三角恒等变换讲义3

三角恒等变换讲义3
三角恒等变换讲义3

1、由二倍角公式引导学生思考:2

α

α与有什么样的关系?

例1、试以cos α表示2

2

2

sin ,cos ,tan 2

2

2

α

α

α

解:我们可以通过二倍角2cos 2cos 12

α

α=-和2

cos 12sin 2

α

α=-来做此题.

因为2cos 12sin 2

α

α=-,可以得到2

1cos sin 2

α

-=

; 因为2

cos 2cos 12

α

α=-,可以得到2

1cos cos 2

2

α

α

+=

. 又因为2

2

2

sin 1cos 2tan 2

1cos cos 2

α

α

ααα-=

=+. 思考:代数式变换与三角变换有什么不同? 例2.试以tan α表示sin 2,cos 2,tan 2ααα 分析: 首先寻找式子所包含的各个角之间的联系

222222

222222sin cos 2tan sin 22sin cos sin cos 1tan cos sin 1tan cos 2cos sin sin cos 1tan ααα

αααααα

ααα

αααααα

==

=

++--=-==

++ 例3、求证: (1)、()()1

sin cos sin sin 2

αβαβαβ=

++-????; (2)、sin sin 2sin

cos

2

2

θ?

θ?

θ?+-+=.

证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.

()sin sin cos cos sin αβαβαβ

+=+;

()sin sin cos cos sin αβαβαβ-=-.

两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1

sin cos sin sin 2

αβαβαβ=

++-????;

(2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβ?+=-=,

那么,2

2

θ?

θ?

αβ+-=

=

把,αβ的值代入①式中得sin sin 2sin cos

2

2

θ?

θ?

θ?+-+=.

思考:在例3证明中用到哪些数学思想?

要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用. 三、教学设想:

三角函数的和(差)公式,倍角公式

三角函数公式是三角变换的理论依据,基本的三角公式包括同角关系公式,诱导公式,和差公式和二倍角公式等 (二)新课讲授:

1、由二倍角公式引导学生思考:2

α

α与有什么样的关系?

例1、试以cos α表示2

2

2

sin ,cos ,tan 2

2

2

α

α

α

解:我们可以通过二倍角2cos 2cos 12

α

α=-和2

cos 12sin 2

α

α=-来做此题.

因为2cos 12sin 2

α

α=-,可以得到2

1cos sin 2

α

-=

; 因为2

cos 2cos 12

α

α=-,可以得到2

1cos cos 2

2

α

α

+=

. 又因为2

2

2

sin 1cos 2tan 2

1cos cos 2

α

α

ααα-=

=+. 思考:代数式变换与三角变换有什么不同? 例2.试以tan α表示sin 2,cos 2,tan 2ααα 分析: 首先寻找式子所包含的各个角之间的联系

222222

222222sin cos 2tan sin 22sin cos sin cos 1tan cos sin 1tan cos 2cos sin sin cos 1tan ααα

αααααα

ααα

αααααα

==

=

++--=-==

++ 例3、求证: (1)、()()1

sin cos sin sin 2

αβαβαβ=

++-????;

(2)、sin sin 2sin

cos

2

2

θ?

θ?

θ?+-+=.

证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.

()sin sin cos cos sin αβαβαβ

+=+;

()sin sin cos cos sin αβαβαβ-=-.

两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1

sin cos sin sin 2

αβαβαβ=

++-????; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβ?+=-=,

那么,2

2

θ?

θ?

αβ+-=

=

把,αβ的值代入①式中得sin sin 2sin cos

2

2

θ?

θ?

θ?+-+=.

思考:在例3证明中用到哪些数学思想?

(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个

关于积化和差、和差化积的公式.

