【NI资料】PXI系统带宽

【NI资料】PXI系统带宽
【NI资料】PXI系统带宽

1. 2. 3. 4. 5. PXI系统带宽

发布日期: 二月 24, 2014

概览

PXI系统在工业领 域得到了越来越多的 应用,在使用PXI 系统的同时,有必要 对PXI系统本身特 性尤其是PXI系统 带宽有深入的了解。 本文从纯硬件系统角 度出发,对PXI系 统带宽进行分析。首先分析 PCI/PCI Express特点 与性能,进而阐述 PXI系统中 Switch与 Bridge的作 用,并最终得到对 PXI/PXI Express系统 带宽的完整分析。对 于PXI-8110 与PXI-1042 组成的系统,双向理论最大总机箱带宽为 133MB/s,双 向理论最大总系统带 宽为 133MB/s,双 向理论最大总单槽带 宽为 133MB/s;对 于PXIe- 8133与 PXIe-1075 和PXIe8135 与PXIe- 1085组成的系

统,单方向理论最大 机箱带宽分别为 4GB/s和 12GB/s,单方 向理论最大总系统带 宽分别为4GB/s 和8GB/s,单方 向理论最大P2P带 宽分别为1GB/s 和4GB/s,单方 向理论最大单槽带宽分别为1GB/s和 4GB/s。

目录

Introduction

PCI/PCI Express总 线

PXI/PXIe系 统带宽

Conclusion

参考文献

1. Introduction PXI(PCI eXtension for Instrumentation) 系统是 National Instruments 最初在1997年提 出的模块化仪器平台 [1],并由 PXISA (PXI System Alliance) [2]推动PXI系 统的发展,在

2005年完成发布 了PXI Express系统 标准[3]。在 2009年 PXISA宣布超过 100,000台 PXI系统被部署, 整个PXI市场有望 在2017超过 1,000,000,000 美元。

图1 模块化仪器的 预期收益[4]

National Instruments 在申请的专利[5] 中,申明了通过扩展 基于通道的交换结 构,以便提供仪器信 号功能的仪器系统。 在这样的系统中,有 用于传输数据的总 线,以及实现仪器信

号功能的仪器信号 线。仪器信号线包括 本地总线、触发总线 和星形触发总线,但 仪器信号线仅仅传递 定时同步信号,故在 本文中仅通过阐述传 输数据总线来介绍 PXI系统理论上的 最大带宽。PXI/PXIe系 统采用 PCI/PCI Express总线 传递数据,所以在接 下来的部分中,首先 简要介绍 PCI/PCI Express总 线,之后阐述利用 PCI/PCI Express总线 传输数据的 PXI/PXIe系 统带宽。

2. PCI/PCI Express总 线

PCI总线

PCI (Peripheral Componet Interconnect) [6]总线是 Intel在 1993提出的计算 机本地总线,并由 PCI-SIG (Peripheral Component Interconnect Special Interest Group)[7] 负责标准的制定。PCI总线的数据采 用并行传输,比特位 宽为32位或64 位,常用为32位, 时钟速率为 33MHz或者 66MHz,常用为 33MHz。对于 33MHz的32位 PCI总线来说,传 输容量为 133MByte/s。PCI总线的连接器 针脚如表1所示,其 中AD[00- 31]为PCI地址 /数据总线,为 PCI中地址和数据 传输所共用。

表1 32bit PCI Connector Pinout[9]

PCI总线上的设备 并行接入到总线上, 每个设备共享总线带 宽,同一时刻只能有 一个通信任务处于执 行中,总线上设备占 用总线带宽需要通过 请求/授权协议进行 申请,并且发送与接

收共用相同总线。所 以33MHz的32 位PCI系统的传输 容量133MB/s 仅仅是理论上的最大 双向总带宽,当总线 上有多个设备的时 候,平均到每个设备 的实际带宽会明显下 降。除此之外,由于PCI总线采用并行 传输方式,当时钟速 率升高时,多条传输 线信号间同步很难保 证,所以PCI总线 的时钟速率难以显著 提高,这也限制了总 线的传输带宽。

PCI系统传输带宽 的限制导致它无法满 足最新诸如高速显卡 等应用的需要,所以 PCI-SIG在之 后制定了PCI Express总线 标准[8]。

PCI Express总线

针对于越来越高的总 线传输速度要求, PCI-SIG制定 了PCI Expess总线标 准[8]。

PCI Express总线 采用串行数据传输方 式,避免了PCI总 线并行方式带来的时 钟速率无法显著提高 的问题,数据传输速 率可以很高。同时 PCI Express总线 采用端到端连接方 式,也就意味着传输链路并非多个设备共 享,而是专属的传输 链路。

如图2所示,设备间 互联的Link由若 干个Lane组成, 图2中的Link就 由4个Lane组 成,可以表示为 ×4 Link。任 何一个Lane包含 两个差分信号对,一 个差分对用于发送数 据,另一个用于接收

数据,也就是说一个 Lane会包含4个 信号线。这种结构可 以全双工的同时发送 与接收信号。

图2 PCI Express Link & Lane

PCI Express Gen 1版本规定 时钟速率为2.5 GHz,同时采用 8b/10b编码机 制,所以每条 Lane单方向传输 数据的最大速率为 250MB/s。 PCI Express Gen 2版本将时 钟速率增大为

5GHz,编码方式 不变,所以每条 Lane单方向传输 数据的最大速率增大 为500MB/s。 PCI Express Gen 3版本进一 步将时钟速率提升为 8GHz,同时采用 128b/130b 编码机制降低冗余编

码开销。PCI- SIG正在积极制定 新一代PCI Express Gen 4版本标 准,以便传输速率再 上新的台阶。目前 PCI Express Gen 1和 Gen 2版本在 National Instruments 的PXIe系统中均

得到应用,不同版本 PCI Express协议 中,每条Lane单 方向传输速率如表2 所示。

每条Link可以包 含多条Lane (×1,×2, ×4,×8, ×16),最大为 ×16。每条 Link中Lane 的增加,可以整倍数 的提升Link单向 传输数据速率,如表 3所示。

