线性代数电子教案LA1-1B

线性代数电子教案LA1-1B
线性代数电子教案LA1-1B

线性代数讲稿

讲稿编者:张凯院

使用教材:《线性代数》

西北工业大学出版社

西工大数学系编

教学参考:《线性代数典型题分析解集》

西北工业大学出版社

徐仲等编

第一章 n 阶行列式

§1.2 排列及其逆序数

1.排列:n 个依次排列的元素.

例如, 自然数1,2,3,4构成的不同排列有4!=24种. 1234, 1342, 1423, 1432, 1324, 1243 2134, 2341, 2413, 2431, 2314, 2143 3124, 3241, 3412, 3421, 3214, 3142 4123, 4231, 4312, 4321, 4213, 4132

例1 互异元素n p p p ,,,21 构成的不同排列有!n 种. 解 在n 个元素中选取1个 n 种取法 在剩余1-n 个元素中选取1个 1-n 种取法 在剩余2-n 个元素中选取1个 2-n 种取法 ……………… ………… 在剩余2个元素中选取1个 2种取法 在剩余1个元素中选取1个 1种取法 ------------------ 总共!n 种取法

2.标准排列:n 个不同的自然数从小到大构成的排列.

n 个不同的元素按照某种约定次序构成的排列. 3.逆序数:

(1) 某两个数(元素)的先后次序与标准次序不同时, 称这两个数(元素) 之间有1个逆序.

(2) 排列n p p p 21中逆序的总和称为排列的逆序数, 记作)(21n p p p τ. 算法:固定),,2(n i =, 当i j <时,

满足i j p p >的“j p ”的个数记作i τ(称为i p 的逆序数), 那么)(21n p p p τn ττ++= 2.

例2 排列6372451中, 1462230172=+++++=++=τττ . 例3 排列42)22)(2)(12(13 --n n n , 求逆序数.

解 记作n n n n n p p p p p p p 2122121-++ 02=τ, 0,1=+n τ

1222?==+n τ, 2243?==+n τ, …, )1(22-?=n n τ )1()]1(21[2-=-+++=n n n τ 4.奇偶性:排列n p p p 21

=)(21n p p p τ奇数时, 称为奇排列; =)(21n p p p τ偶数时, 称为偶排列. 5.对换:

相邻对换:n i i n i i p p p p p p p p 1111++→

一般对换:n i j n j i p p p p p p p p 11→ )(j i <

定理1 排列经过1次对换, 其奇偶性改变. 证 先证相邻对换:(1) m l b b b a a a 11 (2) m l b b a b a a 11

b a <:对换后a τ增加1, b τ不变, 故112+=t t ; b a >:对换后a τ不变, b τ减少1, 故112-=t t . 所以2t 与1t 的奇偶性相反.

再证一般对换:(1) n m l c c b b b a a a 111 (2) n m l c c b a b b a a 111 (3) n m l c c a b b b a a 111 (1)→(2)经过m 次相邻对换 (2)→(3)经过1+m 次相邻对换

(1)→(3)经过12+m 次相邻对换, 所以3t 与1t 的奇偶性相反.

推论 奇排列→标准排列, 对换次数为奇数. 偶排列→标准排列, 对换次数为偶数.

§1.3 n 阶行列式的定义 1.二阶:

2112221122

21

1211a a a a a a a a -=

2.三阶: 32211331231233221133

32

31

232221

13

1211

a a a a a a a a a a a a a a a a a a ++= 312213332112322311a a a a a a a a a --- (1) 乘积中三个数不同行、不同列:321321p p p a a a ± 行标(第1个下标):标准排列 123

列标(第2个下标):321p p p 是1,2,3的某个排列(共6种) (2) 正项:123, 231, 312为偶排列 负项:132, 213, 321为奇排列

于是 321321321)

(33

32

31

232221

13

1211

)1(p p p p p p a a a a a a a a a a a a ∑-=τ, )(321p p p ττ=.

3.n 阶:2n 个数),,2,1,(n j i a ij =, 称

nn

n n n

n a a a a a a a a a D

21

2222111211

=

为n 阶行列式, 它表示数值

n n np p p p p p a a a

21

2121)

()1(∑-τ, )(21n p p p ττ=

其中, 求和式中共有!n 项.

例3 计算nn

n n a a a a a a D 222

112111=

, 1

1

,22111,1112n n n

n a a a a a a D

--=

.

解 1D 中只有一项nn a a a 2211不显含0, 且列标构成排列的逆序数为 0)12(=n τ, 故nn nn a a a a a a D 221122111)1(=-=τ.