简单三角恒等变换典型例题

简单三角恒等变换复习 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )s i n (s i n c o s c o s s i n βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )c o s (s i n s i n c o s c o s βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )t a n t a n 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα22 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 c o s 2c o s 12αα=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12 =+】 α α αααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2 s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2s i n 24c o s 12 =- 或 αα2s i n 2 4c o s 12=-】

三角恒等变换问题(典型题型)

三角恒等变换问题 三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。 例1 (式的变换---两式相加减,平方相加减) 已知11cos sin ,sin cos 2 3 αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221 cos 2cos sin sin 4ααββ++= 两式相加得,1322(cos sin sin cos )36 αβαβ+-= 化简得,59sin()72 βα-=- 即59sin()72 αβ-= 方法评析:式的变换包括: 1、tan(α±β)公式的变用 2、齐次式 3、 “1”的运用(1±sin α, 1±cos α凑完全平方) 4、两式相加减,平方相加减 5、一串特殊的连锁反应(角成等差,连乘)

例2 (角的变换---已知角与未知角的转化) 已知7sin()24 25π αα-= =,求sin α及tan()3 π α+. 解:由题设条件,应用两角差的正弦公式得 )cos (sin 22)4sin(1027ααπα-=-=,即5 7 cos sin =-αα ① 由题设条件,应用二倍角余弦公式得 故5 1sin cos -=+αα ② 由①和②式得5 3sin =α,5 4cos -=α, 于是3 tan 4 α=- 故3 tan()34πα-+=== 方法评析: 1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到. 2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例3(合一变换---辅助角公式)

第25讲 简单的三角恒等变换(讲)(解析版)

第25讲 简单的三角恒等变换 思维导图 知识梳理 题型归纳 题型1 三角函数式的化简 【例1-1】(2020春?临渭区期末)已知(0,)απ∈(1sin cos )(cos sin ) 2 α α αα+ +-= . 【分析】由条件利用二倍角公式、以及三角函数在各个象限内的符号,化简要求的式子,可得结果.

【解答】解:(0,)απ∈, ∴ 2(1sin cos )(cos sin )(12sin cos 2cos 1)(cos sin )2ααααααα αα++-++--= 2cos (sin cos )(cos sin )2cos cos 2 22222cos |2cos |2cos 22 α α αα αα αααα +-= ==, 故答案为:cos α. 【跟踪训练1-1】(2019秋?淮安期末)设4 2 x π π ,则 ( + ) A .2sin x B .2cos x C .2sin x - D .2cos x - ,然后结合已知角的范围进行化简即可. 【解答】解: 4 2 x π π , sin cos sin cos 2sin x x x x x =++-=. 故选:A . 【跟踪训练1-2】(2019秋?徐州期末)若α可以化简为( ) A .2 sin α - B . 2 cos α C .2 tan α - D .2tan α- 【分析】由a 为第四象限角,结合已知条件利用同角三角函数基本关系式求解. 【解答】解:α为第四象限角, ∴ 1sin 1sin 2sin 2tan cos cos cos ααα αααα -+--==-. 故选:D . 【名师指导】 1.三角函数式的化简要遵循“3看”原则

三角恒等变换讲义

《三角恒等变换》 广州卓越教育集团教育学院2011级第三期数学班沈荣春 开心哈哈 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割。 制胜装备 (1)和与差的三角函数公式 (a)会用向量的数量积推导出两角差的余弦公式; (b)能利用两角差的余弦公式推导出两角差的正弦、正切公式; (c)能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解他们的内在联系; (2)简单的三角恒等变换 能运用上述公式进行简单的恒等变换; 战前动员 失之毫厘,谬以千里 1967年8月23日,苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故——减速降落伞无法打开。苏联中央领导研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船在两小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们都沉浸在巨大的悲痛之中。 在电视上,观众们看到了宇航员科马洛夫镇定自若的形象。他面带微笑叮嘱女儿说:“你学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时忽略了一个小数点……” 即使是一个小数点的错误,也会导致永远无法弥补的悲壮告别。 古罗马的恺撒大帝有句名言:“在战争中,重大事件常常就是小事所造成的后果。” 换成我们中国的警句大概就是“失之毫厘,谬以千里”吧。

战况分析 扫清障碍 1.两角和与差的三角函数 βαβαβαsin cos cos sin )sin(±=±; βαβαβαsin sin cos cos )cos( =±; tan tan tan()1tan tan αβ αβαβ ±±= 。 2.二倍角公式 αααcos sin 22sin =; ααααα2222sin 211cos 2sin cos 2cos -=-=-=; 22tan tan 21tan α αα = -。 3.半角公式 2cos 12 sin αα -± = 2c o s 12c o s αα+±= αααc o s 1c o s 12t a n +-±= (α α ααα sin cos 1cos 1sin 2 tan -=+= ) 4.三角函数式的化简 常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。 (1)降幂公式 ααα2sin 21cos sin = ;22cos 1sin 2αα-=;2 2cos 1cos 2 αα+=。

