01背包问题

01背包问题
01背包问题

01背包问题

一、问题描述

一个正在抢劫商店的小偷发现了n个商品,第i个商品价值Vi美元,重Wi磅,Vi和Wi都是整数;这个小偷希望拿走价值尽量高的商品,但他的背包最多能容纳W磅的商品,W是一个整数。

我们称这个问题是01背包问题,因为对每个商品,小偷要么把它完整拿走,要么把它留下;他不能只拿走一个商品的一部分,或者把一个商品拿走多次。

二、解决方案

背包问题作为NP完全问题,暂时不存在多项式时间算法

1.动态规划

2.回溯法

3.分支界限法

三、方案详解

3.1动态规划

动态规划(Dynamic programming,DP)是一种在数学、计算机科学和经济学中使

用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。

概述:

动态规划在查找有很多重叠子问题的情况的最优解时有效。它将问题重新组合成子问题。为了避免多次解决这些子问题,它们的结果都逐渐被计算并被保存,从简单的问题直到整个问题都被解决。因此,动态规划保存递归时的结果,因而不会在解决同样的问题时花费时间。

动态规划只能应用于有最优子结构的问题。最优子结构的意思是局部最优解能决定全局最优解(对有些问题这个要求并不能完全满足,故有时需要引入一定的近似)。简单地说,问题能够分解成子问题来解决。

特征:

1、问题存在最优子结构

2、问题的最优解需要在子问题中作出选择

3、通过查表解决重叠子问题,避免重复计算

动态规划的设计:

1.刻画一个最优解的结构特征;

2.递归地定义最优解的值;

3.计算最优解的值,通常采用自底向上的方法;

4.利用计算的信息构造一个最优解。

问题分析

最优子结构:

(1)问题分析:令f(i,j)表示在前i(0≤i

j(0≤j≤W)的背包中的物品的最大价值,则可以得到如下的动态规划函数:

(2)f[i,j]=0(i=0 OR j=0)

f[i,j]=f[i-1,j] j

f[i,j]=max{f[i-1,j] ,f[i-1,j-wi] +vi } j>wi ②

①式表明:如果第i个物品的重量大于背包的容量,则装人前i个物品得

到的最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;②式表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-wi的背包中的价值加上第i个物品的价值vi;

(b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个

物品装入容量为j的背包中所取得的价值。显然,取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解.

时间复杂度为O(n*c),c为背包容量

伪代码:

f[0,j]=0

For i=1 to n

For j=0 to W

f[i,j]=max{f[i-1,j] ,f[i-1,j-wi] +vi }

return F[n,W]

问题的解为f[n,W]

代码实现:

for(i=0;i

for(j=0;j<=W;j++)//j相当于上面说的W-wi

if(j>=w[i])

f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+val[i]);//放还是不放的选择

else f[i][j]=f[i-1][j]

C代码:

#include

# include

# define max(a,b) a>b?a:b

using namespace std;

int main()

int dp[101][1001],m,T,w[101],val[101],i,j;

cin>>T>>m;

for(i=1;i<=m;i++)

cin>>w[i]>>val[i];

memset(dp,0,sizeof(dp));

for(i=1;i<=m;i++)

for(j=0;j<=T;j++)//j相当于上面说的V-c[i]

{

if(j>=w[i])

dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+val[i]);//放还是不放的选择else dp[i][j]=dp[i-1][j];

}

cout<

return 0;

}

实例解析:

背包:容量10

3个物品:W1=3,V1=4

W2=4,V2=5

W3=5,V3=6

参考:

https://www.360docs.net/doc/6615932514.html,/link?url=4f7wckWrL4AljAhbmwEJDlmPbIwaR5XyQSRGAA6gLppo-M oX_OEvrXREU1ohKReJhvrJWksG1HwLDfAhkyNp1nEhxvdwduxApQ8mAqvQHJ7

3.2回溯法

回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

基本思想

在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束;

时间复杂度O(2^n)

问题分析

用回溯法实现就是要枚举其所有的解空间。

具体方法如下:

①对每一个物品i,对该物品只有选与不选两种决策,有n个物品,可以形成

一棵深度为n的决策树;

②遍历这棵树,以枚举所以情况,最后进行判断,若重量不超过背包容量,且总价

值最大,该方案就是最优的。

优化方法:

剪枝一:可以进行剪枝,因为很多情况是没有意义的,当重量大于背包的容量时,没有必要对剩下的物品进行决策;

剪枝二、将剩下的所有物品都选取,其总价值也没有目前所求得的总价值还大的话,就可以返回;

递归法:

