅值和相位因素组成(幅值也就是增益),并可以在博得图上分别以图形表示。通常我们要把传输函数因式分解成各因式相乘的形式,以便于得到零点各极点。2.极点:数学上,在传输函数方程中,当分母等于零时出现极点,在博得图上当增益以-1斜率开始递减时的点为一个极点。 3.零点:数学上,在传输函数方程中,当分子等于零时出现零点,在博得图上当增益以+1斜率开始递增时的点为零点,并伴随着90度的相位超前。第二种零点,即右半平面零点,增益仍以+1斜率递增,它将引起90度的相位滞后而非超前,设计时应使系统的穿越频率大大低于右半平面零点。 4.对数运算法则:两个数乘积的对数等于它们各自对数的和。所以只要将各部分增益表示为分贝后再将它们相加就可以得到系统的总增益。 5.数值与对数的相互转换计算: 例:0.5=20xlog0.5=-6Db -6Db=1/(10^(6/20))=0.5 分开来一步步的更容易理解:-6/20=-0.3, 10的-0.3次方就等于10 的0.3次方分之1,从而计算出数值。 在实际设计中我们实际是要确定431环节的3个量:(这里我们主要考虑2型误差放大器)A,431环节的放大倍数即增益;

温度控制器的设计与制作共13页

温度控制器的设计与制作 一、功能要求 设计并制作一个温度控制器,用于自动接通或断开室内的电加热设备,从而使室内温度达到设定温度要求,并能实时显示室内温度。当室内温度大于等于设定温度时,控制器断 ?时,控制器接通电加热设备。 开电加热设备;当室内温度比设定温度小2C 控温范围:0~51C? 控温精度:≤1C? 二、硬件系统设计 1.硬件系统由七部分组成,即单片机及看门狗电路、温度检测电路、控制输出电路、键盘电路、显示电路、设置温度储存电路及电源电路。 (1)单片机及看门狗电路 根据设计所需的单片机的内部资源(程序存储器的容量、数据存储器的容量及I/O口数量),选择AT89C51-24PC较合适。为了防止程序跑飞,导致温度失控,进而引起可怕的后果,本设计加入了硬件看门狗电路IMP813L,如果它的WDI脚不处于浮空状态,在1.6秒内WDI不被触发(即没有检测到上什沿或下降沿),就说明程序已经跑飞,看门狗输出端WDO将输出低电平到手动复位端,使复位输出端RST发出复位信号,使单片机可靠复位,即程序重新开始执行。(注:如果选用AT89S51,由于其内部已具有看门狗电路,就不需外加IMP813L) (2)温度检测电路 温度传感器采用AD590,它实际上是一个与绝对温度成正比的电流源,它的工作电压为4~30V,感测的温度范围为-550C~+1500C,具有良好的线性输出,其输出电流与温度成正比,即1μA/K。因此在00C时的输出电流为273.2μA,在1000C时输出电流为373.2μA。温度传感器将温度的变化转变为电流信号,通过电阻后转变电压信号,经过运算放大器JRC4558运算处理,处理后得到的模拟电压信号传输给A/D转换部分。A/D转换器选用ADC0804,它是用CMOS集成工艺制成的逐次逼近型模数转换芯片,分辨率8位,转换时间100μs,基准电压0~5V,输入模拟电压0~5V。 (3)控制输出电路 控制信号由单片机的P1.4引脚输出,经过光耦TLP521-1隔离后,经三极管C8550直接驱动继电器WJ108-1C-05VDC,如果所接的电加热设备的功率≤2KW,则可利用继电器的常开触点直接控制加热设备,如果加热设备的功率>2KW,可以继电器控制接触器,由接触器直接控制加热设备。 (4)键盘电路 键盘共有四个按键,分别是S1(设置)、S2(+)、S3(-)、S4(储存)。通过键盘来设置室内应达到的温度,键盘采用中断方式控制。 (5)显示电路 显示电路由两位E10501_AR数码管组成,由两片74LS164驱动,实现静态显示,74LS164所需的串行数据和时钟由单片机的P3.0和P3.1提供。对于学过“串行口”知识的班级,实习时,可以采用串行口工作于方式0,即同步移位寄存器的输出方式,通过串行口输出显示数据(实时温度值或设置温度值);对于没学过“串行口”知识的班级,实习时,可以采用模拟串行口的输出方式,实现显示数据的串行输出。 (6)设置温度存储电路 为了防止设定温度在电源断电后丢失,此设计加入了储存电路,储存器选用具有I2C总线功能的AT24C01或FM24C01均可。每次通过键盘设置的室内设定温度都通过储存器储存起来,即使是电源断电,储存器存储的设定温度也不丢失,在电源来电后,单片机自动将设

