大型舰船雷达波散射特性分析

大型舰船雷达波散射特性分析
大型舰船雷达波散射特性分析

雷达原理复习

1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。 雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。 当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。采用不同的极化可以测定目标的对称性。 任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角,仰角 在圆柱坐标系中表示为:水平距离D,方位角,高度H 目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。 相对速度的测量:观测时间越长,速度测量精度越高。 目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。 2、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备 3、雷达的工作频率:220MHZ-35GHZ。L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表,12-18GHZ;Ka代表8mm,18-27GHZ。 第二章雷达发射机 1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。 雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。 2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源 触发脉冲 脉冲调制器大功率射频振荡器收发开关 电源高压电源接收机 主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等 3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器 射频输入前级放大器中间射频放大器输出射级放大器射频输出固态频率源脉冲调制器脉冲调制器 高压电源高压电源电源 脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器 4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机 5、发射机的主要性能指标: 工作频率和瞬时带宽:雷达发射机的频率是按照雷达的用途确定的。瞬时带宽是指输出功率变化小于1bB的工作频带宽度。 输出功率:雷达发射机的输出功率直接影响雷达的威力范围以及抗干扰的能力。雷达发

雷达散射特性在军事目标伪装中的技术特点与应用

雷达散射特性在军事目标伪装中的技术特点与应用 摘要:现代军事作战越来越强调隐身性能,通过对良好的隐身材料以及雷达散射特性技术的运用来提高作战中的隐身性能,不仅能够有效保存己方有生力量,还能够在很大程度上对敌人发起致命一击,应用价值较高。随着科学技术不断向前发展,雷达散射特性研究工作已广泛展开并取得了初步阶段的研究成果,实际运用成果瞩目。因此对其在军事目标伪装中的技术特点与应用进行研究对促进我国相关研究的发展以及提高国防水平具有重要的促进作用以及现实意义。 关键词:雷达散射特性;军事目标;伪装;技术特点;有生力量 前言:战场条件下军事目标伪装以及隐身程度越高,所能够发挥的作用及取得的成果也就越瞩目。因此世界各国纷纷展开了相关领域的研究工作,取得了比较显著的研究成果,在很大程度上推动了世界军事技术发展与变革,提高了国防建设以及抗打击能力。 1 雷达散射特性概述 1.1雷达散射截面 雷达散射截面(Radar Cross section,RCS)是现代军事科技中雷达隐身技术最关键及核心概念之一,体现了军事目标在雷达波照射情况下产生的回波强度,是一种物理变量。具体定义为军事目标在单位立体角内向雷达发射及接收机处散射功率密度与入射波在军事目标上功率密度比值大小的4π倍。 1.2雷达散射特性关联性因素 1.2.1目标材料的电性能 由于军事目标伪装过程中不可避免会受到雷达波束的照射,因此为了能够有效降低雷达反射波面积及强度,采取性能良好的电性能涂刷材料。此种涂料不仅能够减少雷达波束反射强度,还能在很大程度上吸收雷达照射波,隐身伪装能力较强。但其价格较为昂贵,实际应用中经济压力较为沉重。 1.2.2军事目标几何外形 良好的几何外形设计能够将照射己方目标的雷达波束进行散射,降低伪装目标暴露程度。 1.2.3目标被雷达波照射的方位 一般来说,目标的RCS随方位角剧烈变化,同一目标,由于照射方位不同,其RCS可以相差几个数量级。

雷达散射截面计算体会

雷达散射截面计算体会 计算复杂目标的雷达散射截面(RCS)对于国防、航空、航天、气象等各项事业都具有很重要的意义。尤其在导弹系统的设计、仿真,雷达系统的设计、鉴定,无论在新装备的研制论证中,还是现预装备战术使用方案的制定等均需要复杂目标(如飞机、舰艇、导弹等)的RCS及其电磁散射特性[1]。对于提高目标自身的生存能力以及隐身技术的研究以及对于目标的雷达探测和目标识别等,都具有重要的现实意义。可节、约大量经费和时间,具有重大的意义。 使用Ansys Feko软件的一些体会通过使用Ansys Feko,我们获得了一些经验,在这里和大家一块分享一下。首先,在使用Ansys Feko软件解决问题之前,必须注意如下事项: (1)可行性估算。对于复杂目标RCS的计算,虽然理论上可以解决几乎所有问题。但是由于受到计算机配置、目标的电尺寸、求解精度等条件约束,必须先预估求解方法的可行性。譬如,在采用Feko的MOM法计算时,先估算一下,被划分网格的数目,是否满足计算机内存。 (2)尽量使用对称性来仿真。在Feko中包括了几何、电场和磁场三种对称性,可以根据问题来分析,是否采用对称性,一般如果目标本身是旋转对称的的话,就可以采用几何对称性;如果在计算过程中,目标的电场和磁场分布为对称时,就可以采用电磁场的对称性。如果充分使用对称性的话,可大大提高仿真的速度。 (3)如在采用MLFMM等算法进行仿真时,可根据实际的需要,确定收敛的精度。不一定非要采用软件的缺省值精度(千分之三)来计算。有些问题在计算过程中,采用大于千分之三的数值,就已经趋向于收敛。此时可以在CG卡中进行设置,以选择不同的残差计算精度。这样的话,可以在保证一定仿真精度的前提下,提高计算速度。同时避免了不必要的