#include

int c; //背包容量

int n; //物品个数

int x[100]; //是否选取物品,为0或1

int weight[100];

int price[100];

int bp; //最大价值

int bA[100]; //最优解

int times=0; //节点访问次数

int currentWeight=0; //当前总重量

int currentPrice=0; //当前总价值

void print(); //输出每条有效路径及最大价值

void Backtrack(int i)

{

times+=1;

if(i>n)

{

print();

if(currentPrice>bp)

{

bp=currentPrice;

for(int j=1;j<=n;j++)

bA[j]=x[j];

}

return;

}

if(currentWeight+weight[i]<=c)

{//将物品i放入背包,搜索左子树

x[i]=1;

currentWeight+=weight[i];

currentPrice+=price[i];

Backtrack(i+1);

//完成上面的递归,返回上一节点,搜索右子树,及不选物品i currentWeight-=weight[i];

currentPrice-=price[i];

}

x[i]=0;

Backtrack(i+1);

}

void print()

{

int i;

printf("路径为:{");

for(i=1;i

printf("%d,",x[i]);

printf("%d} 价值为%d\n",x[i],currentPrice);

}

int main()

{

int i;

printf("请输入物品数量:");

scanf("%d",&n);

printf("请输入背包容量:");

scanf("%d",&c);

printf("请输入物品重量:");

for(i=1;i<=n;i++)

scanf("%d",&weight[i]);

printf("请输入物品价值:");

for(i=1;i<=n;i++)

scanf("%d",&price[i]);

Backtrack(1);

printf("最优解是:{");

for(i=1;i

printf("%d,",bA[i]);

printf("%d} 价值为%d\n",bA[i],bp);

printf("总共访问节点数为:%d",times);

return 0;

}

总结

递归的思想:

(1)考虑物品i被选择,这种可能性仅当包含它不超过背包总重量的限制才是可行的;选中后,继续递归去考虑其他物品的选择;

(2)考虑物品i不被选择,这种可能性仅当不包含物品i也有可能找到价值更大的方案;

3.3分支界限法

分支限界法按广度优先策略遍历问题的解空间树, 在遍历过程中, 对已经处理的每一个结点根据限界函数估算目标函数的可能取值, 从中选取使目标函数取得极值

的结点优先进行广度优先搜索, 从而不断调整搜索方向, 尽快找到问题的解。因为限界函数常常是基于问题的目标函数而确定的, 所以, 分支限界法适用于求解最优化问题;并且包含回溯和各种剪枝,性能优于回溯法。

基本思想:

给定n 种物品和一个容量为C 的背包, 物品i 的重量是W i, 其价值为V i, 0/ 1 背包问题是如何选择装入背包的物品(物品不可分割) , 使得装入背包中物品的总价值最大,一般情况下, 解空间树中第i 层的每个结点, 都代表了对物品1~i 做出的某种特定选择, 这个特定选择由从根结点到该结点的路径唯一确定: 左分支表示装入物品, 右分支表示不装入物品。对于第i 层的某个结点, 假设背包中已装入物品的重量是w, 获得的价值是v, 计算该结点的目标函数上界的一个简单方法是把已经装入背包中的物品取得的价值v, 加上背包剩余容量W - w 与剩下物品的最大单位重量价值vi + 1/ wi + 1的积,于是,得到限界函数:

u b = v + ( W - w) × ( v【i + 1】/ w【i + 1】 ) 根据限界函数确定目标函数的界[ down , up],然后, 按照广度优先策略遍历问题的空间树。

时间复杂度O(2^n)

思想

借助大顶堆来实现优先队列,构造大顶堆(按优先队列中所能达到的最大价值来构造这个大顶堆),实现对堆中元素的插入和删除;在回溯法的基础上改进,首先对物品按单位权重递减排序,堆中存放的是每一个当前物品所能达到的情况:

1. 将第一个单位权重最大的物品插入大顶堆中,并用回溯法中计算边界条件的函数计算出该物品放入背包时所能达到的最大价值,用这一队列最后一个结点记录下当前得到的队列的情况,它可以得到的最大值(double型),用它该取的下一层次号,所达到的最大价值,所占用背包的体积;

2.如果物品层次号(从0开始)小于总个数,取出堆顶元素,对将要遍历到的这一层次上的物品判断选择取与不取的情况.若已经占用的体积+该物品的体积不超过背包体积,则该物品可以放入,即可以是左儿子结点,isLchild=true,将这一结点加入优先队列并放入大顶堆中;若右子树可能存在最优解,isLchild=false,即不放该物品时可能达到的最大价值(double型变量)>=放入该物品时当前背包达到的最优解,则也将这一结点加入优先队列中并放入大顶堆中;

3.重复步骤2.