最新单片机硬件系统设计原则

单片机硬件系统设计 原则

●单片机硬件系统设计原则 ●一个单片机应用系统的硬件电路设计包含两部分内容:一是系统扩展,即单片机内部的功能单 元,如ROM、RAM、I/O、定时器/计数器、中断系统等不能满足应用系统的要求时,必须在片外进行扩展,选择适当的芯片,设计相应的电路。二是系统的配置,即按照系统功能要求配置外围设备,如键盘、显示器、打印机、A/D、D/A转换器等,要设计合适的接口电路。 ●系统的扩展和配置应遵循以下原则: ● 1、尽可能选择典型电路,并符合单片机常规用法。为硬件系统的标准化、模块化打下良好的基 础。 ● 2、系统扩展与外围设备的配置水平应充分满足应用系统的功能要求,并留有适当余地,以便进行 二次开发。 ● 3、硬件结构应结合应用软件方案一并考虑。硬件结构与软件方案会产生相互影响,考虑的原则 是:软件能实现的功能尽可能由软件实现,以简化硬件结构。但必须注意,由软件实现的硬件功能,一般响应时间比硬件实现长,且占用CPU时间。 ● 4、系统中的相关器件要尽可能做到性能匹配。如选用CMOS芯片单片机构成低功耗系统时,系统 中所有芯片都应尽可能选择低功耗产品。 ● 5、可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷 电路板布线、通道隔离等。 ● 6、单片机外围电路较多时,必须考虑其驱动能力。驱动能力不足时,系统工作不可靠,可通过增 设线驱动器增强驱动能力或减少芯片功耗来降低总线负载。 ● 7、尽量朝“单片”方向设计硬件系统。系统器件越多,器件之间相互干扰也越强,功耗也增大, 也不可避免地降低了系统的稳定性。随着单片机片内集成的功能越来越强,真正的片上系统SoC已经可以实现,如ST公司新近推出的μPSD32××系列产品在一块芯片上集成了80C32核、大容量FLASH 存储器、SRAM、A/D、I/O、两个串口、看门狗、上电复位电路等等。 ●单片机系统硬件抗干扰常用方法实践 ●影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结 构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。 ●形成干扰的基本要素有三个: ●(1)干扰源。指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt大的地 方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 ●(2)传播路径。指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线 的传导和空间的辐射。 ●(3)敏感器件。指容易被干扰的对象。如:A/D、 D/A变换器,单片机,数字IC,弱信号放大器 等。 ● 1 干扰的分类 ● 1.1 干扰的分类 ●干扰的分类有好多种,通常可以按照噪声产生的原因、传导方式、波形特性等等进行不同的分 类。按产生的原因分: ●可分为放电噪声音、高频振荡噪声、浪涌噪声。 ●按传导方式分:可分为共模噪声和串模噪声。 ●按波形分:可分为持续正弦波、脉冲电压、脉冲序列等等。 ● 1.2 干扰的耦合方式