PCI Express的连 接器针脚如表4所 示。PCI Express采用 串行通信方式,相比 于PCI并行传输方 式避免了多条传输线 同步问题造成的传输 速率无法显著提升的 问题,只包含单条 Lane的×1 Link可以达到 250MB/s的传 输速率,已经大于 PCI所能提供的最 大133MB/s传 输速率,传输速率明 显提升的同时插槽尺 寸可以显著降低。此 外PCI Express采用 差分信号传输方式,

可以有效消除共模干 扰对信号的影响。

表4 PCI Express ×16 Connector Pinout[9]

3. PXI/PXIe系 统带宽

PXI/PXIe系 统采用 PCI/PCI Express总线 传输数据,在本节中 结合 National Instruments 推出的典型硬件产品 (PXI- 8110+PXI- 1042/PXIe- 8133+PXIe- 1075/PXIe8135+PXIe- 1085)对PXI/PXIe系 统进行介绍。

PXI系统

PXI系统采用 PCI总线标准传输 数据,并增加专用仪 器信号线[1] [5]。在标准 PXI系统中,功能 板卡按需插入机箱中 的通用Slot中。 PXI系统中使用的 Connector 与Compact PCI[10]相同,如图3所示。 PXI系统 Connector 的Pinout是基 于Compact PCI并添加仪器信 号线得到的, Connector 中J1与J2部分中 Pinout情况如 表5和表6所示。 J1部分的 Pinout就完全 包含32bit

PCI总线所需所有 信号线,而J2部分 一方面包含实现 64bit PCI 总线的高32bit 数据位,同时也包括 本地总线、触发总 线、星形触发总线和 参考时钟这些PXI 系统添加的仪器信号 线。

表5 J1 Connector Pinout[1]

表6 J2 Connector Pinout[1]

PXI-8110控 制器硬件采用 Mobile Intel GM45 Express Chipset [11]并利用 Intel 82801 Controller Hub来控制PCI 总线连接[12], 如图4和图5所示。

PXI-8110控 制器硬件采用 Mobile Intel GM45 Express Chipset [11]并利用 Intel 82801 Controller Hub来控制PCI 总线连接[12], 如图4和图5所示。

图4 Mobile Intel GM45 Express Chipset [11]

图5 Intel 82801[12]

PXI系统中的板卡 插入机箱后,与PC 中PCI总线板卡传 输数据方式相同,共 享PCI总线带宽, 所以在32bit的 33MHz时钟速率 设备中,PXI系统 拥有与PCI总线相 同的133MB/s

最大传输速率。总线 上的设备平等共享 PCI总线带宽,所 以当功能板卡与控制 器板卡传输数据,具 有133MB/s最 大传输速率,当总线 上同时传输数据的设 备数目增大时,平摊

到每个设备的带宽会 相应减小。

PXIe系统

PXIe系统采用 PCI Express总线 传输数据,同时依然 具有仪器信号线。 PXIe系统 Connector 采用 Compact PCI Express [10]相同的 Connector。 相比于基于PCI总 线的PXI系统, PXIe系统基于PCI Express总 线,数据传输采用差 分信号对,所以板卡 Connector 有所不同,如图6和 图7所示。

图6 3U PXI Express System Slot

图7 3U PXI Express Hybrid Peripheral Slot

混合插槽 Connector 的Pinout如图 8所示,J1 Connector 提供完整 32bit PCI 总线所需引脚, XP3 Connector 提供一条×8 PCI Express Link所需的引 脚,而XP4 Connector 跟PXI系统中 Connector 此位置引脚基本相 同,只是本地总线缩 减为只剩 PXI_LBL6、 PXI_LBR6这 一对。

图8 Hybrid Peripheral Slot Pin Assignments

系统插槽比较特殊, 可以有两种 Link Configuration, 分为4 Link Configuration 和2 Link Configuration, Connector Pinout分别如 图9和图10所示。 从图中可以看到, 4 Link Configuration

可以提供四条×4 PCI Express Link,而2 Link Configuration 可以提供一条×8 PCI Express Link和一条 ×16 PCI Express Link。

图9 Pin Assignments for 4 Link Operation

从Pinout可以 看到,所有XP2和 XP3 Connector 中信号传输采用差分 信号对,差分对与差 分对之间有特殊形状 GND引脚分割,可 以满足高速数字信号 的电磁兼容 (EMC)和信号完

从Pinout可以 看到,所有XP2和 XP3 Connector 中信号传输采用差分 信号对,差分对与差 分对之间有特殊形状 GND引脚分割,可 以满足高速数字信号 的电磁兼容 (EMC)和信号完

整性(SI)要求。

了解PXIe系统 Connector 中Pinout情况 对后续理解PXIe 系统传输数据带宽有 很重要的意义。

Switch & Bridge

将相同类型网络连接 在一起的器件称为 Switch,而将 不同类型网络连接在 一起的器件称为 Bridge [9]。 Switch与 Bridge器件在 PXIe系统中得到 重要应用并直接影响 PXIe系统带宽,

所以在本小节中以 PLX Technology 公司产品为例简要介 绍Switch与 Bridge器件功 能,下一小节介绍其 在PXIe系统中应 用。

PLX Technology 公司PEX 8533 PCIe Switch [13]芯片和 PEX 8112 PCIe-PCI Bridge [14]芯片得到了 广泛的应用,其中 PEX 8533 PCIe Switch芯片在 PXIe-1075 机箱中得到使用,从

机箱背板上可以明显 看出,如图11所 示。

图11 PXIe- 1075

EX 8533 Switch有32 条Lane,支持最 多6个可配置端口。 PEX 8533 Switch可以有 多种端口配置方式, 比如上行设置为 ×16 Port而 下行为两条×8 Port,如图12 所示。Switch 芯片设置好的端口之间都可以实现双向数 据的传输,这样的功 能使得CPU可以通 过Switch与多 路PCI Express扩展 插槽进行通信,如图 13所示,也可以让 PXI Express扩展 之间直接实现P2P 通信功能,如图14

所示。

图12 Port Flexibility

图13 PCI Express扩展

图 14 Peer-to- Peer

PEX 8112 PCIe-PCI Bridge可以实 现×1 PCI Express Link与PCI总 线的双向通信,由于 一条PCI Express Lane的传输速率 就已经大于整条 PCI总线最大传输 速率,所以 Bridge芯片上 只有一条×1 PCI Express Link,如图15 所示。