实现代码:

#include

#include

using namespace std;

const int MAXN=0x0fffff;

typedef struct Node

{

struct Node * par;

bool isLchild;

};

typedef struct HeapNode

{

struct Node * par;//指向此优先队列中所包涵的所有结点

double cp,cw; //当前达到的价值,重量

double up; //此优先队列所能达到的最大价值

int level; //它所处的层次

}*HP;

typedef struct Heap

{

int hsize;//堆中元素个数

HeapNode * heapnodes;//堆中存放可能的解

}*BigHeap; //用大顶堆来实现的优先队列

BigHeap bigHeap;

HeapNode GetMax(int i)//取出一个最大结点,并向下调整

{

HeapNode tempNode, maxNode=bigHeap->heapnodes[i];//堆从1开始

tempNode=bigHeap->heapnodes[i]=bigHeap->heapnodes[bigHeap->hsize--];//将最后一个结点提升,并使hsize-1

int j;

for(j=i<<1;j<=bigHeap->hsize;j<<=1)//开始向下调整

{

if(jhsize&&bigHeap->heapnodes[j].upheapnodes[j+1].up)

++j;//j为最大的那个结点

if(tempNode.up>=bigHeap->heapnodes[j].up)

break;

bigHeap->heapnodes[i]=bigHeap->heapnodes[j];//子结点上移

i=j;

}

bigHeap->heapnodes[i]=tempNode;

return maxNode;

}

void InsertNode(HeapNode node) //插入一个新结点,并自下向上调整

{

int i;

for(i=++bigHeap->hsize;bigHeap->heapnodes[i/2].up>=1) bigHeap->heapnodes[i]=bigHeap->heapnodes[i/2];//父结点下移bigHeap->heapnodes[i]=node;

}

BigHeap init(int n)

{

bigHeap=(BigHeap)malloc(sizeof Heap);

bigHeap->hsize=0;

bigHeap->heapnodes=(HeapNode *)malloc((n+1)*sizeof HeapNode);

bigHeap->heapnodes[0].up=MAXN;

return bigHeap;

}

//Main函数:

//基本上和回溯法中的大部分代码相同,不同的是用堆来实现优先队列.//这里加入了一个数组来记录物品选与不选的情况,因为物品按单位权重排序过后,

//依然可以很方便的记录物品被选择的情况,最后输出物品选择情况.

const int MAX=999;//修饰物品个数

int V,N;//背包体积,物品个数

int pcost,pvalue;//当前所占体积,达到的价值

bool *bestchoose;//记录选择情况

typedef struct {

int id;//背包id

double cost;

double value;

double rat;

}Pack;

Pack packarr[MAX];

Node *E;

inline bool cmp_r(Pack a,Pack b)

{

return a.rat>b.rat;

}

double GreedyPackBound(int i)//i装进去所能达到的最大价值边界{

int left=V-pcost;

double cmax=pvalue;

while(i

{

left-=packarr[i].cost;

cmax+=packarr[i].value;

++i;

}

if(left)

cmax+=packarr[i].rat*(left);

return cmax;

}

void addHeapNode(double up,int pw,int pv,bool ischild,int lev ) {

Node * tempNode=(Node *)malloc(sizeof Node);

tempNode->par=E;

tempNode->isLchild=ischild;

HP heapNode=(HeapNode *)malloc(sizeof HeapNode);

heapNode->up=up;

heapNode->cw=pw;

heapNode->cp=pv;

heapNode->level=lev;

heapNode->par=tempNode;

InsertNode(*heapNode);

}

void BackTrack()

{

int dn=0;

double up=GreedyPackBound(dn);

pcost=pvalue=0;

double tol=0;//记录下当前结点的左右结点的情况

while(dn

{

if(pcost+packarr[dn].cost<=V)

{

if(pvalue+packarr[dn].value>tol)

tol=pvalue+packarr[dn].value;

addHeapNode(up,pcost+packarr[dn].cost,pvalue+packarr[dn].value,true,dn+1);

}

up=GreedyPackBound(dn+1);

if(up>=tol)//右子树可能存在最优值,注意一定有=号

addHeapNode(up,pcost,pvalue,false,dn+1);

HeapNode hn=GetMax(1);//取出下一边界最大结点

E=hn.par;

pcost=hn.cw;

pvalue=hn.cp;

up=hn.up;

dn=hn.level;

}

for(int j=N-1;j>=0;--j)//

{

bestchoose[j]=E->isLchild;

E=E->par;

}

}

int main()

{

cout<<"输入背包容量、物品个数:"<

cin>>V>>N;

bestchoose=(bool*)malloc(N*sizeof(bool));

int i;

int sumw=0,sumv=0;

E=0;

cout<<"输入每个物品的重量、价值:"<

for(i=0;i

cin>>packarr[i].cost>>packarr[i].value;

for(i=0;i

{

packarr[i].rat=packarr[i].value/packarr[i].cost;

packarr[i].id=i+1;

sumv+=packarr[i].value;

sumw+=packarr[i].cost;