人教版高中数学必修四三角恒等变换题库

(数学4必修)第三章 三角恒等变换 [基础训练A 组] 一、选择题 1.已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A .247 B .247- C .724 D .7 24- 2.函数3sin 4cos 5y x x =++的最小正周期是( ) A . 5π B .2 π C .π D .2π 3.在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判定 4.设00sin14cos14a =+,00sin16cos16b =+,c = , 则,,a b c 大小关系( ) A .a b c << B .b a c << C .c b a << D .a c b << 5.函数)cos[2()]y x x ππ= -+是( ) A .周期为4π的奇函数 B .周期为4 π的偶函数 C .周期为2π的奇函数 D .周期为2 π的偶函数 6.已知cos 2θ= 44sin cos θθ+的值为( ) A .1813 B .1811 C .9 7 D .1- 二、填空题 1.求值:0000 tan 20tan 4020tan 40+=_____________。 2.若1tan 2008,1tan αα+=-则1tan 2cos 2αα += 。 3.函数f x x x x ()cos sin cos =-223的最小正周期是___________。

4.已知sin cos 223 θ θ +=那么sin θ的值为 ,cos2θ的值为 。 5.ABC ?的三个内角为A 、B 、C ,当A 为 时,cos 2cos 2 B C A ++取得最大值,且这个最大值为 。 三、解答题 1.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值. 2.若,2 2sin sin = +βα求βαcos cos +的取值范围。 3.求值:0 010001cos 20sin10(tan 5tan 5)2sin 20 -+-- 4.已知函数.,2 cos 32sin R x x x y ∈+= (1)求y 取最大值时相应的x 的集合; (2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象. (数学4必修)第三章 三角恒等变换 [综合训练B 组] 一、选择题 1.设2132tan131cos50cos6sin 6,,,221tan 13a b c -=-==+则有( ) A .a b c >> B .a b c << C .a c b << D .b c a <<

2021年新高考数学一轮复习题型归纳与达标检测:25 简单的三角恒等变换(试题)(解析版)

『高考复习·精推资源』『题型归纳·高效训练』

第25讲 简单的三角恒等变换(达标检测) [A 组]—应知应会 1.(2020?赤峰模拟)1 tan15(tan15?-=? ) A .B .C .-D .4 【分析】把正切转化为正弦和余弦,再结合二倍角公式的逆用即可求解结论. 【解答】解:因为221sin15cos151515cos30tan151tan15cos15sin15cos15sin15sin 302 sin cos ???-?-? ?- =-===-?????? 故选:C . 2.(2020?赣州模拟)若cos78m ?=,则sin(51)(-?= ) A .B .C D 【分析】由已知利用诱导公式可得cos102m ?=-, 利用二倍角的余弦函数公式可求sin51?=,进而根据诱导公式化简所求即可求解sin(51)-?的值. 【解答】解:cos78m ?=, cos(18078)cos102cos78m ∴?-?=?=-?=-,可得212sin 51cos102m -?=?=-, 21sin 512 m +∴?= ,解得:sin51?= sin(51)∴-?= 故选:A . 3.(2019秋?临沂期末)若θ ( ) A .2tan θ B .2 tan θ - C .2tan θ- D . 2 tan θ 【分析】因为θ为第四象限角,所以sin 0θ<,再利用221cos sin θθ-=化简即可. 【解答】解:θ为第四象限角,sin 0θ∴<, ∴ 原式1cos 1cos 2cos 2 sin sin sin tan θθθθθθθ -+=-==--, 故选:D . 4.(2019秋?沙坪坝区校级期末) sin53sin 23cos30(cos23?-?? =? )

高三数学解三角形一对一讲义

XX教育,让每个孩子更优秀! XX教育学科教师辅导讲义 组长签字: 一、导入目录 1、必备基础知识 2、不同类型典型例题及应用 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~二、课前自主学习 梳理中学阶段学习的三角形的相关知识和定理 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~三、知识梳理+经典例题 知识点一:三角形中各元素间的关系 1、在直角△ABC中,C=90°,AB=c,AC=b,BC=a。