调频连续波雷达简要分析

连续波调频雷达 雷达主要分为脉冲雷达和连续波雷达两大类。当前常用的雷达大多数是脉冲雷达,常规脉冲雷达是周期性地发射高频脉冲。而连续波雷达即是发射连续波信号的雷达,它的信号可以是单频、多频或者调频(多种调制规律如三角形、锯齿波、正弦波、噪声和双重调频或者是编码调制)的。单频连续波雷达可用于测速,多频(至少三个频点)和调频连续波雷达可用于测速和测距。它的优点是不存在距离盲点、精度高、带宽大、功率低、简单小巧,缺点是测距量程受限、存在多普勒距离耦合和收发很难完全隔离。 f 锯齿波调频 频率-时间特性曲线 调频连续波雷达参数与性能分析: 1、频率: 13.6GHz (±15MHz) (Ku 波段) 2、扫频带宽F ?: 30MHz 距离分辨率:m F C R 51030210326 8 =???==?? 3、调制周期T : ms 06.1=T 理论最大量程:Km C T R 1591031053.02 max 83=???=?=- 0 调制周期T 带宽 F t

4、实际回波最大迟延: s d m 16.0t max = 实际最大量程: Km C R d 241031008.02 t max 83max =???=?= -‘ 实际最大差拍频率: M T t F d b 53.4f max max =?=? 5、相干处理时间间隔:ms s d 9.0m 16.0ms 06.1t -T T max Coherent =-== f 锯齿波调频 频率-时间特性曲线 可采点数: 36000m 9.040T Fs N Coherent =?=?=s MHz 实际频率分辨率: Hz MHz N Fs 111136000 400f === 对应的实际距离分辨率:m F C T R 89.5103021111 1031006.120f 6 83=??????=??= ??‘ (量程越小,差拍频率越小,可获得的越大的相干处理时间,能该晒距离分辨率) 6、速度多普勒耦合: 速度较小不考虑,采用锯齿波调频信号时,一般直接将其影响加到系统误差中去。若采用三角波调频倒可以再信号处理时对其进行补偿。 0 调制周期T 带宽 F t

小入射角雷达散射截面仿真

小入射角雷达海面散射系数测量仿真 背景知识: 卫星雷达高度为500km,入射波束的中心入射角为10°,入射的波束宽度为2°*2°,入射波束绕z轴旋转。入射波的方位角(即雷达的观测角)为?,。待仿真的海面区域为36km*36km,该海面区域中心与入射波束中心重合。X为距离向,Y为方位向。已知雷达天线发送/接收的 雷达接收信号是随时间变化的,等价于随距离X的坐标变化,亦等价于随入射角θ变化。雷达水平距离分辨率?X=10m,海面剖分面元尺寸?x=1m。 在一定风速下,设定雷达观测角(在0-360°变化),显示随地距变化的σ0X,以及随入射角变化的σ0(θ),并与下(1)式在θ‘=波束入射角的解析计算结果进行对比。

主要步骤: 1.根据海浪谱生成海面18km*18km区域中每个海面面元(3m*3m)的高度与斜率。 参考黄萍硕士论文《海洋波谱议海浪探测机理及仿真研究》5.1节,2.4节,5.2.1节。 2.计算每个雷达分辨单元的等效散射系数?0X。 ?0X= G2(?)?0?,θd?β?/2 ?β?/2 G2(?)d? β?/2 ?β?/2 式中?0?,θ为某个海面面元对应的散射系数。 ?0θ,?=ρπsec4θ′p tanθ′,0 (1) 式中θ′为海面面元的局部入射角,ρ=|R(0)|2为衍射修改的垂直入射反射率, 仿真平台:Matlab 分组与评分说明: 1、共分6组,每组人数为3-4人左右。 2、每组推举一位同学陈述仿真思路,并按老师要求在课堂上演示中间的仿真结果和最后的 仿真结果。 3、老师为每个小组打分A,每个小组需提供小组成员总数n和每位成员的分数权值q,小 组成员的得分为A*n*q