}

if(sumw<=V)//能装下所有物品

{

cout<<"全能放下,且最大价值为:"<

}

sort(packarr,packarr+N,cmp_r);//按单位价值从高至底排序

bigHeap=init(N);//初始化堆

BackTrack();

printf("最大价值为:%d\n",pvalue);

for(i=0;i

printf("物品%d是否装入:%d\n",packarr[i].id,bestchoose[i]);

return 0;

}

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题 一、问题描述: 有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? 二、总体思路: 根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。 原理: 动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。 过程: a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i个物品选或不选),V i表示第i个物品的价值,W i表示第i个物品的体积(重量); b) 建立模型,即求max(V1X1+V2X2+…+VnXn); c) 约束条件,W1X1+W2X2+…+WnXn (V2X2+V3X3+…+VnXn)+V1X1;

回溯算法解决0-1背包问题(DOC)

《算法分析与设计》实验报告 2015-2016年第2学期 实验班级: 学生姓名: 学号: 指导老师: 信息工程学院

实验项目名称:回溯算法解决0-1背包问题 实验日期:2016年5 月18 日 一、实验类型:□√验证性□设计性 二、实验目的 掌握0—1背包问题的回溯算法 三、实验内容及要求 给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 四、实验步骤 #include using namespace std; class Knap { friend int Knapsack(int p[],int w[],int c,int n ); public: void print() { for(int m=1;m<=n;m++) { cout<

int cw;//当前重量 int cp;//当前价值 int bestp;//当前最优值 int *bestx;//当前最优解 int *x;//当前解 }; int Knap::Bound(int i) { //计算上界 int cleft=c-cw;//剩余容量 int b=cp; //以物品单位重量价值递减序装入物品while(i<=n&&w[i]<=cleft) { cleft-=w[i]; b+=p[i]; i++; } //装满背包 if(i<=n) b+=p[i]/w[i]*cleft; return b; } void Knap::Backtrack(int i) { if(i>n) { if(bestp

算法分析与程序设计动态规划及回溯法解背包问题

动态规划法、回溯法解0-1背包问题 2012级计科庞佳奇 一、问题描述与分析 1.动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会 有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。 不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。 多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。1.最优化原理(最优子结构性质)最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。2.无后效性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。3.子问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。 2.回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目 标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华 2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少包含问题的一个(最优)解。对于0-1背包问题,解空间由长度为n的0-1向量组成。该解空间包含对变量的所有0-1赋值。例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1 背包问题的解空间可以用子集树表示。在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。当右子树中有可能含有最优解时,才进入右子树搜索。否则,将右子树剪去。设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。当cp+r<=bestp时,可剪去右子树。计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。 例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。这4个物品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价值是最优值的上界。因此,对于这个实例,最优值不超过22。 在实现时,由Bound计算当前节点处的上界。类Knap的数据成员记录解空间树中的节点信息,以减少参数传递调用所需要的栈空间。在解空间树的当前扩展节点处,仅要进入右子树时才计算上界Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因为上界预期父节点的上界相同。 三、回溯法实现代码: #include "stdafx.h" #include using namespace std; template class Knap { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i);

01背包问题动态规划详解

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为 4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。 总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.) 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?

下面是实际程序: #include int c[10][100]; int knapsack(int m,int n) { int i,j,w[10],p[10]; for(i=1;ic[i-1][j]) c[i][j]=p[i]+c[i-1][j-w[i]]; else c[i][j]=c[i-1][j]; }

01背包问题不同算法设计、分析与对比报告

实验三01背包问题不同算法设计、分析与对比一.问题描述 给定n种物品和一背包。物品i的重量是w i ,其价值为v i ,背包的容量为c。 问题:应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。 说明:在选择装入背包的物品时,对每种物品i只有两个选择,装入背包或不装入背包,也不能将物品装入背包多次。 二.实验内容与要求 实验内容: 1.分析该问题适合采用哪些算法求解(包括近似解)。 ^ 动态规划、贪心、回溯和分支限界算法。 2.分别给出不同算法求解该问题的思想与算法设计,并进行算法复杂性分析。 动态规划: 递推方程: m(i,j) = max{m(i-1,j),m(i-1,j-wi)+vi} j >= wi; m(i-1,j) j < wi; 时间复杂度为O(n). 贪心法: ^ 算法思想:贪心原则为单位价值最大且重量最小,不超过背包最大承重量为约束条件。也就是说,存在单位重量价值相等的两个包,则选取重量较小的那个背包。但是,贪心法当在只有在解决物品可以分割的背包问题时是正确的。贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。 用贪心法设计算法的特点是一步一步地进行,根据某个优化测度(可能是目标函数,也可能不是目标函数),每一步上都要保证能获得局部最优解。每一步只考虑一个数据,它的选取应满足局部优化条件。若下一个数据与部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中, 直到把所有数据枚举完,或者不能再添加为止。 回溯法:

回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。这种具有限界函数的深度优先生成法称为回溯法。 对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入左子树。当右子树中有可能包含最优解时就进入右子树搜索。 时间复杂度为:O(2n) 空间复杂度为:O(n) : 分支限界算法: 首先,要对输入数据进行预处理,将各物品依其单位重量价值从大到小进行排列。在优先队列分支限界法中,节点的优先级由已装袋的物品价值加上剩下的最大单位重量价值的物品装满剩余容量的价值和。 算法首先检查当前扩展结点的左儿子结点的可行性。如果该左儿子结点是可行结点,则将它加入到子集树和活结点优先队列中。当前扩展结点的右儿子结点一定是可行结点,仅当右儿子结点满足上界约束时才将它加入子集树和活结点优先队列。当扩展到叶节点时为问题的最优值。 3.设计并实现所设计的算法。 4.对比不同算法求解该问题的优劣。 这动态规划算法和贪心算法是用来分别解决不同类型的背包问题的,当一件背包物品可以分割的时候,使用贪心算法,按物品的单位体积的价值排序,从大到小取即可。当一件背包物品不可分割的时候,(因为不可分割,所以就算按物品的单位体积的价值大的先取也不一定是最优解)此时使用贪心是不对的,应使用动态规划。 5.需要提交不同算法的实现代码和总结报告。 动态规划方法: public class Knapsack {

用回溯法解决0-1背包问题

#include int c; //背包容量 int n; //物品数 int weight[100]; //存放n个物品重量的数组 int price[100]; //存放n个物品价值的数组 int currentWeight=0; //当前重量 int currentPrice=0; //当前价值 int bestPrice=0; //当前最优值 int bestAnswer[100]; //当前最优解 int bp=0; int bA[100]; //当前最优解 int times=0; void Print(); void Backtracking(int i) { times+=1; if(i>n) { Print(); if(bestPrice>bp) { bp=bestPrice; for(int j=1;j<=n;j++) bA[j]=bestAnswer[j]; } return; } if(currentWeight+weight[i]<=c) { //将物品i放入背包,搜索左子树 bestAnswer[i] = 1; currentWeight += weight[i]; bestPrice += price[i]; Backtracking(i+1); //完成上面的递归,返回到上一结点,物品i不放入背包,准备递归右子树 currentWeight -= weight[i]; bestPrice -= price[i]; } bestAnswer[i] = 0; Backtracking(i+1); } void Print() {

动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。 01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] } f[i,j]表示在前i件物品中选择若干件放在承重为j 的背包中,可以取得的最大价值。 Pi表示第i件物品的价值。 决策:为了背包中物品总价值最大化,第i件物品应该放入背包中吗? 题目描述: 有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最 首先要明确这张表是从右到左,至底向上生成的。 为了叙述方便,用e10单元格表示e行10列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为10的背包,那么这个背包的最大价值是6,因为e物品的重量是4,背包装的了,把e装进去后价值为6。然后是e9单元格表示背包承重9,只有物品e, e装进去后,背包价值为6,接着是e8, e7单元格,一直到e3单元格表示背包承重3,但物品e承重4,装不了,所以e3=0, 对于d10单元格,表示只有物品e,d时,承重为10的背包,所能装入的最大价值,是10,因为物品e,d这个背包都能装进去。对于承重为9的背包,d9=10,是怎么得出的呢? 根据01背包的状态转换方程,需要考察两个值, 一个是f[i-1,j],对于这个例子来说就是e9的值6,另一个是f[i-1,j-Wi]+Pi; 在这里, f[i-1,j]表示我有一个承重为9的背包,当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]表示我有一个承重为4的背包(等于当前背包承重减去物品d的重量),当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]就是指单元格e4值为6,Pi指的是d物品的价值,即4 由于f[i-1,j-Wi]+Pi = 6 + 4 = 10 大于f[i-1,j] = 6,所以物品d应该放入承重为9的背包,所以d9=10.