(1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sinA =cosB =c a ,cosA =sinB =c b ,tanA =b a 。 2、斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a2=b2+c2-2bccosA ; b2=c2+a2-2cacosB ; c2=a2+b2-2abcosC 知识点二:三角形的面积公式 (1)?S =21aha =21bhb =21 chc (ha 、hb 、hc 分别表示a 、b 、c 上的高); (2)?S =21absinC =21bcsinA =21 acsinB ; (3)三角形面积=abc/4R(其中R 是三角形外接圆半径) (4) S=√[p(p-a)(p-b)(p-c)] =(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)] (其中(p=(a+b+c)/2) ) 知识点三:解三角形 由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)

简单的三角恒等变换(基础)

第20讲:简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力. 【要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-= 要点诠释: 利用二倍角公式的等价变形:2 1cos 2sin 2α α-=,2 1cos 2cos 2 α α+=进行“升、降幂”变 换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换. 要点二:辅助角公式 1.形如sin cos a x b x +的三角函数式的变形: sin cos a x b x + x x ??? 令cos ??= = sin cos a x b x + )sin cos cos sin x x ??+ )x ?+ (其中?角所在象限由,a b 的符号确定,?角的值由tan b a ?= 确定, 或由sin ?= 和cos ?= 2.辅助角公式在解题中的应用 通 过 应 用 公 式 sin cos a x b x + = )x ?+(或 sin cos a x b x + =)α?-),将形如sin cos a x b x +(,a b 不同时为零)收缩为一

三角恒等变换(讲义)

三角恒等变换(讲义) ? 知识点睛 一、两角差的余弦公式推导 如图,在平面直角坐标系x O y 内作单位圆O ,以O x 为始边 作角αβ,,它们的终边与单位圆O 的交点分别为A ,B .则 (cos sin )OA αα??→=,,(cos sin )OB ββ??→ =,, ∴(cos sin )(cos sin )OA OB ααββ??→??→?==, ,?_____________. (1) (2) 设OA ??→与OB ??→的夹角为θ, 则OA OB ??→??→?=cos OA OB θ??→??→ ?=_____________, ∴______________________________________. 由图1可知,2k αβθ=π++,由图2可知,_____________, 于是αβ-=____________, ∴cos()αβ-=__________________________, ∴cos()cos cos sin sin αβαβαβ-=+,记作()C αβ-. 二、两角差的其他公式 利用诱导公式可得 ()S αβ-:sin()=sin cos cos sin αβαβαβ-- ()T αβ-:tan tan tan()= 1tan tan αβαβαβ --+ 以β代β-,可得到()C αβ+,()S αβ+,()T αβ+ ()C αβ+:________________________ ()S αβ+:________________________ ()T αβ+:________________________ ()C αβ+,()S αβ+,()T αβ+这三个公式叫做和角公式; ()C αβ-,()S αβ-,()T αβ-这三个公式叫做差角公式. 三、倍角公式

三角恒等变换考点典型例题

江苏省成化高级中学09届一轮复习三角专题(二) 三角恒等变换 一、考点、要点、疑点: 考点:1、掌握两角和与差的正弦、余弦、正切; 2、理解二倍角的正弦、余弦、正切; 3、了解几个三角恒等式; 要点: 1、 两角和与差的正弦、余弦、正切公式及其变形 2、 二倍角的正弦、余弦、正切公式及其变形 3、 )sin(cos sin 22?ωωω++= ?+=x B A y x B x A y 4、 几个三角恒等式的推导、证明思路与方法 疑点: 1、在三角的恒等变形中,注意公式的灵活运用,要特别注意角的各种变换. (如,)(αβαβ-+=,)(αβαβ+-= ?? ? ??--??? ??-=+βαβαβα222 等) 2、三角化简的通性通法:从函数名、角、运算三方面进行差异分析,常用的技巧有: 切割化弦、用三角公式转化出现特殊角、 异角化同角、异名化同名、高次化低次 3、辅助角公式:()θ++=+x b a x b x a sin cos sin 22(其中θ角所在的象限由a, b 的符 号确定,θ角的值由a b =θtan 确定)在求最值、化简时起着重要作用。 二、激活思维: 1、下列等式中恒成立的有 ① βαβαβαsin cos cos sin )sin(?-?=- ② βαβαβαsin sin cos cos )cos(?-?=- ③ )]sin()[sin(21 cos sin βαβαβα-++=? ④ )]cos()[cos(2 1 sin sin βαβαβα--+=? 2、化简: ① 0 53sin 122sin 37sin 58cos += ② )sin()sin()cos()cos(βαβαβαβα+-++?-= 3、已知),2 ( ,5 3cos ππ θθ∈-=,则)3 cos( θπ -= ,)23 cos( θπ -= 4、若αtan 、βtan 是方程0652 =-+x x 的两根,则)tan( βα+=

