Wire Bond 工作原理介绍

达林顿管说明

达林顿管就是两个三极管接在一起,极性只认前面的三极管。具体接法如下,以两个相同极性的三极管为例,前面为三极管集电极跟后面三极管集电极相接,前面为三极管射极跟后面三极管基极相接,前面三极管功率一般比后面三极管小,前面三极管基极为达林顿管基极,后面三极管射极为达林顿管射极,用法跟三极管一样,放大倍数是两个三极管放大倍数的乘积。 达林顿管原理 达林顿管又称复合管。它将二只三极管适当的连接在一起,以组成一只等效的新的三极管。这等于效三极管的放大倍数是二者之积。在电子学电路设计中,达林顿接法常用于功率放大器和稳压电源中。 达林顿电路有四种接法:NPN+NPN,PNP+PNP,NPN+PNP,PNP+N PN. 前二种是同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1为B,C1C2为C,E1B2接在一起,那么E2为E。这里也说一下异极性接法。以NPN+PNP为例。设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。达林顿管的接法应为:C1B2应接一起,E1C2应接一起。等效三极管CBE的管脚,C= E2,B=B1,E=E1(即C2)。等效三极管极性,与前一三极管相同。即

为NPN型。 PNP+NPN的接法与此类同。 NPN PNP 同极型达林顿三极管 NPN PNP等效一只三极管 异极型达林顿三极管 达林顿管的典型应用 1、用于大功率开关电路、电机调速、逆变电路。 2、驱动小型继电器 利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。虚线框内是小功率NPN达林顿管FN020。 3、驱动LED智能显示屏 LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。图2是用BD683(或BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或BD67 8)型PNP达林顿管作行驱动器,控制8×8LED矩阵板上相应的行(或列)的像素发光。 应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时,be结的正反向阻值与普通三极管不同。对于高速达林顿管,有些管子的前级be结还反并联一只输入二极管,这时测出be结正反向电阻阻值很接近;容易误判断为坏管,这个请注

达林顿管的四种接法与常用型号

达林顿电路有四种接法:NPN+NPN,PNP+PNP,NPN+PNP,PNP+NPN. 前二种是同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1为B,C1C2为C,E1B2接在一起,那么E2为E。这里也说一下异极性接法。以NPN+PNP为例。设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。达林顿管的接法应为:C1B2应接一起,E1C2应接一起。等效三极管CBE的管脚,C=E2,B=B1,E=E1(即C2)。等效三极管极性,和前一三极管相同。即为NPN型。 PNP+NPN的接法和此类同。 如下图所示,两级放大器元件同为NPN型晶体管,将前级晶体管的射极电流直接引入下一级的基极,当作下级的输入。「同极型达林顿」连接,是使用相同类型的晶体管.而「异极型达林顿」连接,是使用NPN和PNP晶体管相互串接达成达林顿的特性。 同极型达林顿管 异极型达林顿管 达林顿管的典型应用 1、用于大功率开关电路、电机调速、逆变电路。 2、驱动小型继电器 利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。虚线框内是小功率NPN达林顿管FN020。 3、驱动LED智能显示屏 LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。图2是用BD683(或BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或BD678)型PNP 达林顿管作行驱动器,控制8×8LED矩阵板上相应的行(或列)的像素发光。 应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时,be结的正反向阻值和普通三极管不同。对于高速达林顿管,有些管子的前级be结还反并联一只输入二极管,这时测出be结正反向电阻阻值很接近;容易误判断为坏管,这个请注意

常见仪表常见故障及处理办法

仪表常见故障检查及分析处理 一、磁翻板液位计: 1、故障现象:a、中控远传液位和现场液位对不上或者进液排液时液位无变化;b、现场液位计和中控远传均没有问题的情况下,中控和现场液位对不上; 2、故障分析:a、在确定远传液位准确的情况下,一般怀疑为液位计液相堵塞造成磁浮子卡住,b、现场液位变送器不是线性; 3、处理办法:a、关闭气相和液相一次阀,打开排液阀把内部液体和气体全部排干净,然后再慢慢打开液相一次阀和气相一次阀,如果液位还是对不上,就进行多次重复的冲洗,直到液位恢复正常为止;b、对液位计变送器进行线性校验。 二、3051压力变送器:压力变送器的常见故障及排除 1)3051压力变送器输出信号不稳 出现这种情况应考虑A.压力源本身是一个不稳定的压力B.仪表或压力传感器抗干扰能力不强C.传感器接线不牢D.传感器本身振动很厉害E.传感器故障 2)加压变送器输出不变化,再加压变送器输出突然变化,泄压变送器零位回不去,检查传感器器密封圈,一般是因为密封圈规格原因(太软或太厚),传感器拧紧时,密封圈被压缩到传感器引压口里面堵塞传感器,加压时压力介质进不去,但是压力很大时突然冲开密封圈,压力传感器受到压力而变化,而压力再次降低时,密封圈又回位堵住引压口,残存的压力释放不出,因此传感器零位又下不来。排除此原