回溯算法之0-1背包问题

1、实验目的 (1)掌握回溯法设计策略。 (2)通过0-1背包问学习回溯法法设计技巧2.实验内容 源程序: #include using namespace std; double c;//背包容量 int n; //物品数 double w[100];//物品重量数组 double p[100];//物品价值数组 double cw=0;//当前重量 double cp=0;//当前价值 double bestp=0;//当前最优值 double bound(int i) { double cleft,b; //计算上界 cleft=c-cw;//剩余容量 b=cp; //以物品单位重量价值递减序装入物品 while(i<=n&&w[i]<=cleft) { cleft-=w[i]; b+=p[i]; i++; } //装满背包 if(i<=n) b+=p[i]*cleft/w[i]; return b; } void Backtrack(int i) { if(i>n) { if(cp>bestp) bestp=cp; return;

} if(cw+w[i]<=c) //搜索左子树 { cw+=w[i]; cp+=p[i]; Backtrack(i+1); cp-=p[i]; cw-=w[i]; } if(bound(i+1)>bestp)//搜索右子树 Backtrack(i+1); } double Knapsack (double pp[],double ww[],double d) { int i; double TP=0,TW=0; cw=0.0;cp=0.0;bestp=0.0;//计算所有物品的重量及价值 for(i=1;i<=n;i++) { TP=TP+pp[i]; TW=TW+ww[i]; } if(TW<=d)//所有物品装入背包 bestp=TP; else { Backtrack(1); } return bestp; }; int main() {

算法设计背包问题

算法实验报告 ---背包问题 实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优 值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 问题描述: 给定n种物品和一个背包。物品i的重量是wi,体积是bi,其价值为vi, 背包的容量为c,容积为d。问应如何选择装入背包中的物品,使得装入背包中 物品的总价值最大? 在选择装入背包的物品时,对每种物品只有两个选择:装入 或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量c,背包的 容积d,物品的个数n。接下来的n行表示n个物品的重量、体积和价值。输出 为最大的总价值。 问题分析: 标准0-1背包问题,MaxV表示前i个物品装入容量为j的背包中时所能产生的最大价值,结构体objec表示每一个可装入物品,其中w表示物品的重量,v表示物品的价值。如果某物品超过了背包的容量,则该物品一定不能放入背包,问题就变成了剩余i-1个物品装入容量为j的背包中所能产生的最大价值;如果该物品能装入背包,问题就变成i-1个物品装入容量为j-objec[i].w的背包所能产生的最大价值加上物品i的价值objec[i].v. 复杂性分析 时间复杂度,最好情况下为0,最坏情况下为:(abc) 源程序 #include #include #include #include #include int V [200][200][200]; int max(int a,int b) {

回溯法解0 1背包问题实验报告

实验4 回溯法解0-1背包问题 一、实验要求 1.要求用回溯法求解0-1背包问题; 要求交互输入背包容量,物品重量数组,物品价值数组;2.要求显示结果。3. 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++ 三、实验源码 #include \ #include #include #include<> #include using namespace std; template class Knap { public: friend void Init(); friend void Knapsack(); friend void Backtrack(int i); friend float Bound(int i); bool operator<(Knap a)const { if(fl< return true; else return false; } private: ty w; ; cout<>bag[i].v; for(i=0;i

{ bag[i].flag=0; bag[i].kk=i; bag[i].fl=*bag[i].v/bag[i].w; } }void Backtrack(int i){cw+=bag[i].w;if(i>=n) <=c) lag=1; cp+=bag[i].v; Backtrack(i+1); cw-=bag[i].w; cp-=bag[i].v; } if(Bound(i+1)>bestp)lag=0; Backtrack(i+1); }}<=cleft){; b+=bag[i].v; i++; } /bag[i].w * cleft; return b; } void Knapsack() k]=bag[k].flag; lag*bag[k].v; //价值累加 } cout<

0-1背包问题动态规划详解及代码

0/1 背包问题动态规划详解及C代码 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 问题描述: 给定N中物品和一个背包。物品i的重量是W i,其价值位V i,背包的容量为C。问应该如何选择装入背包的物品,使得转入背包的物品的总价值为最大?? 在选择物品的时候,对每种物品i只有两种选择,即装入背包或不装入背包。不能讲物品i 装入多次,也不能只装入物品的一部分。因此,该问题被称为0-1背包问题。 问题分析:令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就j(1<=j<=C)的背包中的物品的最大价值,则可以得到如下的动态规划函数: (1) V(i,0)=V(0,j)=0 (2) V(i,j)=V(i-1,j) jw i (1)式表明:如果第i个物品的重量大于背包的容量,则装人前i个物品得到的最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;第(2)个式子表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-w i的背包中的价值加上第i个物品的价值v i; (b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。显然,取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。测试数据: 10,3 3,4 4,5 5,6