图15 PEX 8112

图15 PEX 8112

PXIe系统带宽

当理解了PXIe系 统组成单元的功能 后,就不难理解 PXIe系统的结 构,本小节中结合 PXIe- 8133+PXIe- 1075/PXIe8135+PXIe- 1085进行介绍。

PXIe-1075 系统架构如图16所 示,机箱中每一个槽 通过一条×4 PCI Express Gen 1 Link连接到 Switch中,混 合插槽中的PCI信 号也可以通过 Bridge间接与 PCI Express Switch通信, 同时每一个Switch都通过 一条×4 PCI Express Gen 1 Link与控制器通 信,总共4条这样的 Link,这里 Slot 1采用的 是如图9所示的4 Link Operation。 如图17所示,当 Slot 1插入 PXIe-8133

控制器的时候,控制 器上的Switch 实现4条Link与 CPU的通信,分别 为四条×4 PCI Express Gen 1 Link,与CPU 通信为一条×16 PCI Express Gen 2 Link。

所以纯PXIe- 1075机箱理论上 的单方向带宽为 4GB/s, PXIe-8133 与PXIe- 1075构成的系统 理论上的单方向系统 带宽为4GB/s。

图16 PXIe- 1075 System Architecture [15]

图17 PXIe- 1075 & PXIe-8133

PXIe-1085 系统架构如图18所 示,机箱中每一个槽 通过一条×8 PCI Express Gen 2 Link连接到 Switch中,混 合插槽中的PCI信 号也可以通过 Bridge间接与 PCI Express Switch通信, 同时一个Switch通过一 条×8 PCI Express Gen 2 Link与控制器通 信,另一个 Switch通过一 条×16 PCI Express Gen 2 Link与控制器通 信,总共2条 Link,这里 Slot 1采用的 是如图10所示的 2 Link Operation。 如图19所示,当 Slot 1插入 PXIe-8135 控制器的时候,控制 器上的Switch 实现2条Link与 CPU的通信,分别 为两条条×8 PCI Express Gen 2 Link,与CPU 通信为一条×16 PCI Express Gen 2 Link。

所以纯机箱 PXIe-1085 理论上的单方向带宽 为12GB/s, PXIe-8135 与PXIe- 1085构成的系统 理论上的单方向系统 带宽为8GB/s。

图18 PXIe- 1085 System Architecture

图19 PXIe8135 & PXIe- 1085

以PXIe- 8133与 PXIe-1075 构成的系统为例介绍 一下PXIe系统中 P2P应用 [16],如图20 所示。当P2P连接 的两块板卡与同一 Switch相连 时,可以直接通过该 Switch完成 P2P的应用,当这

个条件不满足的时 候,就需要借助控制 器的Switch间 接连接,理论上的单 方向带宽为 1GB/s。 PXIe-8135 与PXIe- 1085构成的系统 原理也一样,理论上 的单方向带宽为 4GB/s。

图20 Peer- to-Peer Streaming

PXI/PXIe系 统带宽总结如表7所 示。

表7 Theoretical Maximum Bandwidth

PXI PXIe

PXI- 8110+PXI- 1042 (two directions)PXIe- 8133+PXIe- 1075

(per direction)

PXIe8135+PXIe- 1085

(per direction)

133MB/s4GB/s12GB/s 133MB/s4GB/s8GB/s N/A1GB/s4GB/s 133MB/s1GB/s4GB/s

传输带宽计算方法

比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比 特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要 么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码 率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码 流越大,压缩比就越小,画面质量就越咼。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小X摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/s

例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1 个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽为512Kbps, 10路摄像机所需的数据传输带宽为: 512Kbps(视频格式的比特率)X 10(摄像机的路 数)?5120Kbps=5Mbps上行带宽) 即:采用CIF视频格式各地方监控所需的网络上行带宽至少为5Mbps; D1视频格式每路摄像头的比特率为,即每路摄像头所需的数据传输带宽为,10路摄像机所需的数据传输带宽为: (视频格式的比特率)X 10(摄像机的路数)=15Mbps(上行带宽) 即:采用D1视频格式各地方监控所需的网络上行带宽至少为15Mbps; 720P(100万像素)的视频格式每路摄像头的比特率为2Mbps即每路摄像头所需的数据传输带宽为2Mbps 10路摄像机所需的数据传输带宽为: 2Mbps(视频格式的比特率)X 10(摄像机的路数)=20Mbps(上行带宽) 即:采用720P的视频格式各地方监控所需的网络上行带宽至少为 20Mbps; 像头所需的数据传输带宽为4Mbps 10路摄像机所需的数据传输带宽为:

VoLTE语音和视频业务带宽计算

VoLTE语音和视频业务带宽计算 一、概述 当空口全部采用共享信道来并发承载业务时,信道已不是一份固定的物理资源,并且不同业务也会互相抢占资源。容量不是一个固定的取值,也无法直接与接入用户数和阻塞率用显性表达式来描述,不变的是业务层对QoS的要求,变化的是承载能力。本文拟对VoLTE的业务带宽计算及其空口承载能力做一个较为系统性的阐述。 二、语音带宽计算 1、业务层带宽 语音采用AMR编码(帧格式)在网络中传输,规定义两种类型的帧格式:AMR IF1 和AMR IF2,由于IF2相比IF1减少了重复的Frame Quality Indicator, Mode Indication, Mode Request 和CRC 校验,因此ITU-T的H系列建议常使用IF2,3GPP则在TS 26.201和TS 26.101进一步明确了AMR-WB和AMR-NB在无线网络中的使用要求。

注*:为语音数据,即Class A/B/C比特数,如477bit=23.85kbps*20ms。 注**:AMR帧中数据的长度并不是字节(8bit)的整数倍,所以在有些帧的末尾需要增加bit填充,以使整个帧的长度达到字节的整数倍。 2、IP层带宽 表2 AMR带宽计算 注*:上述单位均为bit或kbps。 说明1:语音包大小=N*8;IP+UDP+RTP头共60Byte,RoHC压缩为4Byte(PDCP 和RLC层SN大小分别为12bit和10bit,若采用7bit和5bit可压缩为3Byte),假设语音静默比为0.5,PDCP+RLC+MAC头共6Byte。 说明2:上表应用到的计算公式。 单个语音业务占用带宽= (1秒的静默帧bit数+1秒的语音帧比特数)/1024 kbps 1秒的静默帧比特数=(静默帧大小+IP/UDP/RTP头)*1秒的最大静默帧个数*静默比*8 1秒的语音帧比特数=(语音帧大小+IP/UDP/RTP头)*1秒的最大语音帧个数*(1-静默比)*8