基于PSD系列芯片的单片机电路设计

基于PS D系列芯片的单片机电路设计 王小梅 (安徽电力中心调度所,合肥230061) 摘要 简要介绍了如何使用PSD芯片来构成单片机系统的硬件电路。 关键词 PSD系列芯片 单片机 电路设计 中图分类号 T P13 C ircu it D esign i ng of Si ngle-Ch ip Processors Ba sed on PS D Fam ily Ch ips W ang X iaom ei (A nhu i E lectron ic P o w er Cen tra l,H ef ei230061) Abstract T h is paper in truduces how to design the circu its of single2ch i p p rocesso rs w ith PSD ch i p s. Keywords PSD fam ily ch i p s Single2ch i p p rocesso rs C ircu it design ing   1 传统的单片机系统的硬件构成对于传统的工业控制单片机系统的硬件构成来说,尽管典型的微控制器(如:8031,8098, 90C32,Z8,M68010,TM S320CXX等)内部已集成了计数器、小量的RAM和ROM以及有限的I O能力,但大多数的微控制器仍需外加EPROM、RAM、I O端口和存储器空间译码逻辑,有时还需外加锁存器对来自多路复用地址 数据总线的地址和数据进行分离。电路的设计者不得不根据各自的需要来选用芯片构成自己所要设计的电路,一旦电路设计完成,如果要进行修改则比较麻烦,如果采用以PSD系列芯片作为单片机的外围芯片就可以使上述问题得到很好的解决。 2 采用PSD芯片的单片机系统的硬件构成 W S I公司生产的一种高性能的现场可编程的微控制器外围集成电路(PSD)系列,将E PROM、RAM、PLD、地址锁存器和I O口集成在单一的芯片上。随着PSD系列芯片的出现和发展,设计者不必再费尽心思地考虑需要哪些离散器件来构成系统所需的存储器、译码电路、端口和地址锁存器了。这种芯片内功能的高度集中,使得小型系统的组件可降低到只有两个芯片:一片微控制器和一片PSD芯片。这种硬件设计的二片方案,既可简化电路设计,节省印制板空间,缩短产品开发周期,又可增加系统可靠性,降低产品功耗。当然,对于较大的系统,可配置多个PSD芯片,而不需要外加逻辑线路。将两个或多个PSD芯片通过水平级联(以增加总线宽度)或垂直级联(以增加子系统深度),来增加该系统的存储器空间、I O 端口和片选信号,用以达到系统所需的要求。 3 PSD系列芯片的内部结构和功能简介 PSD系列芯片(主要有PSD3、PSD4、PSD5、PSD6、PSD8、PSD100等)系列,目前  半导体技术1999年8月第24卷第4期

单片机课程设计(温度控制器)

基于单片机的温度控制器设计 内容摘要:该温度报警系统以AT89C51单片机为核心控制芯片,实现温度检测报警功能的方案。该系统能实时采集周围的温度信息,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。该系统实现了对温度的自动监测和自动调温功能。 关键词:AT89C51ADC0808 温度检测报警自动调温 Abstract:The temperature alarm system AT89C51 control chip, realize temperature detection alarm function scheme. The system can collect real-time temperature information around that internal procedures set alarm equipped, according to different application environment can be set different alarm upper. The system realizes the automatic monitoring of temperature. The instrument can achieve the automatic thermostat function. Keywords:AT89C51 ADC0808Temperature detectingalarmautomatic thermostat 引言:本课题是基于单片机的温度控制器设计,经过对对相关书籍资料的查阅确定应用单片机为主控模块通过外围设备来实现对温度的控制。实现高低温报警、指示和低温自加热功能(加热功能未在仿真中体现)。 1.设计方案及原理 1.1设计任务 基于单片机设计温度检测报警,可以实时采集周围的温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。 1.2设计要求 (1)实时温度检测。 (2)具有温度报警功能。 (3)可以设报警置温度上下限。 (4)低于下限时启动加热装置。 1.3总体设计方案及论证