目标识别技术

目标识别技术 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

丛状遮障的雷达散射特性分析

万方数据

第5期谢卫,等:丛状遮障的雷达散射特性分析509 电磁散射计算有近似计算和数值计算2种方法,前 者的适用性取决于目标符合近似方法的程度,而后 者则要受到计算机计算能力以及内存空间的限制。 对于遮障这种结构随机且拌有大量内部镂空区域的 目标,近似计算方法并不适用,只能采取数值计算的 方法‘5?引。 目标散射的数值计算方法主要有矩量法、快速 多极子法、时域有限差分法等等。相对而言,时域有 限差分法的应用更为广泛,并且有大量成熟的商用 软件可以利用。即便这样,要对完整的遮障样品进行 计算仍然是不可能的,原因在于计算机内存空间不够。目前比较通行的应对措施是利用周期性的边界条件,这样就可以通过计算一个周期单元而得知多个周期单元所组成的样品的散射特性[7’8]。图1给出的是一种二维周期结构的示意图,其中,粗线标记的是一个结构单元。毫无疑问,周期边界条件的引入大大降低了散射计算对计算机性能的要求,是电磁散射计算技术上的重大突破。事实上这种方法在大量微波器件的散射分析中取得了成功[3]。就遮障而言,从制备工艺的角度看,确实也存在一定的周期性,因为整片的遮障往往可以用相同的小片遮障拼接而成。不过,即便存在周期性,遮障的复杂结构是否能够用简单的周期结构就可以描述也还是有疑问的。实际的遮障总是含有大量的小饰物,它们随机取向分布,如图2所示。这种结构上的随机性是图1那样的周期结构所不能描述的。 图1二维的周期结构 Fig.1Sketchofthetwo—dimensionperiodicstructure 2兼具随机性和周期性的遮障几何模型 简单的周期结构不能完全反映遮障的结构特征,而放弃周期性边界条件数值计算将难以进行,这就是目前遮障散射行为计算中所面临的问题。笔者认为,此问题可以解决。因为周期结构本身并不要求 图2遮障样品照片 Fig.2Photoofthescreensample 结构的低维性和简单性,由复杂的结构单元周期性地排列所形成的目标,其散射行为同样可以应用周期性边界条件进行计算[9’101。按照这样的观点,结构的随机性和周期性可以并存于遮障的几何模型:通过结构单元自身的内部结构来反映遮障的结构随机性,而结构单元的周期性组合反映遮障的周期性。这样的处理,尽管结构单元的自身结构变得复杂,但毕竟空间尺度有限,仍然可以进行数值计算。而周期性的安排使得对结构单元的计算能够揭示大尺寸遮障的散射信息。 接下来的问题是如何构造结构单元,使其反映出遮障的结构随机性。考虑到实际的遮障样品总是包含大量小的饰物,其随机性主要通过这些饰物的随机分布来体现,结构单元的几何模型可以这样建立:先建立遮障中饰物的几何模型(通常是片状或针状),而后大量复制这些饰物模型,再随机调整饰物的坐标和取向。在这里,结构单元的尺寸和单元内饰物的数量需要仔细权衡。结构单元尺寸越小,计算就越简单易行。然而周期性边界条件的应用并不直接使得结构单元的散射行为就代表整个模型的散射,所计算的结构单元的散射行为是单元处于整个结构中的散射行为。从这个意义上讲,结构单元的尺寸越大,结果越能反映实际的遮障。在兼顾计算机能力的前提下,认为结构单元的尺寸应大于雷达波长的10倍。至于结构单元内饰物的数量,一方面饰物自身的尺寸应与实际相吻合,另一方面饰物的数量要足够多以反映出结构的随机性。图3是为丛状遮障建立的结构单元模型,图中片状的散射体就是模型中的饰物,具体尺寸为o.01cm×o.2cm×3cm,模型中总共有350个饰物,这些饰物随机分布在尺寸为30cm×30cm×3cm的长方体空间,而这个包含饰 物的空间就是我们的周期结构单元。图4是利用这 万方数据