视频监控中常用码流计算(仅供参考)

视频监控中常用码流计算 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法简单介绍。 比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;假如比特率越少则情况恰好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上往,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,50米红外摄像机理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/。

计算机网络原理公式及计算题

计算题: 1、设信道带宽为3400Hz,采用PCM编码,采样周期为125b/s, 每个样本量化为128个等级,则信道的数据速率为? 2、在一个带宽为3KHz,没有噪声的信道,传输二进制信号时能够达到的极限数据传输率为___.一个带宽为3KHz,信噪比为30dB的信道,能够达到的极限数据传输率为___,上述结果表明_____.根据奈奎斯特第一定理,为了保证传输质量,为达到3Kbps的数据传输率要的带宽为____,在一个无限带宽的无噪声信道上,传输二进制信号,当信号的带宽为3KHz时,能达到的极限数据率为__Kbps. 3、设有3路模拟信号,带宽分别为2kHz.4kHz,2kHz,8路数字信号,数据率都为7200bps,当采用TDM方式将其复用到一条通信线路上,假定复用后为数字传输,对模拟信号采用PCM方式量化级数为16级,则复用线路需要的最小通信能力为? 4、若要在采用两种物理状态传输的50Kbps信道上传输1.544Mbps的T1载波,问信道的信噪比至少要多少? 5、某调制解调器同时使用幅移键控和相移键控,采用0,兀/2,兀和3/2兀四种相位,每种相位又都有两个不同的幅值,问在波特率为1200的情况下数据速率是多少? 6、采用每种相位各有两种幅度的带宽为8KHz的无噪信道上传输数字信号,若要达到64Kbps的数据速率,PAM调制方法至少要多少种不同的相位? 7、信道带宽为3KHz,信噪比为30db,则每秒能发送的比特数不会超过多bps?

8、带宽为4KHz,如果有8种不同的物理状态表示数据,信噪比为30dB.那么按奈氏准则和香农定理计算,分别计算其最大限制的数据传输速率 9、设利用12MHz的采样频率对信号进行采样,若量化级为4,试计算出在无噪声 信道中的数据传输速率和所需的信道带宽。(要求写出计算过程) 10、对于带宽为6MHz的信道,若用4种不同的状态来表示数据,在不考虑热噪声的情况下, 该信道的最大数据传输速率是多少? 11、数据速率为1200bps,采用无校验、1位停止位的异步传输,问1分钟内最多能传输多少 个汉字(双字节)? 12、信源以字节(8比特)为单位传输数据,若数据速率为B(bps),对下列两种情况分别计算 有效数据传输速率: 13、调制解调器的传输速率为4800bps,并采用1位起始位,1位停止位,1位奇 偶校验位的异步传输模式,求传输2400个汉字所需要的时间。(要求写出计算过程) 14、调制解调器采用1位起始位,1位停止位,无奇偶校验位的异步传输模式,一分钟传输7200个汉字,至少达到多大传输速率 15、在一个数字信道上,数字脉冲信号的宽度833*10-6,采用四象调制法,信道传输速率是多少? 16、一条600Kb的消息要在20秒内发出,信道宽度3KHZ,信噪比20dB,信道是否能完成工作,不能,信噪比要调成多少? 课后习题 4.控制字符SYN的ASCII 码编码为0010110,请画出SYN的FSK、NRZ、曼彻斯特编码与差分曼彻斯特编码等四种编码方法的信号波形。

监控存计算公式

视频监控存储空间计算方法 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法做以介绍。比特率是指每秒传送的比特(bit)数。单位为 bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则 情况刚好相反。码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。不同的格式的比特率和码流的大小定义表: 传输带宽计算:比特率大小×摄像机的路数=网络带宽至少大小; 注:监 控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监 控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/s 例:监控分布在5个不同的地方,各地方的摄 像机的路数:n=10(20路)1个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下:地方监控点:CIF 视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽 为512Kbps,10路摄像机所需的数据传输带宽为:512Kbps(视频格式的比特率)×10(摄像机的路数)≈5120Kbps=5Mbps(上行带宽) 即:采用CIF视频 格式各地方监控所需的网络上行带宽至少为5Mbps; D1视频格式每路摄像 头的比特率为1.5Mbps,即每路摄像头所需的数据传输带宽为1.5Mbps,10路摄像机所需的数据传输带宽为: 1.5Mbps(视频格式的比特率)×10(摄像机的路数)=15Mbps(上行带宽) 即:采用D1视频格式各地方监控所需的网络上行带宽至少为15Mbps; 720P(100万像素)的视频格式每路摄像头的比特率为 2Mbps,即每路摄像头所需的数据传输带宽为2Mbps,10路摄像机所需的数据传输带宽为:2Mbps(视频格式的比特率)×10(摄像机的路数)=20Mbps(上行带宽) 即:采用720P的视频格式各地方监控所需的网络上行带宽至少为 20Mbps; 1080P(200万像素)的视频格式每路摄像头的比特率为4Mbps,即每路摄像头所需的数据传输带宽为4Mbps,10路摄像机所需的数据传输带宽为:4Mbps(视频格式的比特率)×10(摄像机的路数)=40Mbps(上行带宽) 即:采用1080P的视频格式各地方监控所需的网络上行带宽至少为40Mbps;监控中心:

网络带宽需求的计算方法_1

网络带宽需求的计算方法 1 SZ世纪昌蓝-谢飞(20789402) 17:27:17 每日增量数据/计划恢复时间*8=带宽 做异步一般2~3M基本可以,但是要参考客户每天数据的增量和备份窗口时间 SZ世纪昌蓝-谢飞(20789402) 17:31:05 同步一般推荐10Mb以上 1、电信带宽是按Bit计算的,电脑文件是按Byte计算的,1Byte=8Bit,接入光纤的带宽/8=实际使用带宽。 2、浏览网页一次2K,网络游戏、视频是交互式的一般80K就搞定了,QQ或MSN等即时工具也是占10K左右。 3、以20台电脑为例: 浏览网页: 20台电脑*2K=40K 网络游戏+视频:20台电脑*80K*2=3200K MSN、QQ : 20台电脑*10K=200K 40+3200+200=3440K Byte 3440*8=2M光纤 4、ADSL带宽是非对称的的,电话线路中0~4Khz用来传输电话音频,用26Khz~1.1Mhz频段传数据,并把它以4Khz的宽度划分为25个上行子通道和249个下行子通道,输入的数据经过TCM编码及QAM调制后,送往子信道,所以理论上上行速率可达1.5Mbps, 下行速率可达14.9Mbps,考虑到干扰等情况,实际上传输速率一般为上行640Kbps,下行8Mbps 。我们常用的2M ADSL实际速率下载约250Kbyte,上传约64Kbyte 光纤带宽是对称的,上传和下载均等

网络带宽计算方法 这里指的是带宽网速的单位计算方式方法及关系。 在计算机网络、IDC机房中,其宽带速率的单位用bps(或b/s)表示; 换算关系为:1Byte=8bit 1B=8b ---------- 1B/s=8b/s(或1Bps=8bps) 1KB=1024B ---------- 1KB/s=1024B/s 1MB=1024KB ---------- 1MB/s=1024KB/s 在实际上网应用中,下载软件时常常看到诸如下载速度显示为128KB(KB/s),103KB/s等等宽带速率大小字样,因为ISP提供的线路带宽使用的单位是比特,而一般下载软件显示的是字节(1字节=8比特),所以要通过换算,才能得实际值。然而我们可以按照换算公式换算一下: 128KB/s=128×8(Kb/s)=1024Kb/s=1Mb/s即:128KB/s=1Mb/s 理论上:2M(即2Mb/s)宽带理论速率是:256KB/s(即2048Kb/s),实际速率大约为80--200kB/s;(其原因是受用户计算机性能、网络设备质量、资源使用情况、网络高峰期、网站服务能力、线路衰耗,信号衰减等多因素的影响而造成的)。4M(即4Mb/s)的宽带理论速率是: 512KB/s,实际速率大约为200---440kB/s。 网络带宽计算方法 bps:位/每秒,通常对于串行总线设备使用bps为单位,如串口,USB口,以太网总线等。Bps:字节/每秒,通常对于并行总线设备使用Bps为单位,如并口,IDE硬盘等。 网络技术中的 10M 带宽指的是以位计算, 就是 10M bit /秒 ,而下载时的速度看到的是以 字节(Byte)计算的,所以 10M 带宽换算成字节理论上最快下载速度为: 1.25 M Byte/秒! 在计算机/通讯行业中,计算数据传送速度也使用十进制来衡量。 在数据存储容量计算中,一般采用二进制来衡量。1MB=1024K=1024*1024B。 根据进制规定,传送速度可以有两种表示方法 bps 和 Bps,但是他们是有严格区别。Bps中的B使用的是二进制系统中的Byte字节 ,bps中的b是十进制系统中的位元。在我们常说的56K

视频监控存储空间大小与传输带宽计算方法

视频监控存储空间大小与传输带宽计算方法 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法做以介绍。 比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数=网络带宽至少大小;

注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/s 例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽为512Kbps,10路摄像机所需的数据传输带宽为: 512Kbps(视频格式的比特率)×10(摄像机的路数)≈5120Kbps=5Mbps(上行带宽) 即:采用CIF视频格式各地方监控所需的网络上行带宽至少为5Mbps; D1视频格式每路摄像头的比特率为1.5Mbps,即每路摄像头所需的数据传输带宽为 1.5Mbps,10路摄像机所需的数据传输带宽为: 1.5Mbps(视频格式的比特率)×10(摄像机的路数)=15Mbps(上行带宽) 即:采用D1视频格式各地方监控所需的网络上行带宽至少为15Mbps; 720P(100万像素)的视频格式每路摄像头的比特率为2Mbps,即每路摄像头所需的数据传输带宽为2Mbps,10路摄像机所需的数据传输带宽为: 2Mbps(视频格式的比特率)×10(摄像机的路数)=20Mbps(上行带宽) 即:采用720P的视频格式各地方监控所需的网络上行带宽至少为20Mbps; 1080P(200万像素)的视频格式每路摄像头的比特率为4Mbps,即每路摄像头所需的数据传输带宽为4Mbps,10路摄像机所需的数据传输带宽为:

传输带宽计算方法

在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线 路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法做以 介绍 比特率是指每秒传送的比特(bit)。单位为bps(BitPerSecond) ,比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要 么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码 率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码 流越大,压缩比就越小,画面质量就越咼。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算:比特率大小X摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是 512kbps=64kb/s,其下行带宽是2Mbps=256kb/s 例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1

带宽计算方法

带宽计算方法 及大B与小b说明. 一.Byte与bit说明 在计算机科学中,bit是表示信息的最小单位,叫做二进制位;一般用0和1表示。Byte叫做字节,由8个位(8bit)组成一个字节(1Byte),用于表示计算机中的一个字符。bit与Byte之间可以进行换算,其换算关系为:1Byte=8bit (或简写为:1B=8b);在实际应用中一般用简称,即1bit简写为1b(注意是小写英文字母b),1Byte简写为1B(注意是大写英文字母B)。 换算公式: 1Byte=8bit 1B=8b---------- 1B/s=8b/s(或1Bps=8bps) 1KB=1024B---------- 1KB/s=1024B/s 1MB=1024KB ---------- 1MB/s=1024KB/s 规范提示: 实际书写规范中B应表示Byte(字节),b应表示bit(比特),但在平时的实际书写中有的把bit和Byte都混写为b,如把Mb/s和MB/s都混写为Mb/s,导致人们在实际计算中因单位的混淆而出错。 二.实际使用 在实际上网应用中,下载软件时常常看到诸如下载速度显示为128KB (KB/s),103KB/s等等宽带速率大小字样,因为ISP提供的线路带宽使用的单位是比特(bit,即小b),而一般下载软件显示的是字节(byte,1byte= 8bits),所以要通过换算,才能得实际值。 然而我们可以按照换算公式换算一下:

128KB/s=128×8(Kb/s)=1024Kb/s=1Mb/s即:128KB/s=1Mb/s 也就是我们要有1M的带宽,下载速度才能达到128KB/s. 4M(即4Mb/s)的宽带理论速率是:512KB/s,实际速率大约为200---440kB/s. 三.ADSL宽带说明 ADSL(Asymmetric Digital Subscriber Loop)技术是一种不对称数字用户线实现宽带接入互连网的技术,ADSL作为一种传输层的技术,充分利用现有的铜线资源,在一对双绞线上提供上行640kbps(理论上行1Mbps)下行8Mbps的带宽,从而克服了传统用户在"最后一公里"的"瓶颈",实现了真正意义上的宽带接入。 上行速率: 是指用户电脑向网络发送信息时的数据传输速率。下行速率: 是指网络向用户电脑发送信息时的传输速率。比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”;而从网上下载文件,影响下载速度的就是“下行速率”。 当然,在实际上传下载过程中,线路、设备(含计算机及其他设备)等的质量也会对速度造成或多或少的影响。 上行速率对下行速率的影响: TCP/IP规定,每一个封包,都需要有acknowledge信息的回传,也就是说,传输的资料,需要有一个收到资料的信息回复,才能决定后面的传输速度,并决定是否重新传输遗失的资料。 上行的带宽一部分就是用来传输这些acknowledge(确认)资料的,当上行负载过大的时候,就会影响acknowledge资料的传送速度,并进而影响到下载速度。这对非对称数字环路也就是ADSL这种上行带宽远小于下载带宽的连接来说影响尤为明显。

监控带宽计算方法

视频监控存储空间大小计算方法 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下 面对视频存储空间大小与传输带宽的之间的计算方法做以介绍。 比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心); 监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/s 例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽为512Kbps,10路摄像机所需的数据传输带宽为: 512Kbps(视频格式的比特率)×10(摄像机的路数)≈5120Kbps=5Mbps(上行带宽) 即:采用CIF视频格式各地方监控所需的网络上行带宽至少为5Mbps; D1(4CIF)视频格式每路摄像头的比特率为1.5Mbps,即每路摄像头所需的数据传输 带宽为1.5Mbps,10路摄像机所需的数据传输带宽为:

存储器带宽的计算公式

、存储器带宽的计算公式:带宽=存储器时频率X存储器数据总线位数/8 如PC133 的SDRAM 的带宽如下:133Mhzx64bit/8=1064MB/s 有一些电脑发烧特别针对显卡的显存提出了一条计算公式;显存的带宽=帧缓冲带宽+贴图纹理带宽+Z 缓冲带宽,这 已经是比较专业化的算法了,孝虑到了理论和实际的结合。而本文中所涉及的公式除特别指出的外,均为理论数值 二、总线带宽的计算公式总线带宽=存储器时钟频率>存储器数据总位数/8 女口:PCI总线带宽=33MHz X 32bit/8=133MB/s,AGP X总线的带宽为66Bit/8=528MB/s 理论上来说,AGP N X的带 宽就是528/sxN 。 三、显示器带宽计算公式 显示器带宽(MHz)=(每条水平扫描上的像素个数X每帧画面的水平扫描线数)每秒钟画面的刷新率。 公式中括号里即为显示器的标称分辩率,所以在分辩率一定的情况下,当显示器的刷新有少许的提高,它的带宽就是要提高相当多。在实际中,计算分式加上了一个系数 1.35,这是因为水平扫描的图素的个数和行扫描频率要比理论值高一些,即:显示器带宽(MHz)=1.35 X(每条水平扫描线上的像素数X每帧画面的水平扫描线数)每秒钟画面的刷新率。四、A DSL的网络传送数据速度计算公式上/下行速度(Mbps)=信道数X每个信道采样值位数X调制速度 ADSL有25个上行子通道和249个下行子通道,以每赫兹传送15bits(位)数据,调制解调速为4KHz,所以ADSL的理论上行速度为25X15X4KHz=1.5Mbps ,而理论下行速度为249X15X 4KHz=14.9Mbps 。 五、硬盘容量的计算公式 非格式化硬盘容量=面数*(磁道数/面)*内圆周长*最大位密度格式化硬盘容量=面数*(磁道数/面)* (扇区数/道)*(字节数/扇区)硬盘的容量是由硬盘的磁头数、柱面数和每磁道扇区数决定的,因PC机中每扇区容量为512字节,所以硬盘容量的 具体计算公式为:总容量(字节数)=512X 磁头数X 柱面数X 每磁道扇区数。 例如,系捷ST38420A 硬盘的磁头数为16、柱面数为16383、每磁道扇区数为63,则其总容量的计算方法为: 512X16X16383X63=8455200768 字节=8455200768/1024/1024/1000=8.06GB (lKB=1024B 、1MB=1024KB 、 1GB=1024MB ))总容量(字节数)=512 X磁头数X柱面数X每磁道扇区数 其中乘以512 这个数是因为每扇区量为512字节,从上面可以看出,硬盘的容量是由硬盘的磁头、柱面数和每磁道扇区数决定的。 硬盘分区成整数的计算公式:如分nG:(n-1)*4+n*1024 ;如分10G,要输入(10-1)*4+10*1024=10276 六、其他 其他的如Athlon XP 处理器采用了PR 标称方式,以官方公开的Athlon XP 处理器标称频和实际频率的转换计算公式为准即: 显示器视频放大器通频带宽度的简称,指电子枪每秒钟在屏幕上扫过的最大总像素数,以MHz(兆赫兹)为单位。从表面上看,只需用行 频乘以水平分辨率就可以得到带宽。但实际上,电子枪在扫描时扫过水平方向上的像素点数与垂直方向上的像素点数均高于理论值,这样才能避免信号在扫描边缘衰减,使图像四周同样清晰。 水平分辨率大约为实际扫描值的80 %,垂直分辨率大约为实际扫描值的93 %,所以带宽的计算公式为:带宽=水平分辨率/0.8 X垂直分 辨率/0.93 X场频。或带宽=水平分辨率X垂直分辨率X场频X 1.344。例如:在1024 X 768@85Hz 的模式下,带宽为1024 X 768X 85 X 1.344=89.84199868mhz 。带宽的值越大,显示器性能越好。 带宽越高,惯性越小,响应速度越快,允许通过的信号频率越高,信号失真越小,它反映了显示器的解像能力。与行频相比,带宽更具有综合性也更直接的反映显示器的性能。它造成显示器性能差异的一个比较重要的因素。 cpu, 内存带宽计算公式 现在的单通道内存控制器一般都是64bit 的,8 个 2 进制bit 相当于 1 个字节,换算成字节是64/8=8 ,再乘以内存的运行频率,如果是ddr 内存就要再乘以2,因为它是以sd 内存双倍的速度传输数据的,所以 ddr266, 运行频率为133mhz ,带宽为133*2*64/8=2100mb/s=2.1gb/s ddr333, 运行频率为166mhz ,带宽为166*2*64/8=2700mb/s=2.7gb/s ddr400, 运行频率为200mhz ,带宽为200*2*64/8=3200mb/s=3.2gb/s 所谓双通道ddr ,就是芯片组可以在两个不同的数据通道上分别寻址、读取数据。这两个相互独立工作的内存通道是依附于两个独立并行工作的,位宽为64-bit 的内存控制器下,因此使普通的ddr 内存可以达到128-bit 的位宽,因此,内存带宽是单通道的两倍,因此双通道ddr266 的带宽为133*2*64/8*2=4200mb/s=4.2gb/s 双通道ddr333 的带宽为166*2*64/8*2=5400mb/s=5.4gb/s 双通道ddr400 的带宽为200*2*64/8*2=6400mb/s=6.4gb/s 关于瓶径问题: cpu与北桥芯片之间的数据传输速率称前端总线(fsb),对于intel的主流平台,其采用q/p总线技术,fsb=cpu夕濒*4,如赛扬4的外频为100,其fsb 为400,数据带宽为3.2gb/s,p4a的外频为100,其fsb为400,数据带宽为3.2gb/s,p4b的外频为133,其fsb为533,数据带宽为4.2gb/s,p4c、p4e 的外频为200,其fsb为800,数据带宽为 6.4gb/s,对于amd的主流平台,其采用ev6总线技术,fsb=cpu 外频*2,对于athlon xp,其外频为133,166,200,对应的fsb分别为266,333,400,数据带宽分别为2.1,2.7,3.2gb/s fsb与内存带宽相等的情况下,则不存在瓶径问题,如果内存带宽小于fsb则形成内存带宽瓶径,无法完全发挥系统的性能。