因方法是将传感器卸下看零位是否正常,如果正常更换密封圈再试。 3)3051压力变送器接电无输出 a)接错线(仪表和传感器都要检查) b)导线本身的断路或短路 c)电源无输出或电源不匹配 d)仪表损坏或仪表不匹配 e)传感器损坏 总体来说对3051压力变送器在使用过程中出现的一些故障分析和处理主要由以下几种方法。 a)替换法:准备一块正常使用的3051压力变送器直接替换怀疑有故障的这样可以简单快捷的判定是3051压力变送器本身的故障还是管路或其他设备的故障。 b)断路法:将怀疑有故障的部分与其它部分分开来,查看故障是否消失,如果消失,则确定故障所在,否则可进行下一步查找,如:智能差压变送器不能正常Hart远程通讯,可将电源从仪表本体上断开,用现场另加电源的方法为变送器通电进行通讯,以查看是否电缆是否叠加约2kHz的电磁信号而干扰通讯。 c)短路检测:在保证安全的情况下,将相关部分回路直接短接,如:差变送器输出值偏小,可将导压管断开,从一次取压阀外直接将差压信号直接引到差压变送器双侧,观察变送器输出,以判断导压管路的堵、漏的连通性 三、雷达液位计:

FANUC常见报警的解释

第一章常见报警的解释 1.1 368报警(串行数据错误) 上图中368报警以及相关编码器报警的原因有: (1)电机后面的编码器有问题,如果客户的加工环境很差,有时会有切削液或液压油浸入编码器中导致编码器故障。 (2)编码器的反馈电缆有问题,电缆两侧的插头没有插好。由于机床在移动过程中,坦克链会带动反馈电缆一起动,这样就会造成反馈电缆被挤压或磨损而损坏,从而导致系统报警。尤其是偶然的编码器方面的报警,很大可能是反馈电缆磨损所致。 (3)伺服放大器的控制侧电路板损坏。 解决方案: (1)把此电机上的编码器跟其他电机上的同型号编码器进行互换,如果互换后故障转移说明编码器本身已经损坏。 (2)把伺服放大器跟其同型号的放大器互换,如果互换后故障转移说明放大器有故障。(3)更换编码器的反馈电缆,注意有的时候反馈电缆损坏后会造成编码器或放大器烧坏, 所以最好先确认反馈电缆是否正常。

1.2 电源模块PSM控制板内风扇故障443 , 610 00009 N000 443 443 X軸Y 軸車 由軸 軸軸 軸軸 Z A X Y Z A CNV. COOLING CNV. COOL ING CNw COOLING CNV. COOL I NG CMV. COOL TNG CNV. COOL TNG CNV. COOL ING CNCOOL ING COOLIMG FAN FAN FAILURE FAN FAILURE FAN FA 1 LURE FAN FA I LURE FAN FA T LURE FAN FAILURE FAJM FAILURE FAN FA 1 LURE STOP I N PSM EDIT * * * * 狀** *** 桦■叫 1 1 :51 :0 7L J IALARM?ΛESSAG∣過程y 9059SPN 1 上图报警是电源模块控制板内风扇损坏导致的报警(使用α i电源模块时),报警时电源模块PSM的LED显示2 ”,主轴放大器SPM的LED显示59 ”。 拆下电源模块控制板后,风扇位置如下图所示: 1.3 主轴放大器SPM内冷风扇故障

大功率达林顿管MJ11016参数规格,电路图,功能应用原理

DESCRIPTION ·Collector-Emitter Breakdown Voltage :V (BR)CEO =120V(Min.)·High DC Current Gain-:h FE =1000(Min.)@I C =20A ·Low Collector Saturation Voltage-:V CE (sat)=3.0V(Max.)@I C =20A ·Complement to the PNP MJ11015 APPLICATIONS ·Designed for use as output devices in complementary general purpose amplifier applications. ABSOLUTE MAXIMUM RATINGS (T a =25℃) SYMBOL PARAMETER VALUE UNIT V CBO Collector-Base Voltage 120V V CEO Collector-Emitter Voltage 120V V EBO Emitter-Base Voltage 5V I C Collector Current-Continunous 30A I B Base Current-Continunous 1A P C Collector Power Dissipation @T C =25℃ 200W T j Junction Temperature 200℃T stg Storage Temperature Range -55~+200 ℃ THERMAL CHARACTERISTICS SYMBOL PARAMETER MAX UNIT R th j-c Thermal Resistance,Junction to Case 0.87 ℃/W

常见传输告警含义.

以上这些告警维护信号产生机理的简要说明如下: ●ITU-T建议规定了各告警信号的含义: ●LOS:信号丢失,输入无光功率、光功率过低、光功率过高,使BER劣于10-3。 ●OOF:帧失步,搜索不到A1、A2字节时间超过625μs 。 ●LOF:帧丢失,OOF持续3ms以上。 ●RS-BBE:再生段背景误码块,B1校验到再生段——STM-N的误码块。 ●MS-AIS:复用段告警指示信号,K2[6 —8]=111超过3帧。 ●MS-RDI:复用段远端劣化指示,对端检测到MS-AIS、MS-EXC,由K2[6 - 8]回发过来。 ●MS-REI:复用段远端误码指示,由对端通过M1字节回发由B2检测出的复用段误块数。 ●MS-BBE:复用段背景误码块,由B2检测。 ●MS-EXC:复用段误码过量,由B2检测。 ●AU-AIS:管理单元告警指示信号,整个AU为全“1”(包括AU-PTR)。 ●AU-LOP:管理单元指针丢失,连续8帧收到无效指针或NDF。 ●HP-RDI:高阶通道远端劣化指示,收到HP-TIM、HP-SLM。 ●HP-REI:高阶通道远端误码指示,回送给发端由收端B3字节检测出的误块数。 ●HP-BBE:高阶通道背景误码块,显示本端由B3字节检测出的误块数。 ●HP-TIM:高阶通道踪迹字节失配,J1应收和实际所收的不一致。 ●HP-SLM:高阶通道信号标记失配,C2应收和实际所收的不一致。 ●HP-UNEQ:高阶通道未装载,C2=00H超过了5帧。 ●TU-AIS:支路单元告警指示信号,整个TU为全“1”(包括TU指针)。 ●TU-LOP:支路单元指针丢失,连续8帧收到无效指针或NDF。 ●TU-LOM:支路单元复帧丢失,H4连续2—10帧不等于复帧次序或无效的H4值。 ●LP-RDI:低阶通道远端劣化指示,接收到TU-AIS或LP-SLM、LP-TIM。 ●LP-REI:低阶通道远端误码指示,由V5[1 —2]检测。 ●LP-TIM:低阶通道踪迹字节失配,由J2检测。 ●LP-SLM:低阶通道信号标记字节适配,由V5[5 —7]检测。 ●LP-UNEQ:低阶通道未装载,V5[5 —7]=000超过了5帧。 为了理顺这些告警维护信号的内在关系,我们在下面列出了两个告警流程图。 图4-13是简明的TU-AIS告警产生流程图。TU-AIS在维护设备时会经常碰到,通过图4-13分析,就可以方便的定位TU-AIS及其它相关告警的故障点和原因。