雷达目标宽带散射特性的 GGO 快速分析方法

收稿日期:2014-08-12 网络出版时间:2015-04-14 基金项目:国家自然科学基金资助项目(61201023);中央高校基本科研业务费专项资金资助项目(K 5051302021) 作者简介:陈文锋(1982-),男,西安电子科技大学博士研究生,E -mail :laker -cwf @163.com . 网络出版地址:http ://w w w .cnki .net /kcms /detail /61.1076.T N .20150414.2046.008.html doi :10.3969/j .issn .1001-2400.2016.01.011 雷达目标宽带散射特性的GGO快速分析方法 陈文锋1,2,龚书喜1,董海林1,张鹏飞1,赵 博1 (1.西安电子科技大学天线与微波技术重点实验室,陕西西安 710071; 2.中国电子科技集团公司第三十六研究所,浙江嘉兴 314033) 摘要:文中将降维技术应用到传统矩量法中,并结合梅利逼近对目标二维雷达散射截面进行快速分析.针 对角域和频域中目标表面电流的二维展开式,Gauss -Green -Ostrogradsky (GGO )降维技术将问题转化为角 域(或频域)的一元函数及其各阶导数的叠加,有效避免了逼近函数二维展开系数的求解过程,并通过控制 导数的阶数调整计算精度,从而快速有效获得雷达目标二维散射特性.与二维梅利逼近方法相比,该方法 在不失精度下更易于实现编程计算,内存需求和求解时间仅为原始算法的1/6和1/3. 关键词:矩量法;雷达散射截面;梅利逼近;降维技术 中图分类号:T N 802.1 文献标识码:A 文章编号:1001-2400(2016)01-0060-06 Fast analysis of wide -band scattering from radar targets using the GGO method C H EN W en f eng 1, 2,GONG Shuxi 1,DONG H ailin 1,ZH A NG Pen gf ei 1,ZH A O Bo 1 (1.Science and Technology on Antenna and Microwave Lab .,Xidian Univ .,Xi 'an 710071,China ;2.No .36Research Institute of CETC ,Jiaxing 314033,China)Abstract : The dimensions reducing technique combined with the Maehly approximation is applied to the Method of Moment (MoM )for analysis of the two -dimensional radar cross section (RCS )of the target . The Gauss -Green -Ostrogradsky (GGO )algorithm is utilized to transform the two -dimensional expression for the surface currents in both spatial and frequency domains to one dimension and its derivatives .This p rocedure avoids the solution of expansion coefficients in the two -dimensional expression and makes the accuracy adjustable by the order of derivatives .Compared with the two -dimensional Maehly approximation method ,the proposed scheme can acquire RCS data efficiently with good accuracy and reduce procedural complexity .Finally ,numerical results show that memory requirement and calculation time are about 1/6and 1/3of what are needed in the original method . Key Words : method of moment ;radar cross section ;M aehly approximation ;reduced dimensions technique 在研究电磁场边值问题的目标散射时,雷达散射截面(Radar Cross Section ,RCS )和角度与频率密切相关,这使得在进行数值分析时,需要分别或同时在角域和频域上求解感应电流的分布矩阵方程.应用传统的扫角与扫频法计算时,必须用非常小的角度和频率间隔才能获得精确的计算结果,从而在整个角域和频域内增加了矩阵方程求解量,大量占用了计算时间和内存.因此,在分析宽角和宽带响应时,提高数值计算方法的效率就更为重要. 传统的矩量法(M ethod of M oment ,M oM )[1]是一种有效且高精度的数值方法,但长期受限于计算机的2016年2月 第43卷 第1期 西安电子科技大学学报(自然科学版)JOURNAL OF XIDIAN UNIVERSITY Feb .2016Vol .43 No .1

雷达截面积(RCS)