带宽计算公式

交换机性能参数学习总结 一、交换机背板是设计值,可以大于等于交换容量(此为达到线速交换机的一个标准)。厂家在设计的时候考虑了将来模块的升级,比如模块从开始的百兆升级到支持千兆、万兆,端口密度增加等。背板带宽一般是指模块化交换机。它决定了各模板与交换引擎间的连接带宽的最高上限。是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽。 二、交换容量(最大转发带宽、吞吐量)是指系统中用户接口之间交换数据的最大能力,用户数据的交换是由交换矩阵实现的。交换机达到线速时,交换容量等于端口数×相应端口速率×2(全双工模式)。 三、包转发率它体现了交换引擎的转发性能。标准的以太网帧尺寸在64字节到1518字节之间,在衡量交换机包转发能力时应当采用最小尺寸的包进行评价。指基于64字节分组,在单位时间内交换机转发的数据总数。当交换机达到线速时包转发率=千兆端口数量×1.488Mpps+百兆端口数量×0.1488Mpps+其余类型端口数×相应计算方法 四、转发带宽与包转发速率关系 8*(64+8+12)*2*包转发速率/1024=转发带宽 注:最大传输带宽=交换容量(交换容量用单工计算) 我的公式推算: 假设交换机有A、B、C三种接口各一个,它们的包转发率分别是X、Y、Z 64+8+12的意思为:基于64字节分组测试(以太网传输最小包长就是64字节);8以太网中,每个帧头都要加上了8个字节的前导符;帧间隙最小为12字节。再乘8是转换为Bit 为单位 所以得: 交换机转发带宽=X*8*(64+8+12)+Y*8*(64+8+12)+Z*8*(64+8+12) =(X+Y+Z)*1344 =交换机包转发率*1344 带宽计算公式说明 长空发表于2006-1-15 11:44:00 一、计算公式说明 交换机的背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽,一般的交换机的背板带宽从几Gbps到上百Gbps不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。 一般来讲,计算方法如下:

视频会议-系统带宽的计算方法

客户端带宽: 下行带宽=接受视频路数*视频码流+音频带宽 上行带宽=广播视频路数*视频码流+音频带宽 服务器带宽: 下行带宽=视频带宽+音频带宽=广播视频路数*视频码流+发言人数*音频带宽 上行带宽=视频带宽+音频带宽=(客户端数量-1)*广播视频路数*码流+(开会人数-1)*音频带宽 举例:假设20个点的会议,广播2路视频,1人发言。(视频码流150K,音频带宽24K。)计算如下: 客户端(下行)=广播视频路数*视频码流+音频带宽=2*150K+24K=324K 客户端(上行)=广播视频路数*视频码流+音频带宽 服务器(下行)=广播视频路数*视频码流+发言人数1*音频带宽=2*150K+1*24=324K 服务器(上行)=(客户端数量-1)*广播视频路数*码流+(开会人数-1)*音频带宽=19*2*150K+19*24K=6M 上面是理论值,实际会高一点,还需考虑其带宽利用率和损耗。