角函数讲义适用于高三第一轮复习

角函数讲义适用于高三 第一轮复习 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

三 角恒等 变换 知识点睛 1.同角三角函数的基本关系式:1cos sin 22=+αααα α tan cos sin = 2.诱导公式(奇变偶不变,符号看象限) 3.两角和与差的公式 4.倍角公式αααcos sin 22sin =1cos 2sin 21sin cos 2cos 2222-=-=-=ααααα 5.降幂公式22cos 1sin 2αα-= 22cos 1cos 2αα+=ααα2sin 2 1 cos sin = 6.幅角公式x b x a ωωcos sin +)sin(22?ω++=x b a ,其中a b =?tan 7.和差化积、积化和差公式(此系列公式知道怎么推导就行,无需特别记忆) 8.补充公式ααααα2sin 1cos sin 21)cos (sin 2±=±=±,2 cos 2 sin sin 1α α α±=± 例题精讲 解析:(1)由题意,5sin 1cos 2-=--=αα,4cos tan -==αα (2)由题意,125cos sin tan -== ααα且1cos sin 22=+αα,解得135sin -=α,13 12 cos = α (3)∵0cos <α,∴α是第二或第三象限角 当α是第二象限角时,1715cos 1sin 2= -=αα,815 cos sin tan -==ααα 当α是第三象限角时,1715cos 1sin 2- =--=αα,8 15 cos sin tan == ααα 点评:利用同角三角函数的基本关系式能够做到三角函数值“知一求二”,但要注意正负 符号的确定

简单的三角恒等变换(讲义)

简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公 式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会 换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理 问题的能力. 要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式: 22 1 cos2 2cos , 1 cos2 2sin 降幂公式: 2 1 cos 2 2 1 cos2 cos , sin 22 要点诠释: 利用二倍角公式的等价变形: 1 cos 2sin 2 , 1 cos 2cos 2 进行“升、降幂”变换,即由左边的 22 “一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为 “降幂”变换. 要点二:辅助角公式 1.形如 asinx b cosx 的三角函数式的变形: asin x bcosx asin x b cosx = a 2 b 2 sin x cos a 2 b 2 sin(x ) (其 中 角所在 象限由 a,b 的 符号确 定, 角的值 由 tan b 确定, 或由 sin b 和 a 确定, 或由 a 2 b 2 a cos 共同确定.) a 2 b 2 2.辅助角公式在解题中的应用 通过应用公式 asinx bcosx = a 2 b 2 sin (x )(或 asinx bcosx = a 2 b 2 cos ( ) ),将形如 asinx bcosx ( a, b 不同时为零)收缩为一个三角函数 a 2 b 2 sin (x )(或 a 2 b 2 cos ( )).这种 恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数, 这样做有利于函数式的化 简、求值等. a a 2 b 2 sinx cosx 令 cos a a 2 b 2 ,sin cosxsin b a 2 b 2 b

简单三角恒等变换典型例题

简单三角恒等变换 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )cos(sin sin cos cos βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα2 2 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 cos 2cos 12α α=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα 2cos 2 4cos 12=+】 α ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是 2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2 sin 2cos 12α α=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα 2sin 2 4cos 12=-】