雷达有效探测距离和RCS的四次方根呈正比关系。 例如,探测距离缩短一半,RCS就需要减少为原来的1/16 比如某型雷达对3平米RCS战斗机目标的探测距离是200公里 那么对0.065平米RCS探测距离为76.7公里 四次方率是个理想公式,是仅有很低白噪声干扰情况下使用功率门限过滤时的探测距离。实际上在战场ECM环境下四次方率用于描述对RCS<0.1M^2的目标不是很合适,探测距离随目标RCS减小而缩短的速度比理论上要快。 四次方关系是由基本雷达距离公式得出的,是雷达制定距离性能的重要参照之一。局限性是仅考虑了雷达机内平均噪声电平,实际使用中要加入具体的修正,以及虚警率等必须注意的问题。 专用的连续波发射器可以用到占空比100%,因为发射器不考虑接收,不需要作1/2时间收,1/2时间发。机载雷达用的准连续波实际是高脉冲重复频率波型,占空比只能接近50%,如狂风ADV用的AI24,其远距探测即使用高占空比的准连续波。 E=[P*G*RCS*L*T]/(4*pi^3*R^4)] E:接收能量 P:发射机功率 G:雷达天线增益 RCS:目标雷达截面积 L:信号波长 T:目标被照射时间 R:到目标的距离 相控阵指的是雷达的天线形式,以相位或频率扫描的电扫描天线代替传统的机械扫描天线。连续波、单脉冲等则代表雷达的工作体制,代表雷达以何种方式工作,和天线形式无直接联系。 占空比一般由雷达类型决定,收发共用同一天线的脉冲雷达占空比在50%以下,收、发天线分置的连续波雷达占空比就是100%。战斗机雷达和大部分搜索雷达为收发共用的脉冲工作方式,不论采用机械扫描天线还是无、有源天线,占空比均小于50%,大的接近50%,小的只有千分之几。 美国F-22隐身战斗机进驻日本冲绳,隐身轰炸机B-2也可驻扎关岛。对隐身飞机作战问题的热烈讨论,带热了一个词——飞机雷达截面积。 雷达截面积是一个人为的参数,牵涉因素很多,而且因为它关系到飞机作战效能,因此所有国家都不会公开自己飞机的精确数值,或发表一些模糊的误导宣传值,所以人们从报刊或正式文献上看到的数据差别很大。本文将粗略地谈一谈有关这个参数的问题。 雷达截面积(RCS)是什么参数? 隐身飞机要尽量减少其向外辐射并能为外界感知的特征信息,所以隐身技术应包括雷达隐身、光学隐身(可见光、激光和红外线等)和声学隐身等方面。最被重视的是雷达隐身,因为雷达是目前远距离发现飞机的主要设备。雷达对不同飞机的发现距离不同,除雷达本身及环境因素外,与飞机关系很大。而飞机外形十分复杂,大小不一。为便于对比,所以建立了一个人为的参数,称为“雷达截面积”(Radar Cross Section简称RCS),也可称为雷达切面。本来测量或计算出的飞机对雷达波的反射强弱是用电磁学单位,即分贝平方米(dbsm)表示,有时只用分贝(db)表示。为了让人更好理解,很多资料改用平方米表示。有人通俗解释为,它表示飞机对雷达波的反射能力相当于多少平方米面积的垂直金属平板。这个解释是否精确存在争议。至于分贝平方米与平方米的关系,有一个通用的数学公式:分贝平方米=10×log平方米。 外界雷达可以从飞机四面八方照射,方位有360°,俯仰照射也是360°。不同角度照射时,飞机的RCS都不同。如果每1°测量一次,飞机的RCS就应该有360×360即129600个数值。但到目前为止,似乎还没有人进行过这样精密的测试或计算,一般只有平面的(俯仰照射角可限制在0~30°之内)数值。不同俯仰角照射数据更少,往往只限于飞机正上方或正下方。 平面的RCS值一般又分前方(或称迎头)、侧方和后方(或称后向)三大类。而前方的RCS可以是真正0°的数值或前方±30°、±45°的平均值。同一架飞机这三种算法所得结果差别很大。一般资料往往不给出是什么计算条件下的数值,但多指后两种。侧方和后方RCS 值也是同样情况。有些资料出于宣传目的,只用某一方向1°的RCS值。从本文后面给出的实测数据就可以看出其中奥妙。 飞机RCS与雷达波长有一定关系。同一架飞机,对于波长较长的雷达,其RCS值就会稍大一些,但两者并不一定是线性关系。例如某型飞机对X波段雷达(波长3.2厘米)水平极化,前方±45°平均RCS是0.4平方米,而对L波段雷达(波长23厘米),RCS增大到0.8平方米。