LDO的工作原理详细分析

LDO的工作原理详细分析 [导读]由于便携式设备的发展,人们对电源的要求越来越高,因次以前一直用开的电源目前来说不够用了,这就促使LDO的迅猛发展,今天给大家介绍一下LDO的工作原理。 随着便携式设备(电池供电)在过去十年间的快速增长,象原来的业界标准 LM340 和 LM317 这样的稳压器件已经无法满足新的需要。这些稳压器使用NPN 达林顿管,在本文中称其为NPN 稳压器(NPN regulators)。预期更高性能的稳压器件已经由新型的低压差 (Low-dropout)稳压器(LDO)和准LDO稳压器(quasi-LDO)实现了。 NPN 稳压器(NPN regulators) 在NPN稳压器(图1:NPN稳压器内部结构框图)的内部使用一个 PNP管来驱动 NPN 达林顿管(NPN Darlington pass transistor),输入输出之间存在至少1.5V~2.5V的压差(dropout voltage)。这个压差为: Vdrop = 2Vbe +Vsat(NPN 稳压器)(1) 图1 LDO 稳压器(LDO regulators) 在LDO(Low Dropout)稳压器(图2:LDO稳压器内部结构框图)中,导通管是一个PNP管。LDO的最大优势就是PNP管只会带来很小的导通压降,满载(Full-load)的跌落电压的典型值小于500mV,轻载(Light loads)时的压降仅有10~20mV。LDO的压差为:

Vdrop = Vsat (LDO 稳压器)(2) 图2 准LDO 稳压器(Quasi-LDO regulators) 准LDO(Quasi-LDO)稳压器(图3:准 LDO 稳压器内部结构框图)已经广泛应用于某些场合,例如:5V到3.3V 转换器。准LDO介于 NPN 稳压器和 LDO 稳压器之间而得名,导通管是由单个PNP 管来驱动单个NPN 管。因此,它的跌落压降介于NPN稳压器和LDO之间: Vdrop = Vbe +Vsat (3) 图3 稳压器的工作原理(Regulator Operation) 所有的稳压器,都利用了相同的技术实现输出电压的稳定(图4:稳压器工作原理图)。输出电压通过连接到误差放大器(Error Amplifier)反相输入端(Inverting Input)的分压电阻(Resistive Divider)采样(Sampled),误差放大器的同相输入端(Non-inverting Input)连接到一个参考电压Vref。参考电压由IC内部的带隙参考源(Bandgap Reference)

中国铁塔动环常见告警处理指导手册

中国铁塔动环常见告警处理指导手册一、FSU离线告警 告警名称:FSU离线; 告警解释:FSU和铁塔集团平台连接通讯中断; 原因分析:1)信号差或不稳定;2)FSU设备掉电;3)无线模块硬件故障;4)FSU设备硬件故障;5)天线和无线模块连接中断,或天线丢失;6)VPN服务器连接不上;7)SIM卡被盗、欠费或故障。平台处理方法:查询历史告警记录,如频繁离线或长时间离线,需现场检查。 现场处理方法: 第一步检查供电: 1)在运维监控系统检查离线站点是否有停电告警,判断是否现场停电; 2)现场检查FSU指示灯不亮设备没有供电。 原因分析:FSU供电异常。 解决方案: 1)检查整个基站是否停电,如停电则通知相关人员取电; 2)检查FSU供电空开是否跳闸及通电线路是否正常。 第二步检查无线模块: 检查无线模块指示灯都不亮或都常亮。

原因分析:无线模块供电异常或无线模块故障。 解决方案: 1)无线模块供电故障,则检查给无线模块供电接线是否正常如正常,则用万用表测量给无线模块供电FSU输出端是否有12V,如没有则为FSU供电板问题,更换FSU供电板。 2)确认供电正常,则更换无线模块进行测试。 下站建议:下站时建议随身带上一套可以成功拨号的无线网卡和SIM 卡,下站的时候作对比验证,快速确认是SIM卡问题,还是无线模块问题。 第三步FSU检查 通过EISUConfig软件登陆FSU设备,点击设备诊断管理。 1)信号强度弱:通过设备软件登录设备,如信号强度小于15。

解决方案:更换运营商无线模块或将天线外延(室内站放到室外,室外柜放到底部隐蔽区域或有外层保护情况下放到机柜顶部) 2)铁塔VPN网络连接异常:铁塔VPN网络提示连接异常 3)铁塔网管未注册:铁塔网管提示连接异常(正常显示连接正常)解决方案: 确认总部平台正常,重启FSU(等待程序连接)。如重启后未恢复,联系厂家专业人员。 平台恢复确认:告警管理-活动告警监控-当前告警查询该站点,确认告警是否消除。 二、电源配套告警 2.1开关电源类告警: 2.1.1开关电源通信状态告警 告警名称:开关电源通信状态告警; 告警解释:开关电源和FSU之间的通讯中断; 原因分析:开关电源和FSU之间的通讯中断 平台处理方法:无 现场处理方法:检查开关电源屏幕是否显示正常,和FSU的监控线连接是否正常。