回溯法解决01背包问题

回溯法是一个既带有系统性又带有跳跃性的搜索算法。它在包含问题的所有解的解空间树中按照深度优先的策略,从根节点出发搜索解空间树。算法搜索至解空间树的任一节点时,总是先判断该节点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该节点为根的子树的系统搜索,逐层向其原先节点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。 运用回溯法解题通常包含以下三个步骤: ?针对所给问题,定义问题的解空间; ?确定易于搜索的解空间结构; ?以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索; 在0/1背包问题中,容量为M的背包装载。从n个物品中选取装入背包的物品,物品i的重量为Wi,价值为Pi。最佳装载指装入的物品价值最高,即∑PiXi(i=1..n)取最大值。约束条件为∑WiXi ≤M且Xi∈[0,1](1≤i≤n)。 在这个表达式中,需求出Xi的值。Xi=1表示物品i装入背包,Xi=0表示物品i不装入背包。 ?即判断可行解的约束条件是:∑WiXi≤M(i=0..n),Wi>0,Xi∈[0,1](1≤i≤n) ?目标最大值:max∑PiXi(i=0..n-1),Pi>0,Xi=0或1(0≤iS则前置条件错误,即背包体积输入错误,否则顺序将物品放入背包。假设放入前i件物品,背包没有装满,继续选取第i+1件物品,若该物品“太大”不能装入,则弃之继而选取下一件直到背包装满为止;如果剩余物品中找不到合适物品以填满背包,则说明“刚刚”装入的第i件

01背包问题动态规划详解及C++代码

0/1背包问题动态规划详解及C++代码 1. 问题描述 给定一个载重量为C的背包 有n个物品 其重量为wi 价值为vi 1<=i<=n 要求:把物品装入背包 并使包内物品价值最大2. 问题分析 在0/1背包问题中 物体或者被装入背包 或者不被装入背包 只有两种选择。循环变量i j意义 前i个物品能够装入载重量为j的背包中 数组c意义 c[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值 若w[i]>j 第i个物品不装入背包 否则 若w[i]<=j且第i个物品装入背包后的价值>c[i-1][j] 则记录当前最大价值 替换为第i个物品装入背包后的价值 其c++代码如下 #include using namespace std; void KANPSACK_DP(int c[50][50], int w[50], int v[50], int n, int C) { for(int i = 0; i <= C; i ++) { c[0][i] = 0; } for(int i = 1; i <= n; i ++) { c[i][0] = 0; for(int j = 1; j <= C; j ++) { if(w[i] <= j) { if(v[i] + c[i - 1][j - w[i]] > c[i - 1][j]) c[i][j] = v[i] + c[i - 1][j - w[i]]; else c[i][j] = c[i - 1][j]; } else c[i][j] = c[i - 1][j]; } } } void OUTPUT_SACK(int c[50][50], int x[50], int w[50], int n, int C) { for(int k = n; k >= 2; k --) { if(c[k][C] == c[k-1][C]) x[k] = 0; else { x[k] = 1; C = C - w[k];

(原创精品)n=3时的0-1背包问题(回溯法)

用回溯法解决3种可选择物品的0-1背包问题当n=3时,其解空间是 {(0,0,0)(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}n=3时的0-1背包问题: w=[16,15,15]p=[45,25,25]c=30 开始时,Cr=C=30,V=0,A为唯一活结点,也是当前扩展结点 扩展A,先到达B结点 Cr=Cr-w1=14,V=V+v1=45 此时A、B为活结点,B成为当前扩展结点 扩展B,先到达D Cr

Cr=30,V=0,活结点为A、C,C为当前扩展结点 扩展C,先到达F Cr=Cr-w2=15,V=V+v2=25,此时活结点为A、C、F,F成为当前扩展结点扩展F,先到达L Cr=Cr-w3=0,V=V+v3=50 L是叶结点,且50>45,皆得到一个可行解x=(0,1,1),V=50 L不可扩展,成为死结点,返回到F 再扩展F到达M M是叶结点,且25<50,不是最优解 M不可扩展,成为死结点,返回到F F没有可扩展结点,成为死结点,返回到C 再扩展C到达G Cr=30,V=0,活结点为A、C、G,G为当前扩展结点 扩展G,先到达N,N是叶结点,且25<50,不是最优解,又N不可扩展,返回到G 再扩展G到达O,O是叶结点,且0<50,不是最优解,又O不可扩展,返回到G G没有可扩展结点,成为死结点,返回到C C没有可扩展结点,成为死结点,返回到A A没有可扩展结点,成为死结点,算法结束,最优解X=(0,1,1),最优值 V=50

0-1背包问题动态规划详解及代码

0/1背包问题动态规划详解及C代码 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 /*一个旅行者有一个最多能用M公斤的背包,现在有N件物品, 它们的重量分别是W1,W2,...,Wn, 它们的价值分别为P1,P2,...,Pn. 若每种物品只有一件求旅行者能获得最大总价值。 输入格式: M,N W1,P1 W2,P2 ...... 输出格式: X*/ 因为背包最大容量M未知。所以,我们的程序要从1到M一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4