FEKO在雷达散射截面计算中的应用

数字时代■贾云峰 现代战争首先是电子高科技的对抗,而雷达探测与隐身技术又是其主要的对抗领域之一。目标的雷达散射截面(RCS)是评判目标电磁隐身特性的一个重要指标,快速精确的目标RCS分析对于隐身设计人员具有重要的指导意义,尤其是飞机、导弹、舰船等的雷达目标特性分析引起了世界各国的高度重视。 根据问题的类型,RCS有以下不同工况: 1、单站 VS 双站:RCS分为单站和双站两种类型,所谓单站RCS即为发射机与接收机为同一部雷达,双站RCS则为一发一收,分别用不同的雷达。 2、极化:其含义为入射电磁波的电场方向与扫描面的夹角。根据扫描面的不同,通常分为水平极化和垂直极化,此处垂直和水平的含义都是相对于扫描面而言。 3、电小和电大:以入射电磁波波长计算的模型尺度称为电尺寸。当模型的电尺寸较小时,通常属于电小问题,反之属于电大问题。飞机、导弹、舰船等军用目标,它们的电尺寸往往非常巨大,因此分析其电磁散射特性对一般软件是一个巨大的挑战。 为了计算RCS,发展了一系列的计算方法,通常可分为:解析方法:典型的如MIE级数方法;积分方程方法:矩量法(MoM)及其快速算法(FMM,MLFMM等);微分方程方法:有限元(FEM)、时域有限差分(FDTD);高频方法:物理光学(PO)、几何光学(GO)、几何绕射理论(UTD)等。 解析方法只能处理极少数规则问题;传统的积分方程方法和微分方程方法可处理电小和中等电尺寸的问题,其中对于RCS问题,MOM及其快速算法精度高、未知量少,成为这一类方法的首选;高频方法适用于电尺寸巨大的问题,以有限的计算资源换取对工程设计有指导意义的结果。各类方法各有利弊,适用对象不同,需要加以灵活运用、组合运用。 FEKO简介 FEKO是针对天线与布局、RCS分析而开发的专业电磁场分析软件,从严格的电磁场积分方程出发,以经典的矩量法(MOM:Method Of Moment)为基础,采用了多层快速多级子(MLFMM:Multi-Level Fast Multipole Method)算法在保持精度的前提下大大提高了计算效率,并将矩量法与经典的高频分析方法(物理光学PO:Physical Optics,一致性绕射理论UTD:Uniform Theory of Diffraction)完美结合,从而非常适合于分析开域辐射、雷达散射截面(RCS)领域的各类电磁场问题。此外,Feko提供了几何光学法(GO:Geometry Optics),适合处理电大尺寸介质结构(典型的如简单介质模型的RCS、天线罩、介质透镜)问题。 FEKO的技术特点和主要功能主要表现为: 1、不同的问题有不同的方法:FEKO提供多种核心算法,矩量法(MoM)、多层快速多极子方法(MLFMM)、物理光学法(PO)、一致性绕射理论(UTD)、有限元(FEM)、平面多层介质的格林函数,以及它们的混合算法来高效处理各类不同的问题。其中MLFMM、MoM/PO、MoM/UTD从算法上提供了电大尺寸问题求解的途径。 2、FEKO提供多种优化算法(诸如单纯形法、共扼梯度法、准牛顿法、遗传算法、粒子群法等),可针对增益、隔离、RCS、辐射方向图、阻抗系数、反射系数、近场值等进行优化分析,达到分析设计一体化。 3、FEKO独具特色的自适应频率采样(AFS) FEKO 在雷达散射截面计算中的应用 2008年1月?中国制造业信息化?59

雷达目标识别

目标识别技术 2009-11-27 20:56:41| 分类:我的学习笔记| 标签:|字号大中小订阅 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络 模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标 识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反 映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减 速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别 提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段

连续波雷达及信号处理技术探讨

连续波雷达及信号处理技术探讨 摘要随着社会的进步和科学技术的发展,雷达的信号处理技术也在不断更新升级。近年来连续波雷达的使用在不断增多,因其自身具有发射功率小、隐蔽性强以及抗反辐射导弹等特点,被广泛应用于各种军事以及民用雷达之中。本文就针对连续波雷达进行概述,然后针对其信号处理方面的技术进行探讨,希望能给有关人士以借鉴。 关键词连续波;雷达信号;处理技术 前言 在我们现阶段所有雷达的使用中,主要以连续波和脉冲多普雷体制的雷达数量最多。连续波雷达具有十分明显的特点,发射功率小,抗干扰能力强以及抗反辐射导弹能力强,有了这些特点,就会使得连续波雷达不仅具有很大的作用距离,而且信号不容易被截获和干扰。不仅如此,连续波雷达还具有体积小、重量轻以及高机动性灯优势,明显的增强雷达的使用范围,也能够更好地适应各种不良环境。就现阶段而言,连续波雷达一般是用于直升机载预警、地面战场侦察以及炮瞄装备上,当然,民用方面的应用也很广泛,这里就不一一赘述了。 1 连续波雷达的定义和特点 所谓连续波雷达,顾名思义,就是可以对电磁波进行连续发射,然后根据信号发射形式的差异其分为两大类,分别是非调质单频与调频这两种。连续波雷达出现的非常早,早在1924年,英国就可是对连续波调频测距等方面进行细致的分析,然后对相关的电离层进行观测。但是在应用方面,连续波雷达最早被用于二战中,当时主要承担着飞机侦察以及对面观测这两方面的任务。但是在当时大规模使用后,发现雷达经常会出现手法隔离的情况,导致工作效果很不理想,然后又通过大量的研究,最终通过收发开关的出现解决了这个问题。随着科技不断发展,现在已经可以仅通过一天线就可以实现对信号的接收和发送,并且具有好的效果。 在连续波雷达的整个使用过程中,不需要高压的输入,也不需要点火,整个过程是通过多元化的方式进行信号的调制,大大增强了信号的稳定性以及雷达的信号处理能力。因此,在相同条件下,连续波雷达无疑受到更多的青睐,在世界上都得到了广泛的应用。而且,连续波雷达还具有体积小、重量轻、线体传输损耗低、使用方便等特点,这些特点使得连续波雷达的接收机可以使用较窄的宽带脉冲,有效了解决了杂波出现的问题,大大提高了雷达的抗干扰能力。连续波雷达对速度以及距离进行测量的过程中,具有十分高的精准度,而且几乎不受外因的干扰,具有十分优越的性能。连续波雷达的特点如下: 首先是运行频率低。运行频率低的这个特点,使得这种雷达广泛应用于军事中,对于侦察工作十分有利。而且在对信号进行接收以后,可以用连续波雷达对