OKUMA常见报警信息及解决办法

O K U M A常见报警信息及解决 办法 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

OKUMA常见报警及解决办法 1、Y、Z轴润滑报警 报警代码为2705或2706出现该报警基本上是压力继电器信号未来,若出现润滑报警...ON则是为Y、Z轴没有润滑,从下顺时针调大压力继电器润滑量即可,反之则相反。可从主界面按选项Check第二十七页ILBYZ观察,系统设置是10分钟润滑一次,ILBYZ亮了会熄灭重复这个则为正常。若调、换了继电器还是报警则1、管子内可能有空气,将润滑管松一点启动机床留出润滑油扯紧即可。2、机床右侧导轨油润滑泵有杂质,用风枪进行清洁。 2、MCS总线电压异常 报警代码为2156,出现该报警后可等待十几分钟后再按复位可消除,若消除不了只有关机断电将驱动器取下寄回宜宾维修。拆驱动器时需注意1、取驱动器之前记好显示屏的报警以及驱动器显示的报警2、取驱动器记下驱动器薄码的编号以及维修装上去后与其他机床对比3、断电后需要等驱动器电源的红色指示灯熄灭后再拆4、每个驱动器的线都有自己号码,U代表的是顺序第几个驱动器。 3、2168或2169 MCS光栅尺异常 出现该报警时注意是哪根轴报警。将报警的那根轴的盖板打开把读数头的插头重新接一下看是否报警,如果还不能解决就将整个读数头取下用工业酒精擦拭清洁重装,如果还不能解决报警只有改为半闭环。 4、2173MCS电机过热 出现该报警检查电机的风扇是否运行,检查出是电机扇热故障还是驱动器故障。 5、机床无法调出程序 在调程序显示报警时,1、检查进电气柜的网线是否松脱2、检查进电脑主机网线是否松脱3、清理TC盘缓存。 6、1071存储版电池紧急更换 换电池时需将机床关机,在PLC模块MODE旋钮从0拨到1,开机启动选择选择选项。。。。。然后关机将电池取下并装上,启动选择选项。。。。。关机,将MODE选项拨到0重启即可。 7、2462主轴分度异常 出现该报警时或者机床主轴不能旋转时,将第一步改为1,观察U系列15-2第。。步,若为0则是头已拉紧,若为7则是头未拉紧。需要手动进行分度,将参数7改为6,第13步第1项0改为61,此时头会向下,切换到手轮调到4轴对主轴头进行旋转在到达正中间0点时按拉刀键(最下面一个键)头即会拉紧,观察15-2的参数若为还是为7则需要重复以上步骤,调节4轴位置再拉紧直到参数变为0

达林顿管原理

达林顿管 编辑本段简介 达林顿管就是两个三极管接在一起,极性只认前面的三极管。具体接法如下,以两个相同极性的三极管为例,前面三极管集电极跟后面三极管集电极相接,前面三极管发射极跟后面三极管基极相接,前面三极管功率一般比后面三极管小,前面三极管基极为达林顿管基极,后面三极管发射极为达林顿管发射极,用法跟三极管一样,放大倍数是两个三极管放大倍数的乘积。 编辑本段原理 达林顿管原理 达林顿管又称复合管。为共基组合放大器,以组成一只等效的新的三极管。这等效于三极管的放大倍数是二者之积。在电子学电路设计中,达林顿接法常用于功率放大器和稳压电源中。 编辑本段作用 达林顿管是一重复合三极管,他将两个三极管串联,第一个管子的发射极接第2个管子的基极,所以达林顿管的放大倍数是两个三极管放大倍数的乘积。所以它的特点是放大倍数非常高,达林顿管的作用一般是在高灵敏的放大电路中放大非常微小的信号。如大功率开关电路[1]。 编辑本段相关 达林顿电路有四种接法:NPN+NPN,PNP+PNP,NPN+PNP,PNP+NPN 前二种是同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1为B,C1C2为C,E1B2接在一起,那么E2为E。这里也说一下异极性接法。以NPN+PNP 为例。设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。达林顿管的接法应为:C1B2应接一起,E1C2应接一起。等效三极管CBE的管脚,C=E2,B=B1,E=E1(即C2)。等效三极管极性,与前一三极管相同。即为NPN型。PNP+NPN的接法与此类同。 NPN PNP

同极型达林顿三极管 NPN PNP 等效一只三极管 异极型达林顿三极管 达林顿管的典型应用 1、用于大功率开关电路、电机调速、逆变电路。 2、驱动小型继电器 利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。虚线框内是小功率NPN达林顿管FN020。 3、驱动LED智能显示屏 LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。图2是用BD683(或BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或BD678)型PNP达林顿管作行驱动器,控制8×8LED矩阵板上相应的行(或列)的像素发光。 应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时,be 结的正反向阻值与普通三极管不同。对于高速达林顿管,有些管子的前级be结还反并联一只输入二极管,这时测出be结正反向电阻阻值很接近,容易误判断为坏管,请注意。 4、判断达林顿管等效为何种类型的三极管: 首先看看第一只管是什么类型的,第一只管是什么类型的,那么这只达林顿管就是什么类型的,与第二只无关!更加重要的是,要判断两个晶体管能否形成达林顿管关键要看电流,如果工作电流冲突,则不能构成达林顿管结构。也可以根据PNP或者NPN管的标志来判断,其实本质上三极管上所标的箭头也是其工作电流的流向。