相关小知识: 文件大小的最小单位是byte字节,我们一般说文件都多少兆(字节) 算带宽的时候是按位算的;流量最小单位是bit 位 1Byte=8bit 在计算机网络、IDC机房中,其宽带速率的单位用bps(或b/s)表示;换算关系为:1Byte=8bit 1B=8b ---------- 1B/s=8b/s(或1Bps=8bps) 1KB=1024B ---------- 1KB/s=1024B/s 1MB=1024KB ---------- 1MB/s=1024KB/s 在实际上网应用中,下载软件时常常看到诸如下载速度显示为128KB(KB/s),103KB/s等等宽带速率大小字样,因为网络带宽单位是:位/每秒(即:bit/s),而内存等带宽单位却是:字节/每秒(即:byte/s)。我们可以按照换算公式换算一下:128KB/s=128×8(Kb/s)=1024Kb/s=1Mb/s即:128KB/s=1Mb/s 理论上:2M(即2Mb/s)宽带理论速率是:256KB/s(即2048Kb/s),实际速率大约为80--200kB/s;(其原因是受用户计算机性能、网络设备质量、资源使用情况、网络高峰期、网站服务能力、线路衰耗,信号衰减等多因素的影响而造成的)。4M(即4Mb/s)的宽带理论速率是: 512KB/s,实际速率大约为200---440kB/s。

带宽计算

从技术角度看显示器的选择 视频带宽和刷新率没有必然联系 用户关注视频带宽,主要是希望能得到较高的刷新率。比如一台203MHz视频带宽的17寸显示器一般可以提供1024x768分辨率下100Hz的刷新率,而110MHz视频带宽的则只能提供85Hz的刷新率。那么如何通过视频带宽来计算刷新率呢? 理论上这个计算公式是 公式一:理论视频带宽=水平分辨率×垂直分辨率×刷新率 但实际上,由于在实际应用中,为了避免图像边缘的信号衰减,保持图像四周清晰,电子枪的实际扫描范围是要大于分辨率尺寸的,在水平方向通常要大25%左右,垂直方向要大4-8%左右。这也就是所谓的过扫描系数。 所以,要在一定分辨率下达到一定的刷新率,实际所需要的视频带宽是要大于理论公式的那个视频带宽的。因此我们可以将过扫描系数加进这个公式里去,即: 公式二:实际视频带宽=(水平分辨率×1.25)×(垂直分辨率×1.04~1.08)×刷新率 显象管尺寸(Isize) 显象管的尺寸一般所指的是显象管的对角线的尺寸,但对于用户来说,最关心的还是他的可视面积,就是我们所能够看到的显象管的实际大小尺寸,单位都是指英寸。一般来说,15英寸显示器,其可视面积一般为13.8英寸,17英寸的显示器,其可视面积一般为16英寸,19英寸的显示器,其可视面积一般为18英寸。目前家用显示器的主流是17英寸的显示器,如果您是购买显示器主要为了诸如图形设计等应用,可以考虑选择尺寸比较大的显示器,比如19英寸的和21英寸的。 分辨率(Resolution): 是一个定义画面解析度的标准,是由每帧画面的象素来确定。例如:800×600,是指水平显示的图素个数×水平扫描线数来表示的,说得简单形象一点,就是说当在800×600分辨率下,每幅画面由水平方向上的800个点和垂直方向上的600个点组成。对于一般的应用来说,1024×768或800×600已经足够了,大家在挑选显示器的时候,如果没有特殊的要求的话,没有必要挑选分辨率很大的显示器,一是用不上,二是价格较高。一般来说15英寸的显示器的最佳分辨率是800×600,17英寸的显示器的最佳分辨率是1024×768,除非您有特殊需要,不然再高的分辨率会使您的眼睛更容易疲劳。

网络带宽和下载速度的换算方法 为什么换算要除以8

网络带宽和下载速度的换算方法为什么换算要除以8 1.计算光纤传输的真实速度 使用光纤连接网络具有传输速度快。衰减少等特点。因此很多公司的网络出口都使用光纤。一般网络服务商声称光纤的速度为“5M”,那么他的下载真实速度是多少那?我们来计算一下,一般的情况下,“5M”实际上就是5000Kbit/s(按千进位计算)这就存在一个换算的问题。Byte和bit是不同的。1Byte=8bit.而我们常说的下载速度都指的是Byte/s 因此电信所说的“5M”经过还换算后就成为了(5000/8)KByte/s=625KByte/s这样我们平时下载速度最高就是625KByte/s常常表示625KB/S在实际的情况中。理论值最高为625KB/S。那么还要排除网络损耗以及线路衰减等原因因此真正的下载速度可能还不到600KB/S 不过只要是550KB/S以上都算正常 2.计算ADSL的真实速度 ADSL是大家经常使用的上网方式。那么电信和网通声称的“512K”ADSL下载速度是多少呢? 换算方法为512Kbit/s=(512/8)KByte/s=64KByte/s,考虑线路等损耗实际的下载速度在50KB/S以上就算正常了那么“1MB”那?大家算算吧答案是125KByte/s 3.计算内网的传输速度 经常有人抱怨内网的传输的数度慢那么真实情况下的10/100MBPS网卡的速度应该有多块呢? 网卡的100Mbps同样是以bit/s来定义的所以100Mb/S=100000KByte/s=(100000/8)KByte/s=12500KByte/s 在理论上1秒钟可以传输12.5MB的速据考虑到干扰的因素每秒传输只要超过10MB就是正常了现在出现了1000Mbps的网卡那么速度就是100MB/S 特别提示: (1)关于bit(比特)/second(秒)与Byte(字节)/s(秒)的换算说明:线路单位是bps,表示bit(比特)/second(秒),注意是小写字母b;用户在网上下载时显示的速率单位往往是Byte(字节)/s(秒),注意是大写字母B。字节和比特之间的关系为1Byte=8Bits;再加上IP包头、HTTP 包头等因网络传输协议增加的传输量,显示1KByte/s下载速率时,线路实际传输速率约10kbps。例如:下载显示是50KByte/s时,实际已经达到了500Kbps的速度。切记注意单位!!! (2)用户申请的宽带业务速率指技术上所能达到的最大理论速率值,用户上网时还受到用户电脑软硬件的配置、 所浏览网站的位置、对端网站带宽等情况的影响,故用户上网时的速率通常低于理论速率值。 (3)理论上:2M(即2Mb/s)宽带理论速率是:256KB/s(即2048Kb/s),实际速率大约为103--200kB/s;(其原因是受用户计算机性能、网络设备质量、资源使用情况、网络高峰期、网站服务能力、线路衰耗,信号衰减等多因素的影响而造成的)。4M(即4Mb/s)的宽带理论速率是:512KB/s,实际速率大约为200---440kB/s。 宽带网速计算方法

相关文档
最新文档