4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放 4."这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放 4."假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为 4."而背包容量为5的时候,则最佳方案为自己的重量 5."背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是 4."所以。总的最佳方案是5+4为 9."这样.一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的 6."而是上一排的 9."说明这时候3号物品没有被选.选的是1,2号物品.所以得 9.") 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗? 下面是实际程序(在VC 6."0环境下通过): #include

回溯算法——0-1背包问题

实验目的是使学生消化理论知识,加深对讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。 上机实验一般应包括以下几个步骤: (1)、准备好上机所需的程序。手编程序应书写整齐,并经人工检查无误后才能上机。 (2)、上机输入和调试自己所编的程序。一人一组,独立上机调试,上机时出现的问题,最好独立解决。 (3)、上机结束后,整理出实验报告。实验报告应包括:题目、程序清单、运行结果、对运行情况所作的分析。 实验八 回溯算法——0-1背包问题 一、实验目的与要求 1. 熟悉0-1背包问题的回溯算法。 2. 掌握回溯算法。 二、实验内容 用回溯算法求解下列“0-1背包”问题: 给定n 种物品和一个背包。物品i 的重量是w i ,其价值为v i ,背包的容量为C 。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 三、实验步骤 1. 理解算法思想和问题要求; 2. 编程实现题目要求; 3. 上机输入和调试自己所编的程序; 4. 验证分析实验结果; 5. 整理出实验报告。 实验提示: (1)回溯算法求解0-1背包问题分析 回溯法通过系统地搜索一个问题的解空间来得到问题的解。为了实现回溯,首先需要针对所给问题,定义其解空间。这个解空间必须至少包含问题的一个解(可能是最优的)。 然后组织解空间。确定易于搜索的解空间结构。典型的组织方法是图或树。一旦定义了解空间的组织方法,即可按照深度优先策略从开始结点出发搜索解空间。并在搜索过程中利用约束函数在扩展结点处剪去不满足约束的子树,用目标函数剪去得不到最优解的子树,避免无效搜索。用回溯法解题的步骤: 1)针对所给问题定义问题的解空间; 2)确定易于搜索的解空间结构; 3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效的搜索。 0-1背包问题的数学描述为:n 个物品,物品i 的重量是w i 、其价值为v i ,其中0≤i ≤n-1,背包的容量为C 。用x i 表示物品i 被装入背包的情况,如果物品Pi 被选中,则x i =1;否则x i =0。求满足目标函数∑-=?=10max n i i i v x F 和约束方程C w x n i i i ≤?∑-=1 0的物品组合(x 0,x 1,x 2,…,x n-1) 与相应的总价值V 。

动态规划之-0-1背包问题及改进

动态规划之-0-1背包问题及改进

有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题。 形式化描述为:给定n个物品,背包容量C >0,重量第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,X n,), X i∈{0,1}, 使得∑(w[i] * Xi)≤C,且∑ v[i] * Xi达最大.即一个特殊的整数规划问题。 数学描述为: 求解最优值:

设最优值m(i,j)为背包容量为j、可选择物品为i,i+1,……,n时的最优值(装入包的最大价值)。所以原问题的解为m(1,C) 将原问题分解为其子结构来求解。要求原问题的解m(1,C),可从m(n,C),m(n-1,C),m(n-2,C).....来依次求解,即可装包物品分别为(物品n)、(物品n-1,n)、(物品n-2,n-1,n)、……、(物品1,物品2,……物品n-1,物品n)。最后求出的值即为最优值m(1,C)。 若求m(i,j),此时已经求出m(i+1,j),即第i+1个物品放入和不放入时这二者的最大值。 对于此时背包剩余容量j=0,1,2,3……C,分两种情况: (1)当w[i] > j,即第i个物品重量大于背包容量j时,m(i,j)=m(i+1,j) (2)当w[i] <= j,即第i个物品重量不大于背包容量j时,这时要判断物品i放入和不放入对m的影响。 若不放入物品i,则此时m(i,j)=m(i+1,j) 若放入物品i,此时背包

0. 1背包问题的多种解法

一、 问题描述 0/1背包问题: 现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分) 二、 算法分析 根据问题描述,可以将其转化为如下的约束条件和目标函数: ) 2(max )1()1}(1,0{11 ∑∑==?????≤≤∈≤n i i i i n i i i x v n i x W x w 于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量 ),......,,,(321n x x x x X =。 首先说明一下0-1背包问题拥有最优解。 假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解: ∑∑==?????≤≤∈-≤n i i i i n i i i x v n i x x w W x w 22 1 1max ) 2}(1,0{。如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i n i i i i i x v y v 2 2 ,且∑=≤+ n i i i W y w x w 2 11。因此,∑∑∑====+>+n i i i n i n i i i i i x v x v x v y v x v 1 2 2 1111,这说明 ),........, ,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。 穷举法: 用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超

相关文档
最新文档