常见报警主机故障及处理

常见报警主机故障及处理Post By:2010-4-14 17:02:04 Q1: 主机加电后6160(6139)键盘无反应 A: (1)可能是新主机未编入适当地址码,首先同时按下[1][3],输入地址码为01,按※退出。 一般就可以正常使用。 (2)看主机的1、2端子是否有交流16.5伏电压?6、7端子是否有12伏直流电压?如果检 查16.5伏电压不正常可能是220伏交流电源或变压器损坏,检查更换使其供电正常。如果 主机上没有直流12伏电压输出或电压不正常送修处理 (3)检查主机到键盘的接线是否正确?如果错误请将接线按接线图正确连接 如果还没有显示请找到直接供货商送修处理。 Q2: 6160(6139)键盘显示CHECK 97 A: 一般用万用表测量电压正常为10-11伏,如果只有几伏电压或没有电压,则判断总线有短路故障或负载太大,检查总线各节点和分支使其恢复正常。; Q3: 6160(6139)键盘显示CHECK XXX A: (1)检查防区内是否有人在活动?如果有人,请他退出或默认该防区为正常。 (2)如果无人则检查该防区探测器工作是否正常?如果不正常请首先检查探测器电源。其次 检查探测器信号线是否断路。 (3)检查该防区地址码模块是否正常?如果不正常首先检查地址码模块与总线连接的接线是 否正确(正、负是否接错)?其次检查地址码模块是否损坏?必要时更换一个试试。 Q4: 6160(6139)键盘显示SYSTEM LOBAT A: (1).是否未接后备电池?如果未接则需要连接电池或默认该情况为正常。 (2)如果已连接要检查后备电池是否电压不足?(从主机上拔下来用万用表测量),电压不 足的原因首先可能充电时间不足,请继续充电。其次电池老化,需要更换Q5: 6160(6139)键盘显示SYSTEM LOBAT,不能布防。 A: 主机菜单编程05项出厂值为“0”,低电压不能布防。如果确实需要请改为“1”,低电压也可以布防。但此项改动需要慎重。 Q6: 6160(6139)键盘显示OPEN CKT,按任何键不起作用,断电重新启动无效。 A: (1)键盘接线错误,对照手册检查接线,更正错误。 (2)检查主机板是否有短路情况,如有请排除。 第二部分:2300系列主机 Q1: 236、238、2316键盘无任何显示按键无反应 A: (1). 误将[安装员密码] [*] [69] [#]做为主机复位,主机被锁定。请再用安装员密码(出厂设置012345)[*] [69] [#]操作一遍看结果?如果仍不正常显示需找到直接供货商送修处理。

电源供电以及电机驱动原理与电路分析

电源供电以及电机驱动原理与电路分析 第一部分:供电电路原理 供电部分原理图如图1-1所示: 图1-1 从图1-1中可知道供电有+5V、+3.3V、+1.5V三种,其中每个电源均有0.1μF的旁路电容,将电源中的高频串扰旁路到地,防止高频信号通过电源串扰到其它模块中。同时还能将电源本身的工频干扰滤除。 值得注意的是:在布线的时候,经退藕电容退藕后的电源输出点应该尽量紧靠芯片的电源引脚进行供电,过长的引线有可能重新变成干扰接收天线,导致退藕效果消失。如果无法让每个退藕后的电源输出点均紧靠芯片的电源引脚,那么可以采用分别退藕的方法,即分别尽量紧靠每个芯片的电源引脚点接入退藕电容进行退藕,这也解释了为什么图1-1的3.3V电源有两个退藕输出点。

第二部分:电机驱动电路原理 电机驱动电路原理如图2-1所示: 图2-1 图2-1中Header 4X2为4排2列插针,FM0~3为FPGA 芯片I/O 输出口,加入的插针给予一个可动的机制,在需要使用时才用跳线帽进行相连,提高I/O 口的使用效率。RES5是五端口排阻,内部集成了4个等阻值且一端公共连接的电阻,PIN 1是公共端,PIN2~5为排阻的输出端,排阻原理图如图2-2所示: 图2-2 该排阻公共端接电源,即上拉电阻形式,作用是增强FPGA 芯片I/O 口(以下简称I/O 口)的驱动能力,实际上就是增加I/O 输出高电平时输出电流的大小。当I/O 输出高电平时,+5V 电源经排阻与IN1~4相连,相当于为I/O 提供一个额外的电流输出源,从而提高驱动能力。当I/O 输出低电平时,可将I/O 近似看做接地,而IN1~4因与I/O 由导线直接相连,因此直接接受了I/O 的低电平输出信号。此时,+5V 电源经排阻R 、I/O 内部电路(电阻近似为零)后接地,因此该路的电流不能大于I/O 的拉电流(i I )最大值,有公式2-1: i I R V ≤+5(公式2-1) 即 i I V R 5+≥(公式2-2) 由公式2-2可以得出排阻的取值范围。 该上拉电阻除了提高驱动能力外,还有一个作用,就是进行电平转换。经查,ULN2003的接口逻辑为:5V-TTL, 5V-CMOS 逻辑。而在3.3V 供电的情况下,I/O 口可以提供3.3V-LVTTL , 3.3V-LVCMOS ,3.3V-PCI 和SSTL-3接口逻辑电平。因此,需要外接5V 的上拉电阻将I/O 电平规格变成5V 电平逻辑。