2020届高考一轮复习理科数学(人教版)练习:第25讲 倍角公式及简单的三角恒等变换

第25讲 倍角公式及简单的三角恒等变换 1.sin 47°-sin 17°cos 30°cos 17°的值为(C) A .-32 B .-12 C.12 D.32 原式=sin (30°+17°)-sin 17°cos 30°cos 17° = sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17° =sin 30°cos 17°cos 17°=sin 30°=12 . 2.(2017·山西太原4月模拟)已知α为锐角,若sin(α-π6)=13,则cos(α-π3 )=(A) A.26+16 B.3-28 C.3+28 D.23-16 (方法1)因为α为锐角,sin(α-π6)=13 , 所以cos(α-π6)=223 , 所以cos(α-π3)=cos[(α-π6)-π6 ] =cos(α-π6)cos π6+sin(α-π6)sin π6 =223×32+13×12=26+16 . (方法2)令α-π6=θ,则sin θ=13,cos θ=223 , 所以cos(α-π3)=cos(θ-π6 ) = 32×cos θ+12×sin θ=26+16 . 3. (2018·佛山一模)已知tan θ+1tan θ=4,则cos 2(θ+π4)=(C ) A .12 B .13 C .14 D .15 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ =4, 即sin 2θ+cos 2θsin θcos θ=4,所以sin θcos θ=14,

所以cos 2(θ+π4)=1+cos (2θ+π2)2=1-sin 2θ2 =1-2sin θcos θ2=1-2×142=14 . 4.(2018·全国卷Ⅰ·文)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos 2α=2 3,则|a -b|=(B ) A .15 B .5 5 C .25 5 D .1 由cos 2α=2 3,得cos 2α-sin 2α=2 3, 所以cos 2α-sin 2αcos 2α+sin 2α=23,即1-tan 2α1+tan 2α=2 3, 所以tan α=±5 5,即b -a 2-1=±55,所以|a -b|=5 5. 5.(经典真题)设θ为第二象限角,若tan(θ+π4)=12,则sin θ+cos θ= -10 5 . 因为tan(θ+π4)=12,所以1+tan θ1-tan θ=1 2, 解得tan θ=-1 3, 所以(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θ·cos θ sin 2θ+cos 2θ =tan 2θ+2tan θ+1tan 2θ+1=19-2 3+1 19+1 =2 5, 因为θ为第二象限角,tan θ=-1 3, 所以sin θ+cos θ<0, 所以sin θ+cos θ=-10 5. 6.(2016·浙江卷)已知2cos 2x +sin 2x =A sin (ωx +φ)+b (A >0),则A = 2 ,b = 1 . 因为2cos 2x +sin 2x =1+cos 2x +sin 2x =1+ 2sin (2x +π 4), 所以1+ 2sin(2x +π 4)=A sin(ωx +φ)+b ,

简单的三角恒等变换练习题

3.2 简单的三角恒等变换 一、填空题 1.若 25π<α<411π,sin2α=-54,求tan 2α________________ 2.已知sin θ=- 53,3π<θ<2π7,则tan 2θ的值为___________. 4.已知α为钝角、β为锐角且sin α= 54,sin β=1312,则cos 2-βα的值为____________. 5. 设5π<θ<6π,cos 2θ=a ,则sin 4θ的值等于________________ 二、解答题 6.化简 θθθθ2cos 2sin 12cos 2sin 1++-+. 7.求证:2sin ( 4π-x )·sin (4 π+x )=cos2x . 8.求证: αααααtan 1tan 1sin cos cos sin 2122+-=-?-a .

9.在△ABC 中,已知cos A =B b a b B a cos cos ?--?,求证:b a b a B A -+=2tan 2tan 2 2 . 10. 求sin15°,cos15°,tan15°的值. 11. 设-3π<α<- 2 π5,化简2)πcos(1--α. 12. 求证:1+2cos 2θ-cos2θ=2. 13. 求证:4sin θ·cos 2 2θ=2sin θ+sin2θ. 14. 设25sin 2x +sin x -24=0,x 是第二象限角,求cos 2 x 的值. 15. 已知sin α= 1312,sin (α+β)=54,α与β均为锐角,求cos 2β.

参考答案 一、填空题 1. 2 15+. 2.-3 4. 65657 5.-21a - 二、解答题 6.解:原式=θ θθθ2cos 2sin 12cos 2sin 1++-+ =1) -(+?+)-(-?+θθθθθθ22cos 2cos sin 21sin 21cos sin 21 =θ θθθθθ22cos 2cos sin 2sin cos sin 2+?2+? =) cos (sin cos 2sin cos sin 2θθθθθθ+?)+(? =tan θ. 7.证明:左边=2sin ( 4π-x )·sin (4π+x ) =2sin ( 4π-x )·cos (4π-x ) =sin (2 π-2x ) =cos2x =右边,原题得证. 8.证明:左边=α ααα22sin cos cos sin 21-?- =) sin (cos )sin (cos cos sin 2sin cos 22αααααααα+?-?-+ =) sin )(cos sin (cos )sin (cos 2 αααααα+-- = ααααsin cos sin cos +- =α αtan 1tan 1+- =右边,原题得证.