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

基于单片机C8051F410的精确信号模拟电路设计

基于单片机C8051F410的精确信号模拟电路设计 引言 在对某型发射装置进行检测时.需要提供三组以11.50伏为基准的精确直流电压信号。为配合测试流程,这三组信号需要在不同的时段取18个不同的直流电压值,幅度分布在9.33-12.13伏范围之内。原有的测试仪采用22个精密电阻组成的分压器,配合波段开关选择来产生这18种不同的精确直流电压信号。这种设计方法价格昂贵,并且不能实现自动化检测,需要通过手工拨动波段开关来实现测试步骤的转换。为了实现对发射装置的自动测试。采用微机技术设计了新型的检测仪。新的检查仪以CPU模块为核心,通过程序控制D/A转换器来产生这三组精确直流电压信号,简化了设计,降低了成本,实现了测试步骤的自动切换。但是在检测仪的使用过程中发现经常出现重测合格 (RTOK)现象,即检测仪测定某件装备不合格,但是更换仪器或重新开机后再对该装备进行测试时结果良好.这种状况严重影响装备单位的使用和维护。后经分析.认为主要是检测仪中产生这三组精确信号的模拟电路存在工作点漂移问题,精度不高。电压输出不稳定,从而导致测试状态不正确。为了解决这个问题,本文基于C8051F410单片机。采用PWM调制技术和负反馈测量技术设计了~种新的精确信号模拟电路,有效抑制了工作点漂移问题提高了模拟电路输出精度.解决了装备维护使用工作中存在的实际问题。 1 电路结构及原理 电路设计采用了闭环控制结构,如图l所示。电路以C8051F410单片机为核心.通过程序设定需要输出电压的初始参数,控制单片机内部的可编程计数器阵列(PCA)产生适当占空比的PWM波形,经二级信号放大电路和推挽式输出电路放大后得到精确直流电压信号。为了抑制-亡作点漂移并保证足够的输出精度,将输出信号经分压后引回至C8051F410单片机,利用单片机内部的数/模转换器测量该电压,并与初始设定参数相比较.通过程序调节PWM波形的占空比.从而得到具有高可靠性和较高精度的直流电压输出信号。 图1电路结构框图 本电路的基本思想就是利用单片机具有的PWM端口,在不改变PWM方渡周期的前提下.通过软件的方法调整单片机的PWM控制寄存器来调整PWM的占空比,从而得到所需要的电压信号。本电路所要求的单片机必须具有ADC端口和PWM端口这

基于单片机的温度控制器设计

技术参数和设计任务:1、利用单片机AT89S51实现对温度物理量的控制,以实现对温度控制的目的;2、为达到电源输出5V电压目标,完成电源电路的设计;3、为达到数码管显示目标,完成显示电路的设计;4、为达到键盘控制的目标,完成键盘电路的设计;5、为达到检测温度的目标,完成检测电路的设计;6、完成报警设计;7、进行软件设计[分配系统资源,编写系统初始化和主程序模块;编写数字调节器软件模块;编写A/D转换器处理程序模块;编写输出控制程序模块;其它程序模块(数字滤波、显示与键盘等处理程)等等。一、本课程设计系统概述1、系统原理温度传感器 DS18B20 从设备环境的不同位置采集温度,单片机 AT89S51 获取采集的温度值,经处理后得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。当采集的温度经处理后超过设定温度的上限时,单片机通过三极管驱动继电器开启降温设备 (压缩制冷器) ,当采集的温度经处理后低于设定温度的下时 , 单片机通过三极管驱动继电器开启升温设备 (加热器) 。当由于环境温度变化太剧烈或由于加热或降温设备出现故障,或者温度传感头出现故障导致在一段时间内不能将环境温度调整到规定的温度限内的时候,单片机通过三极管驱动扬声器发出警笛声。系统中将通过串口通讯连接PC机存储温度变化时的历史数据,以便观察整个温度的控制过程及监控温度的变化全过程。2、系统结构图本设计以AT89S51单片机为主控核心设计的一个温度控制系统,低温时可控制加热设备,高温时控制风扇,超出设定最高温度值时蜂鸣器发出声响报警。 图1 总体硬件方框图 3、文字说明控制方案(1)温度测量部分方案 DS18B20是DALLAS公司生产的一线式数字温度传感器,它具有微型化、低功耗、高性能抗干扰能力、强易配处理器等优点,特别适合用于构成多点温度测控系统,可直接将温度

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

单片机红绿灯电路设计

四川现代职业学院《单片机原理及应用》课程设计红绿灯实训报告 题目:红绿灯项目设计报告 系别:电子信息技术系 专业:电子信息工程技术 组员:贺淼、纪鹏、邵文稳 指导老师:陶薇薇 2014年7月12日

摘要 交通在人们的日常生活中占有重要的地位,随着人们社会活动的日益频繁,这点更是体现的淋漓尽致。交通信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测技术日益更新。在实时检测和自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构软硬件结合,加以完善。本系统采用STC89C52点单片机以及数码管为中心器件来设计交通灯控制器,实现了南北方向为主要干道,要求南北方向每次通行时间为30秒,东西方向每次通行时间为25秒。启动开关后,南北方向红灯亮25秒钟,而东西方向绿灯先亮20秒钟,然后闪烁3秒钟,转为黄灯亮2秒钟。接着,东西方向红灯亮30秒钟,而南北方向绿灯先亮25秒,然后闪烁3秒钟,转为黄灯亮2秒钟,如此周而复始。 软件上采用C语言编程,主要编写了主程序,中断程序延时程序等。经过整机调试,实现了对十字路口交通灯的模拟。