加工中心常见报警与解决方法

旺磐加工中心的常见报警解决方法 序号报警内容含义解决方法 <一> plc报警问题 1.1 LUB LOW (油量过少) 1.11 检查润滑油泵的油位 1.12 检查油位传感器是否正常 1.13检查油位报警线路电源及输入电路是否正常(号码管为DC24V及LUB LOW) 1.2 COOLANT OVERLOAD (切削液马达过载) 1.21 检查动力线是否有缺 , 1.22 检查电源电压是否为额定电压 1.23 过载保护器的过载系数是否设定过小,正常为 2.5 1.24 马达是否为反转或者有烧毁 1.25 将上序问题排除后,将过载保护器上的复位按钮按下,再确定信号线是否有24V 电源输入(号码管为COOLANT OVERLOAD) 1.3 AXIS NOT HOME (3轴未归零) 1.31 在原点复归模式下分别将三轴归零,归完成报警信号即完成零 1.32 ATC NOT READY 刀库未准备好 1.33 刀库记数信号未到位,检查COUNTER信号 1.34 刀杯原位信号错误,检查TOOL CUP UP 信号 1.35 刀臂持刀点位置不正确,检查121点信号 1.4 THE CLAMP SIGNAL ERROR (夹刀信号错误) 1.41 检查夹刀到位信号线是否有异常 1.42 检查打刀缸夹刀开关是否正常 1.43 检查I/F诊断中X4的信号是否为1 1.5 AIR PRESSURE LOW (空气压力低) 1.51 检查空气压力是否5MP以上 1.52 检查空气压力输入信号的线路是否有DC24VV电压 1.6 ATC COUNTER SINGAL ERROR (刀库记数信号错误)

CRRT常见报警及处理

C R R T常见报警及处理 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

一.常见的静脉压过高的原因有哪些如何处理静脉压是指血液充透析器内流出返回至患者静脉血管内的压力。 1.原因 1)静脉穿刺处血肿;静脉穿刺针有血块或脂肪滴堵塞,针尖口贴血管壁。 2)静脉管路受阻,静脉滤网一下管路扭曲、折叠、受压;在滤过开始时,静脉穿刺针及静脉管路夹子未打开。 3)静脉狭窄、硬化;患者侧卧时静脉受压。 4)患者血流量为250—300ML/MIN,而静脉血管过细,血管弹性欠佳。 5) 患者处于高凝状态、动脉流量欠佳、无抗凝滤过或者抗凝剂用量不足,引起静 脉滤网内血凝块或纤维蛋白堵塞。 6)使用人造血管时,动脉、静脉管路接错,导致静脉压升高报警。 2.处理。 1)在穿刺前应仔细选择血管,避免在瘢痕、血肿、血管狭窄处穿刺。 2)检查静脉穿刺处有无渗血或血肿;调整静脉针的位置或斜面,必要时重新穿刺。 3)检查静脉管道有无扭曲、折叠或受压,静脉穿刺针及静脉管路上的夹子是否打开。 4)若怀疑患者静脉狭窄,可行血管造影或彩色多普勒超声波检查。 5)避免将静脉管路接在动脉穿刺针上。 6)叮嘱患者翻身时避免压到管路。

7)用生理盐水冲洗管路,判断凝血阻塞部位。观察静脉滤网内血液颜色有无明显改变、有无血凝块,可用针筒抽少量生理盐水,检查穿刺针有无读书。如滤网内有大块血凝块,同事跨磨牙正常,透析器颜色正常,应立即更换静脉管路。二.常见的静脉压过低的原因有哪些如何处理 1.原因 1)静脉管路穿刺针连接不紧密或穿刺针脱出。 2)动脉管路折叠、扭曲、受压。 3)患者血管条件差或由于医护人员穿刺技术不熟练导致动脉流量不佳。 4)血泵后血路管破裂。 5)透析器严重凝血。 6)过多超滤水分导致血压下降,幼小循环血量不足。 7)静脉压压力传感器故障,静脉压测定口夹子未打开,静脉压保护罩破裂、潮湿、或阻塞,不能正确传感压力 2.处理。 1)检查静脉管路与穿刺针衔接是否紧密,穿刺自有无滑出。 2)检查静脉测定口夹子是否打开,动脉血路管有无扭曲受压。 3)如动脉流量不佳可调整穿刺针的位置。 4)如遇管路受损,应立即更换; 5)如透析器凝血应立即更换。 6)观察患者有无不适,如出冷汗、脉搏细速、动脉流量差及血压下降等超滤过多的症状。一点出现上述症状,应立即减少超滤量并按血液滤过低血压并发症处理。

达林顿管的四种接法及常用型号.docx

达林顿电路有四种接法:NPN+NPN, PNP+PNP,NPN+PNP,PNP+NPN. 前二种是同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1 为B, C1C2 为 C, E1B2接在一起,那么 E2 为 E。这里也说一下异极性接法。以 NPN+PNP为例。设前一三极 管 T1 的三极为 C1B1E1,后一三极管 T2 的三极为 C2B2E2。达林顿管的接法应为: C1B2 应接一起,E1C2应接一起。等效三极管 CBE的管脚, C=E2,B=B1, E=E1(即 C2)。等效三极管极性,和前一 三极管相同。即为 NPN型。 PNP+NPN的接法和此类同。 如下图所示,两级放大器元件同为NPN型晶体管,将前级晶体管的射极电流直接引入下 一级的基极,当作下级的输入。「同极型达林顿」连接, 是使用相同类型的晶体管. 而「异极 型达林顿」连接,是使用NPN和 PNP晶体管相互串接达成达林顿的特性。 同极型达林顿管 异极型达林顿管 达林顿管的典型应用 1、用于大功率开关电路、电机调速、逆变电路。 2、驱动小型继电器 利用 CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。虚线框内 是小功率 NPN达林顿管 FN020。 3、驱动 LED智能显示屏 LED矩阵板作显示的系统,可用来显示各种文LED智能显示屏是由微型计算机控制, 以 字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。图2 是用 BD683(或 BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或 BD678)型 PNP 8 8LED() 应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时, be 结的正反向阻 值和普通三极管不同。对于高速达林顿管,有些管子的前级 be 结还反并联一只输入二极管,这时测 出 be 结正反向电阻阻值很接近;容易误判断为坏管,这个请注意