2021届步步高数学大一轮复习讲义(理科)第四章 4.3 第2课时 简单的三角恒等变换

第2课时 简单的三角恒等变换 三角函数式的化简 1.化简:2cos 4x -2cos 2x + 1 2 2tan ????π4-x sin 2????π4+x = . 答案 1 2 cos 2x 解析 原式=1 2 (4cos 4x -4cos 2x +1)2×sin ????π4-x cos ????π 4-x ·cos 2???? π4-x =(2cos 2x -1)2 4sin ????π4-x cos ??? ?π4-x =cos 22x 2sin ??? ?π2-2x =cos 22x 2cos 2x =1 2cos 2x . 2.当π<α<2π时,化简:(1+sin α+cos α)????sin α2 -cos α 22+2cos α= . 答案 cos α 解析 原式= ? ???2cos 2α2+2sin α2cos α2???? sin α2-cos α24cos 2 α 2

=2cos α 2? ???cos α2+sin α2????sin α2-cos α22????cos α2 =cos α 2(-cos α) ??? ?cos α2. ∵π<α<2π,∴π2<α2<π.∴cos α 2<0. ∴原式=-cos α 2 cos α -cos α2 =cos α. 3.化简:sin 2αsin 2β+cos 2αcos 2β-1 2cos 2αcos 2β= . 答案 12 解析 方法一(从“角”入手,化复角为单角) 原式=sin 2αsin 2β+cos 2αcos 2β-1 2(2cos 2α-1)(2cos 2β-1) =sin 2αsin 2β-cos 2αcos 2β+cos 2α+cos 2β-1 2 =sin 2αsin 2β+cos 2αsin 2β+cos 2β-1 2 =sin 2β+cos 2β-12=1-12=1 2 . 方法二(从“名”入手,化异名为同名) 原式=sin 2αsin 2β+(1-sin 2α)cos 2β-1 2cos 2αcos 2β =cos 2β-sin 2α(cos 2β-sin 2β)-1 2cos 2αcos 2β =cos 2β-sin 2αcos 2β-1 2cos 2αcos 2β =cos 2β-cos 2β????sin 2α+1 2cos 2α =1+cos 2β2-12cos 2β=1 2 . 4.化简:sin (2α+β)sin α -2cos(α+β).

简单的三角恒等变换(教案)

简单的三角恒等变换(一) 张掖中学 宋娟 一、教学目标 知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用; 过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力; 情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力. 二、教学重、难点 教学重点:利用公式进行简单的恒等变换; 教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题. 三、教学方法:探究式教学法. 四、教学类型:新授课. 五、教学内容 复习引入(学生组织完成) 问题1:和差角的正弦、余弦、正切公式(六个); 问题2:二倍角的正弦、余弦、正切公式(三个); 问题3:二倍角的变形公式(四个). 新课讲解 思考1(学生组织完成):如何用cos α表示222sin cos tan 222 ααα、、? 分析:观察α与2 α 的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的 变形公式. 解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2 α 代 替α,即得2cos 12sin 2 α α=-, 所以21cos sin 22 αα -=; ① 在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2 α 代替α,即得 2cos 2cos 12 α α=-, 所以21cos cos 22 αα +=. ② 将①②两个等式的左右两边分别相除,即得 21cos tan 21cos ααα-=+. 思考2:若已知cos α,如何计算sin cos tan 222 ααα、、?