目录 (一)硬件部分--------------------------- 3 1.1 STC89C52芯片简介-----------------------3 1.2 主要功能特性---------------------------4 1.3 STC89C52芯片封装与引脚功能-------------5 1.4 基于STC89C52交通灯控制系统的硬件电路分析及设计-------------------------------------------10 (二)软件部分----------------------------14 2.1 交通灯的软件设计流程图-----------------14 2.2 控制器的软件设计-----------------------15 (三)电路原理图与PCB图的绘制-------------16 3.1 电路原理图的绘制(见附录二)----------16 3.2 PCB图的绘制(见附录三)---------------16 3.3 印刷电路板的注意事项------------------16 (四)调试及仿真---------------------------------------19 4.1 调试----------------------------------19 4.2 仿真结果------------------------------20 (五)实验总结及心得体会---------------------------21 5.1 实验总结-----------------------------------------------21 5.2 实验总结-----------------------------------------------22 附录程序清单---------------------------22

单片机密码锁设计(汇编语言-)带原理图电路图-

单片机密码锁设计(汇编语言)带原理 图电路图 什么是密码锁 电子密码锁是一种通过密码输入来控制电路或是芯片工作,从而控制机械开关的闭合,完成开锁、闭锁任务的电子产品。 硬件设计 基于AT89C51为核心的单片机控制的电子密码锁设计。本设计能完成开锁,修改密码,密码错误报警,LCD显示密码等基本的密码锁功能。设计的电路框如图1。 《 , 图一 & 电路的功能单元设计

1.单片机AT89C51组成基本框图 单片机引脚介绍 P0:P0口是一个漏极开路的8位双向I/O口。在访问片外存储器时P0分时提供低8位地址线和8位双向数据线。当不接片外存储器或不扩展I/O口时,P0可作为一个通用输入/输出口。P0口作输入口使用时,应先向口锁存器写“1”,P0口作输出口时,需接上拉电阻。 P1:P1口是一个内部提供上拉电阻的8位双向I/O口,因此它作为输出口使用时,无需再外接上拉电阻,当作为输入口使用时,同样也需先向其锁存器写“1”。 & P2:P2口也是一个内部提供上拉电阻的8位双向I/O口,在访问片外存储器时,输出高8位地址。 P3:P3口除了一般的准双向通用I/O口外,还有第二功能。 VCC:+5V电源 VSS:接地 ALE:地址锁存器控制信号。在系统扩展时,ALE用于控制把P0口输出的低8位地址锁存起来,以实现低位地址和数据的隔离。此外,由于ALE是以晶振1/6的固定频率输出的正脉冲,因此,可作为外部时钟或外部定时脉冲使用。 /PSEN:外部程序存储器读选通信号。在读外部ROM时,/PSEN有效(低电平),以实现外部ROM单元的读操作。 /EA:访问程序存储控制信号。当/EA信号为低电平时,对ROM的读操作限定在外部程序存储器;当/EA信号为高电平时,对ROM的读操作是从内部程序存储器开始,并可延至外部程序存储器。 RST:复位信号。当输入的复位信号延续两个机器周期以上的高电平时即为有效,用完

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

VF变换器设计报告

VF 变换器设计 姓 名 学 号 院、系、部 班 号 完成时间 ※ ※※※※※※※ ※ ※ ※ ※※ ※ ※ ※※※※※ ※※※※ 2013级 模拟电子技术课程设计

摘 要 电压/频率变换器的输入信号频率 f 。0 与输入电压 V i 的大小成正比,输入控制电压 V i 常为直流电压,也可根据要求选用脉冲信号做为控制电压,其输出信号可为正弦波或者脉冲波形电压。 本次课程设计利用输入电压的大小改变电容的充电速度,从而改变振荡电路的振荡频率,故采用积分器作为输入电路。积分器的输出信号去控制电压比较器或者单稳态触发器,可得到矩形脉冲输出,由输出信号电平通过一定反馈方式控制积分电容恒流放电,当电容放电到某一域值时,电容C 再次充电。由此实现V i 控制电容充放电速度,即控制输出脉冲频率。 关键词:电压变换器 积分器 单稳态触发器