雷达目标识别发展趋势

雷达目标识别发展趋势 雷达具备目标识别功能是智能化的表现,不妨参照人的认知过程,预测雷达目标识别技术的发展趋势: (1)综合目标识别 用于目标识别的雷达必将具备测量多种目标特征的手段,综合多种特征进行目标识别。我们人类认知某一事物时,可以通过观察、触摸、听、闻、尝,甚至做实验的方法认知,手段可谓丰富,确保了认知的正确性。 目标特征测量的每种手段会越来越精确,就如同弱视的人看东西,肯定没有正常人看得清楚,也就不能认知目标。 识别结果反馈给目标特征测量,使目标特征测量成为具有先验信息的测量,特征测量精度会有所提高,识别的准确程度也会相应提高。 雷达具备同时识别目标和背景的功能。人类在观察事物的时候,不仅看到了事物的本身,也看到了事物所处的环境。现有的雷达大多通过杂波抑制、干扰抑制等方法剔除了干扰和杂波,未来的雷达系统需要具备识别目标所处背景的能力,这些背景信息在战时也是有用的信息。 雷达具备自适应多层次综合目标识别能力。用于目标识别的雷达虽然需要具备测量多种目标特征的手段,但识别目标时不一定需要综合所有的特征,这一方面是因为雷达系统资源不允许,另一方面也是因为没有必要精确识别所有的目标。比如司机在开车时,视野中有很多目标,首先要评价哪几个目标有威胁,再粗分类一下,是行人还是汽车,最后再重点关注一下靠得太近、速度太快的是行人中的小孩子还是汽车中的大卡车。 (2)自学习功能 雷达在设计、实现、装备的过程中,即具备了设计师的基因,但除了优秀的基因之外,雷达还需要具有学习功能,才能在实战应用中逐渐成熟。 首先,要具有正确的学习方法,这是设计师赋予的。对于实际环境,雷达目标识别系统应该知道如何更新目标特征库、如何调整目标识别算法、如何发挥更好的识别性能。 其次,要人工辅助雷达目标识别系统进行学习,这就如同老师和学生的关系。在目标识别系统学习时,雷达观测已知类型的合作目标,雷达操作员为目标识别系统指出目标的类型,目标识别系统进行学习。同时还可以人为的创造复杂的电磁环境,使目标识别系统能更好地适应环境。 (3)多传感器融合识别 多传感器的融合识别必定会提高识别性能,这是毋容置疑的。这就好比大家坐下来一起讨论问题,总能讨论出一个好的结果,至少比一个人说的话更可信。但又不能是通过投票的方式,专家的话肯定比门外汉更有说服力。多传感器融合识别需要具备双向作用的能力。 并不是给出融合识别的结果就结束了,而是要利用融合识别的结果反过来提高各个传感器的识别性能,这才是融合识别的根本目的所在。反向作用在一定程度上降低了人工辅助来训练目标识别系统的必要性,也减少了分别进行目标识别试验的总成本。