完整版简单三角恒等变换典型例题

简单三角恒等变换复习、公式体系

(1) sin( ) sin cos cos sin sin cos cos sin sin( ) (2) cos( )cos cos sin sin cos cos sin sin cos( ) (3) tan( tan tan 去分母得 tan tan i tan( )(1 tan tan ) 1 tan tan tan tan tan( )(1 tan tan 、倍角公式的推导及其变形: (1) sin 2 sin( ) sin cos cos sin 2 sin cos sin 1 . cos — sin 2 2 2 1 sin 2 (sin cos (2) cos 2 cos( ) cos cos sin sin cos 2 sin 2 cos 2 cos 2 sin 2 (cos sin )(cos sin ) cos 2 2 ? 2 cos 厶 sin 2 2 COS (1 cos ) 把1移项得 1 cos2 2 cos 2 或 -4- GQS -2- c 2 cos 2 1 2 【因为 是-的两倍,所以公式也可以写成 2 cos 2 cos 2 一 1 或 1 cos 2 cos 2 或 - 1 cos — cos 2 2 2 2 2 因为4 是2的两倍,所以公式也可以写成 cos 4 2 cos 2 2 1 或 1 2 Once 厶 或 nee? O 1 2 cos 2 2 2 cos sin (1 sin 2 ) sin 2 把1移项得1 cos 2 2s in 2 或 -4- 1 2sin 2 2 【因为 是—的两倍,所以公式也可以写成 2 cos 1 2 sin 2— 或 1 cos 2 sin 2 或 4 ---- eos- sin 2 2 2 2 2 因为4 是2 的两倍,所以公式也可以写成 2 1、和差公式及其变形: 2 ) ) 2 sin 2

(完整版)简单的三角恒等变换(一)

§3.2 简单的三角恒等变换(一) 学习目标:⒈熟练掌握二倍角的正弦、余弦、正切公式的正用、逆用. ⒉能灵活应用和(差)角公式、二倍角公式进行简单三角恒等变形. 教学重点:以推导积化和差、和差化积、半角公式作为基本训练,学习三角变 换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计, 不断提高从整体上把握变换过程的能力. 教学方法:讲练结合. 教具准备:多媒体投影. 教学过程: (Ⅰ)复习引入: 师:前面一段时间,我们学习了三角函数的和(差)角公式、二倍角公式等十一个公式,请同学们默写这些公式. 生:(默写公式). 师:学习了上述公式以后,我们就有了研究三角函数问题的新工具,从而使三角函数的内容、思路和方法更加丰富,为我们提高推理、运算能力提供了新的平台 本节课我们将利用已有的这十一个公式进行简单的三角恒等变换,了解三角恒等变换在数学中的应用. (Ⅱ)讲授例题: 例1试以cos α表示2 sin 2α,2cos 2α,2tan 2α. 分析:α是2 α的二倍角,因此在仅含α的正弦、余弦的二倍角公式(2)C α中,以2 α代替α就可以得到2sin 2α、2cos 2α,然后运用同角三角函数的基本关系可得2tan 2 α. 解:略. 师:例1的结果还可以表示为:

sin 2α =cos 2α=tan 2α=, 有些书上称之为半角公式,其符号由角2 α终边的位置确定. 师:由例题1和以往的经验,你认为代数式变换与三角变换有什么不同? 生:代数式变换往往着眼于式子结构形式的变换.三角恒等变换常常首先寻找式子所包含的角之间的联系. 师:由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此以式子所包含的角之间的关系为依据选择可以联系它们的适当公式,这是三角恒等变换的特点. 例2求证: ⑴1sin cos [sin()sin()]2 αβαβαβ=++-; ⑵sin sin 2sin cos 22 θ?θ?θ?+-+=. 分析:对于⑴我们可以从其中右式出发,利用和(差)的正弦公式展开、合并即可得出左式.我们也可以从两个式子结构形式的不同点考虑,发现 sin cos αβ与和(差)的正弦公式之间的联系.记sin cos x αβ=,cos sin y αβ=, 则有sin()x y αβ+=+,sin()x y αβ-=-,由此解出x ,即求出了sin cos αβ. ⑵的证明可以直接利用⑴的结果,令αβθ+=,αβ?-=,解出α、β后代如即可. 证明:略 师:在此例中,如果不利用⑴的结果,怎样证明⑵?大家可以从角与角之间的关系入手考虑. 生:将22θ?θ?θ+-=+,22 θ?θ??+-=-代入左边,然后利用和(差)的正弦公式展开、合并即可得出右式. 师:在例2的证明中,把sin cos αβ看成x ,cos sin αβ看成y 把等式看作x , y 的方程,通过解方程组求得x ,是方程思想的体现;把αβ+看作θ,αβ-看作?,从而把包含α、β的三角函数式变换成θ、?的三角函数式,是换元思想的应用.

相关文档
最新文档