目录 第1章设计任务与要求 (1) 第2章方案与论证 (1) 2.1 VF变换器设计思路 (1) 2.2 原理框图设计 (1) 第3章单元电路设计与参数计算 (2) 3.1 积分器设计 (2) 3.2 单稳态触发器设计 (3) 3.3 电子开关设计 (3) 3.4 恒流源电路设计 (4) 3.5 元件参数计算 (4) 3.6 主要元件参数 (5) 第4章仿真与调试 (6) 4.1 仿真电路 (6) 4.2 电路调试 (6) 4.3 调试结果 (7) 第5章结论与心得 (10) 5.1 结论 (10) 5.2 心得体会 (10) 参考文献 (10)

第1章 设计任务与要求 (1)设计一个振荡频率随外加控制电压变化的压控振荡器。 (2)输入外加控制电压信号为直流电压,输出信号频率为0f ,0f 与输入电压幅 度成正比。 (3)输入信号为矩形脉冲信号。 (4)输入电压的变化范围为0-10V 。 (5)0f 的变化范围为0-10kHz 。 (6)转换精度小于1%。 第2章 方案与论证 2.1 VF 变换器设计思路 (1)利用输入电压的大小改变电容器的充电速度,从而改变振荡器的振荡频率,可采用积分电路作为输入电路。积分器可由集成运算放大器和RC 元件组成。 (2)积分器的输出信号控制电压比较器、施密特触发器、单稳态触发器等,可得到矩形脉冲输出。 (3)输出信号电压通过一定反馈方式控制积分电容恒流放电,从而使积分电容的充放电速度控制了输出脉冲信号的频率,实现V/F 变换。 2.2 原理框图设计 图2-1 原理结构图输入 积分器 单稳态转换器 输出 恒流源 电子开关

模电课设—温度控制系统设计

目录 1.原理电路的设计 (11) 1.1总体方案设计 (11) 1.1.1简单原理叙述 (11) 1.1.2设计方案选择 (11) 1.2单元电路的设计 (33) 1.2.1温度信号的采集与转化单元——温度传感器 (33) 1.2.2电压信号的处理单元——运算放大器 (44) 1.2.3电压表征温度单元 (55) 1.2.4电压控制单元——迟滞比较器 (66) 1.2.5驱动单元——继电器 (88) 1.2.6 制冷部分——Tec半导体制冷片 (99) 1.3完整电路图 (1010) 2.仿真结果分析 (1111) 3 实物展示 (1313) 3.1 实物焊接效果图 (1313) 3.2 实物性能测试数据 (1414) 3.2.1制冷测试 (1414) 3.2.2制热测试 (1818) 3.3.3性能测试数据分析 (2020) 4总结、收获与体会 (2121) 附录一元件清单 (2222) 附录二参考文献. (2323)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339 N为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741,NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

基于单片机的空调温度控制器设计设计

基于单片机的空调温度控制器设计设计

接口技术课程设计报告基于单片机的空调温度控制器设计 摘要 设计了基于AT89C52的高精度家用空调温度控制系统,系统硬件主要由电源电路、温度采集电路(DS18B20)、键盘、显示电路、输出控制电路及其他辅助电路组成;软件采用8051C语言编程;该系统可以完成温度的显示、温度的设定、空调的控制等多项功能。 关键词:单片机;DS18B20;温度检测;显示

目录 1 设计目的及要求 (1) 1.1 设计目的和意义 (1) 1.2 设计任务与要求 (1) 2 硬件电路设计 (2) 2.1 总体方案设计 (2) 2.2 功能模块电路设计 (3) 2.2.1 单片机的选型 (3) 2.2.2 振荡电路设计 (5) 2.2.3 复位电路设计 (5) 2.2.4 键盘接口电路设计 (6) 2.2.5 温度测量电路设计 (6) 2.2.6 系统显示电路设计 (7) 2.2.7 输出控制电路设计 (8) 2.3 总电路设计 (8) 2.4 系统所用元器件 (9) 3 软件系统设计 (10) 3.1 软件系统总体方案设计 (10) 3.2 软件流程图设计 (10) 4 系统调试 (12) 5 总结 (13)