雷达目标识别技术

雷达目标识别技术述评 孙文峰 (空军雷达学院重点实验室,湖北武汉430010) 摘要:首先对雷达目标识别研究领域已经取得的成果和存在的问题进行简单的回顾,然后结合对空警戒雷达,阐明低分辨雷达目标识别研究的具体思路。 关键词:雷达目标识别;低分辨雷达 Review on Radar Target Recognition SUN Wen-feng (Key laboratory, Wuhan Radar Academy, Wuhan 430010, China)Abstract: The acquired productions and existent problems of radar target recognition are reviewed simply, then the specific considerations of target recognition with low resolution radar are illustrated connect integrating with air defense warning radar in active service. Key words: radar target recognition; low resolution radar 1.引言 雷达目标识别(RTR—Radar Target Recognition)是指利用雷达对单个目标或目标群进行探测,对所获取的信息进行分析,从而确定目标的种类、型号等属性的技术。1958年,D.K.Barton(美国)通过精密跟踪雷达回波信号分析出前苏联人造卫星的外形和简单结构,如果将它作为RTR研究的起点,RTR至今已走过了四十多年的历程。目前,经过国内外同行的不懈努力,应该说RTR已经在目标特征信号的分析和测量、雷达目标成像与特征抽取、特征空间变换、目标模式分类、目标识别算法的实现技术等众多领域都取得了不同程度的突破,这些成果的取得使人们有理由相信RTR是未来新体制雷达的一项必备功能。目前,RTR技术已成功应用于星载或机载合成孔径雷达(SAR—Synthetic Aperture Radar)地面侦察、毫米波雷达精确制导等方面。但是,RTR还远未形成完整的理论体系,现有的R TR 系统在功能上都存在一定的局限性,其主要原因是由于目标类型和雷达体制的多样化以及所处环境的极端复杂性。本文首先对RTR研究领域已经取得的成果和存在的问题进行简单的回顾,最后结合对空警戒雷达,阐明了低分辨雷达目标识别研究的具体思路。 2.雷达目标识别技术的回顾与展望 雷达目标识别研究的主体有三个,即雷达、目标及其所处的电磁环境。其中任何一个主体发生改变都会影响RTR系统的性能,甚至可能使系统完全失效,即RTR研究实际上是要找到一种无穷维空间与有限类目标属性之间的映射。一个成功的RTR系统必定是考虑到了目标、雷达及其所处电磁环境的主要可变因素。就目标而言主要有目标的物理结构、目标相对于雷达的姿态及运动参数、目标内部的运动(如螺旋桨等)、目标的编队形式、战术使用特点等等;就雷达而言主要有工作频率、带宽、脉冲重复频率(PRF)、天线方向图、天线的扫描周期等等;环境因素主要有各种噪声(如内部噪声和环境噪声)、杂波(如地杂波、海杂波和气象杂波)和人为干扰等。在研制RTR系统时必须综合考虑这些因素,抽取与目标属性有关的特征,努力消除与目标属性无关的各种不确定因素的影响。

连续波雷达测速测距原理

连续波雷达测速测距原理 一. 设计要求 1、当测速精度达到s ,根据芯片指标和设计要求请设计三角调频波的调制周期和信号采样率; 2、若调频信号带宽为50MHz ,载频24GHz ,三个目标距离分别为300,306,315(m),速度分别为20,40,-35(m/s),请用matlab 对算法进行仿真。 二. 实验原理和内容 1. 多普勒测速原理 依据芯片参数,发射频率为24GHz ,由上式可以得出,当测速精度达到s 时,三角调频波的调制周期可以计算得,T= 信号的采样率,根据发射频率及采样定理可设fs=96GHz 。 2.连续波雷达测距基本原理 设天线发射的连续波信号为:① 则接收的信号为:② 若目标距离与时间关系为:③ ) 2cos()(000?π+=t f t x f T ] )(2cos[)(000 ?π+-=r f R t t f t x t v R t R r -=0)(图 频域测速原理 N f f f f s d m d 2/||max max =-=?max max /2/4/4r d s v f f N T λλλ?=?==

则延迟时间应满足以下关系:④ 将④代入②中得到 其中 2 f c v f r d = 根据上图可以得到,当得到 t ?,便可以实现测距,要想得到 t ?,就必须测得fd 。 已知三个目标距离分别为300,306,315(m),速度分别为20,40,-35(m/s),则可以通过:③ ④ 分别计算出向三个目标发出去信号,由目标反射回来的信号相对发射信号的延迟时间。 02() r r r t R v t c v =--} )](2 [2cos{)(0000?π+---=t v R v c t f t x r r f R ] 22)(2cos[00 000?ππ+-+=c R f t f f d t v R t R r -=0)(02()r r r t R v t c v =--

相关文档
最新文档