常见报警及处理办法

附录三常见报警及处理办法 1、Light barrier 机械手到位报警,当机械手在取放刀区域上位时,系统将忽略这一信号,以使取放刀正常。当机械手不在取放刀区域时,只要机械手离开下限位,就产生Light barrier报警,并停止机器。 处理办法:检查机械手是否在上限位,在上限位放下机械手即可。若仍然报警,查看机械手下限位传感器灯是否亮,检查传感器螺丝是否松动,传感器是否故障,检查线路是否断开。 2、Position stop 人身安全保护对射灯,当有人或物体进入机器内并当住对射光线时,机器停止,清除障碍物或人离开后,机器才能正常工作,有两种选择:一是清除障碍物或人离开后机器立即接着工作,二是清除障碍物或人离开后按空格键才能继续工作。 3、Table stop 当主轴有转动和PIN夹打开时机器就产生Table Stop报警,并停止机器。检查PIN夹是否打开,关闭PIN夹并按空格键即可。 4、EMERGENCY STOP 机器的紧急停止信号,当急停按钮按下时即产生此报警信号,能有效中断X、Y、Z轴的伺服电机供给,所有的轴开始变得不能动作,主轴也不能运转。在检查作业时进入机器前,确认本功能有效才可进入机器作业。X、Y、Z轴驱动器及变频器亦能产生EMG此报警信号,所以在释放急停按钮,按下电脑键盘ESC后仍产生EMG报警,则检查是否有其它故障导致驱动器报警。 5、SPINPLE AIR 总气阀报警,当主气压不足时,机器停止,主轴停止,主气压满足要求,按ESC键清除报警信号,机器才能工作。 6、QIC limit alarm 压脚切换报警,指定的压脚切换到系统指定位置(大孔或者小孔),如果切换不到位即产生报警。或是如果压脚在钻板过程中离开指定位置,系统亦会报警,并停止机器。 找到故障轴后排除压脚切换故障时,检查压脚切换单元电磁阀是否动作,压脚切换装置是否有异物卡住,是否有外力撞击而导致装置无法定位。检查切换汽缸位置传感器是否有亮,传感器是否故障,传感器固定螺丝是否有松动,传感器电源线是否断路。 7、SPIN THERMAL 主轴过载报警,当任一主轴电流过大时,电机保护继电器将脱扣,这时将产生过载报警。检查主轴是否异常,排除异常之后,打开机器后背门,按下电机保护继电器黑色RESET按钮可使跳脱的开关复位。 8、Cooling Unit 冷却机异常,检查冷水机是否打开,冷水机故障依照冷水机手册进行排除。 9、Circumstance temperature 环境温度报警,当机器工作的环境温度超过28℃时即产生环境温度报警,请检测环境温度是否已超过28℃。 10、COLLET_AIR 主轴夹头报警,在主轴有转动时,若主轴夹头总气压大于0.3kg时产生此报警。检查夹头张开总气阀是否关闭或者检查线路。 11、Machine stop 当电源异常、主轴、电机、驱动器发生故障时均产生此报警,如温度过高等,检查电源线路,各驱动器、主轴、电机温度是否异常,温度线是否断开。平台或者横梁使用直线电机时增加第二级位置保护,一旦电机超过限位触发,将中断整机供电,显示此报警。 12、NO CONTACT T 接触钻断刀报警,报警后机器会自动量刀,若断刀则更换刀具,若量刀判断刀未断则为断刀误报警,检查压脚是否接地,钻板时压脚是否与板接触良好,仍有此现象发生则更换断刀检测板。 13、GRIPPER NOT UP

检测达林顿管的方法

铅酸蓄电池由于其制造成本低,容量大,价格低廉而得到了广泛的使用。但是,若使用不当,其寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。 研究发现:电池充电过程对电池寿命影响最大,放电过程的影响较少。也就是说, 绝大多数的蓄电池不是用坏的,而是“充坏”的。由此可见,一个好的充电器对 蓄电池的使用寿命具有举足轻重的作用。 1蓄电池充电理论基础 上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研 究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。 实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电 池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线,从而奠定了 快速充电方法的研究方向[1,2]。 图1最佳充电曲线 由图1可以看出:初始充电电流很大,但是衰减很快。主要原因是充电过程中产生了极化现象。在密封式蓄电池充电过程中,内部产生氧气和氢气,当氧气不能被及时吸收时,便堆积在正极板(正极板产生氧气),使电池内部压力加大,电池温度上升,同时缩小了正极板的面积,表现为内阻上升,出现所谓的极化现象。 蓄电池是可逆的。其放电及充电的化学反应式如下: 很显然,充电过程和放电过程互为逆反应。可逆过程就是热力学的平衡过程,为保障电池能够始终维持在平衡状态之下充电,必须尽量使通过电池的电流小一些。理想条件是外加电压等于电池本身的电动势。但是,实践表明,蓄电池充电时,外加电压必须增大到一定数值才行,而这个数值又因为电极材料,溶液浓度等各种因素的差别而在不同程度上超过了蓄电池的平衡电动势值。在化学反应中,这种电动势超过热力学平衡值的现象,就是极化现象。 一般来说,产生极化现象有3个方面的原因。 1)欧姆极化充电过程中,正负离子向两极迁移。在离子迁移过程中不可避免地受到一定的阻力,称为欧姆内阻。为了克服这个内阻,外加电压就必须额外施加一定的电压,以克服阻力推动离子迁移。该电压以热的方式转化给环境,出现所谓的