5.1 本系统存在的问题及改进措施 (13) 参考文献 (14) 附录1:系统的源程序清单 (15) 附录2:系统的PCB图 (39)

1 设计目的及要求 1.1 设计目的和意义 21世纪的人们生活质量不断提高,同时也对高科技电子产业提出了更高的要求,为了使人们生活更人性化、智能化。我设计了这一基于单片机的空调温度控制系统,人们只有生活在一定的温度环境内才能长期感觉舒服,才能保证不中暑不受冻,所以对室内温度要求要高。对于不同地区空调要求不同,有的需要升温,有的需要降温。一般都要维持在21~26°C。 目前,虽然我国大量生产空调制冷产品,但由于我国人口众多,需求量过盛,在我国的北方地区,还有好多家庭还没有安装有效地室内温控系统。温度不能很好的控制在一定的范围内,夏天室内温度过高,冬天温度过低,这些均对人们正常生活带来不利的影响,温度、湿度均达不到人们的要求。以前温度控制主要利用机械通风设备进行室内、外空气的交换来达到降低室内温度,实现室内温度适宜人们生活。以前通风设备的开启和关停,均是由人手动控制的,即由人们定时查看室内外的温度、湿度情况,按要求开关通风设备,这样人们的劳动强度大,可靠性差,而且消耗人们体力,劳累成本过高。为此,需要有一种符合机械温控要求的低成本的控制器,在温差和湿度超过用户设定值范围时,启动制冷通风设备,否则自动关闭制冷通风设备。鉴于目前大多数制冷设备现在状况,我设计了一款基于MCS51单片机的空调温度控制系统。 1.2 设计任务与要求 系统要求利用单片机设计一空调温度控制器,能够实时检测并显示室温,能够利用键盘设定温度,并且和室温进行比较,当室温低于设定温度时,系统能够驱动加热系统工作,当室温高于设定温度时,系统能够驱动制冷系统工作,当两者温度相等时,不做动作。

boost变换器设计报告

直流稳压电源设计报告 摘要 本作品采用了boost拓扑,利用电感、场效应管和二极管完成了升压的功能,利用Tl494,和IR2110进行反馈控制。并加上前期的整流滤波电路,实现可以用从市电开始转换。本作品基本实现了题目的功能,实现了30V到36V,2A的输出。 一、方案比较论证 1.主拓扑方案的论证 方案一:采用反激式变换器。反激式变换器适合小功率的输 出,输入电压大范围波动时,仍可以有较稳定的输出,并且 可以实现带隔离的DC/DC变换,但其中的反激式变压器设计 比较复杂,且整体效率较低。 方案二:采用boost变换器,boost是一种斩波升压变换器, 该拓扑效率高,电路结构简单,参数设计也比较容易。 方案三:采用SPICE变换器,开关环路的对称性使其可以达 到较高效率,电感的适当耦合也可以尽量减小纹波。但该方 案成本较高,对电容电感值要求较高,检测和控制电路较为 复杂。 为节约成本,并从简单考虑,本作品选用方案二。 2.控制反馈方案的选择 方案一:系统由Boost模块实现升压任务,各模块所需PWM 信号的由单片机提供,单片机AD采集实时输出量,经运算

后通过改变占空比调整模块工作状态。该方案电路最简单, 各种控制灵活,缺点有单片机运算量过大,开关信号占空比 受单片机限制,浮点运算的时延影响电路跟随,另外单片机 容易受到功率管开关干扰而失灵。 方案二:使用振荡器、比较器产生PWM波,由负反馈电路 实现输出控制,单片机负责状态切换和测量显示,该方案原 理易于理解,但自己装调的PWM电路在开关时容易出现振 铃毛刺,直接影响了系统效率,并且要完善反馈控制对回馈 信号要求较高。 方案三:借用现有成熟PWM控制器,该类集成电路输出波 形好,工作稳定,都具备至少一个反馈控制引脚,按照厂商 提供的典型电路就可装调出应用电路。但这类电路一般针对 专用场合设计,借用时需要较多设计计算,特别是该类芯片 的反馈有极高的控制灵敏度,在单片机参与时需要较多改动。 本作品采用方案三。 二、理论分析和计算 1.电路设计与分析 (1)提高效率的方法

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

相关文档
最新文档