达林顿管的典型应用、分类检测及常用参数

达林顿管的典型应用、分类检测及常用参数 达林顿管又称复合管。它将二只三极管适当的连接在一起,以组成一只等效的新的三极管。这等于效三极管的放大倍数是二者之积。在电子学电路设计中,达林顿接法常用于功率放大器和稳压电源中。 达林顿管的四种接法 ?达林顿电路有四种接法:NPN+NPN,PNP +PNP,NPN+PNP,PNP+NPN. 前二种是同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1为B,C1C2为C,E1B2接在一起,那么E2为E。这里也说一下异极性接法。 以NPN+PNP为例。设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。达林顿管的接法应为:C1B2应接一起,E1C2应接一起。等效三极管CBE的管脚,C=E2,B=B1,E=E1(即C2)。等效三极管极性,与前一三极管相同。即为NPN型。 PNP+NPN的接法与此类同。 如下图所示,两级放大器元件同为NPN型晶体管,将前级晶体管的射极电流直接引入下一级的基极,当作下级的输入。「同极型达林顿」连接,是使用相同类型的晶体管.而「异极型达林顿」连接,是使用NPN与PNP晶体管相互串接达成达林顿的特性。 达林顿管的典型应用 ?1、用于大功率开关电路、电机调速、逆变电路。 2、驱动小型继电器 利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。 虚线框内是小功率NPN达林顿管FN020。 3、驱动LED智能显示屏 LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。图2是用BD683(或BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或BD678)型PNP达林顿管作行驱动器,控制 8×8LED矩阵板上相应的行(或列)的像素发光。

防盗报警系统中常见的50个常见名词解释

防盗报警系统中常见的50个常见名词解释(推荐给入门者)。 2008-07-31 防盗报警系统中常见的50个常见名词解释 1、温度补偿 答:当环境温度发生变化(变高或变低)时,探测器会通过热敏电阻阻值的变化来对温度进行补偿。微处理器通过不断地读取热敏电阻两端的电压来监视温度。根据温度值调节PIR的阈值。热释电元件已被优化成对人体温度比较敏感。因此,当背景温度接近人体温度时,灵敏度会降低。通过降低PIR的阈值来对此进行补偿。 2、脉冲计数 答:脉冲计数是指探测器接收到多少个报警脉冲次数才发出报警输出(比如脉冲计数为3,则探测器接收到第三个报警脉冲才报警);脉冲计数的作用是调节探测器的感应灵敏度;计数越高,探测感应灵敏度越低,计数越低则灵敏度越高,在环境较不稳定的地方,要将脉冲计数调高一点,以防误报。 3、探测范围 答:探测范围指探测器正常工作的感应范围,即探测器能够探测到在此范围以内的物体运动。 4、探测距离 答:探测器在正常工作下所能探测到的最远距离。 5、双幕帘夹角 答:方向识别幕帘探测器的两道幕帘之间的夹角。 6、幕帘张角 答:每道幕帘两条边之间的夹角。 7、防宠物技术 答:有两种方式:一种是物理方式,即通过菲涅尔透镜的分割方式的改变来降低由于小宠物引起误报的概率,这种方式是表面的,效果也是有限的。第二种方式是采用对探测信号数字处理分析方式,主要是对探测的信号进行数据采集,然后分析其中的信号周期,幅度,极性。这些因素具体反应出移动物体外形、体积、速度、热释红外能量的大小,以及单位时间内的位移等特征。探测器的微处理器将采集的数据进行分析比较,由此判断移动物体是人还是小动物。 8、双幕帘技术 答:幕帘探测器一般是用于防范窗户、阳台等进出口区域,但安装一般幕帘探测器后,主人在出入阳台也可能触发探测器报警,户主的活动空间随之受到了很大的限制。方向识别幕帘探测器则可解决这一问题。方向识别幕帘一般由双幕帘组成,这两道幕帘分为内幕帘A和外幕帘B。当户主从内往外走动时,先触发内幕帘A,再触发外幕帘B,此时探测器不报警;当入侵者由外往内闯入时,先触发外幕帘B,再触发内幕帘A,此时探测器立即报警。户主出去以后返回室内时,也是先触发外幕帘B再触发内幕帘A,为此需对户主返回与外人入侵进行区别,探测器会在户主出去后进行一定的报警时间延时,以确保户主返回时不报警。 9、四幕帘技术 答:四幕帘组成,其工作原理和上述的双幕帘相同,具备方向识别功能。但其采用了数字信号处理电路(DSP),以及应用了三矢量数位正交分析技术,能够更准确地辨别人体的移动方向,进一步提高方向识别的精确性。 10、发射距离 答:报警系统中器件在接收到信号后将无线报警信号发射出去的最远距离。 11、感应灵敏度 答:指探测器对报警信号的反应速度,感应灵敏度高,在离探测器很远的距离都能探测到,感应灵敏度低,探测器只能探测到较近的范围。传感器输出的变化量Δy与引起该变化量的输入变化量Δx之比。其数值就是两者之间的比值。 12、灵敏度误差

相关文档
最新文档