2D 中只有一项11,21n n n a a a -不显含0, 且列标构成排列的逆序数为

2

)

1()1(21)21(-=

-+++=n n n n τ 故11,212

)

1(11,212)

1()1(n n n n n n n n a a a a a a D ----=-=τ

结论:以主对角线为分界线的上(下)三角行列式的值等于主对角线上元素 的乘积.

以副对角线为分界线的上(下)三角行列式的值等于副对角线上元素 的乘积, 并冠以符号2

)1()1(--n n .

特例:

n n

λλλλλλ

212

1

=,

n n n n

λλλλλλ

212

)1(2

1

)

1(--=

定理2 n q q q q q q q q q nn

n n n

n

n n n a a a a a a a a a a a a D

21)

()(21

22221

11211

212121)1(∑-==

τ (2) 证 由定义知 n n n np p p p p p p p p a a a D 21212121)

()

()1(∑-=

τ

(1)

先证(2)中的项都是(1)中的项:交换乘积次序可得

n n n n np p p q q q n q q q q q q a a a a a a 2121212121)(21)()1()1(ττ-=- (3)

① =)(21n q q q τ偶数

n q q q n 1221→ 偶数次对换 n p p p n 2112→ 偶数次对换 所以=)(21n p p p τ偶数 ② =)(21n q q q τ奇数

n q q q n 1221→ 奇数次对换 n p p p n 2112→ 奇数次对换 所以=)(21n p p p τ奇数

因此)()(2121)1()1(n n p p p q q q ττ-=-, 由(3)可得

n n n n np p p p p p n q q q q q q a a a a a a 2121212121)(21)()1()1(ττ-=- 同理可证(1)中的项都是(2)中的项.

课后作业:习题一 1,2,3

《线性代数》教学中若干难点的探讨.doc

《线性代数》教学中若干难点的探讨- 摘要:在《线性代数》的教学过程中,有很多抽象的概念学生很难理解,比如线性相关、线性无关,极大线性无关组、向量组的秩等等。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,化抽象为具体,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 关键词:线性相关;线性无关;极大线性无关组;向量组的秩 《线性代数》是高等学校理、工、经、管类各专业的一门重要基础课程。通过对本课程的学习,学生可以获得线性代数的基本概念、基本理论和基本运算技能,为后继课程的学习和进一步知识的获得奠定必要的数学基础。通过各个教学环节的学习,可以逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力以及自学能力,并具有比较熟练的运算能力和综合运用所学知识分析和解决问题的能力。另外,通过《线性代数》的学习,还可以培养学生的综合素质和提高学生的创新意识。因此,只有熟练掌握这门课程,才能较好地运用到各个专业中。由于该课程内容抽象,教学课时短,这无疑对教师的教学和学生的学习造成了极大的困扰。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 一、线性相关性与线性无关性 线性方程组理论是线性代数的基本内容之一,而向量组的线性相关性和线性无关性又是解线性方程组的基础。教材第三章线性方程组开门见山,直接给出了线性相关及线性无关的定义。

线性相关是指一个向量组α1,α2,…,αs,如果存在一组不全为零的数λ1,λ2,…,λs,使得λ1α1+λ2α2+…+λsαs=0,则称该向量组α1,α2,…,αs线性相关。如果不存在这样一组不全为零的数,则称该向量组α1,α2,…,αs线性无关。单纯地称某向量组线性相关或线性无关,对于学生来说是比较抽象的,他们对这一定义总是感觉很模糊,很难理解,如何才能更好地更形象地理解这一定义呢?如果在教学中,把这块知识与解析几何联系起来,用几何知来解释什么是线性相关或线性无关,那么学生肯定更容易接受。例如,对于定义中λ1α1+λ2α2+…+λsαs=0,可以理解为b=(λ1,λ2,…,λs)这样的一个行向量。如果向量组有两个列向量构成,即α1,α2,则b=(λ1,λ2),λ1α1+λ2α2=0。若λ1≠0,则经过变换可以得到α1=■,这说明α1和α2共线。对于有三个向量构成的向量组,λ1α1+λ2α2+λ3α3=0,b=(λ1,λ2,λ3),若λ1≠0,经变换得到α1=■+■,这说明α1,α2,α3三个向量共面。 对于两个向量,线性相关指两向量平行(或者说是共线),此时只是在线上的关系,仅仅是一维,线性无关指两向量相交,确定了一个二维平面。线性无关提供了另一种维度,使得向量所在空间增加了一维。对于三个向量,线性相关指三向量共面,研究的是二维平面,而线性无关指三向量不共面,使得向量所在空间增加了一维,即三个向量若线性无关,那么它们不共面,存在于三维立体空间中。四个向量,五个向量,…,研究方法类似。结合几何知识,通过几何图像可以更直观地呈现出新的概念,学生更易于接受,而且还有助于提高学生对《线性代数》的学习兴趣。 二、极大线性无关组及向量组的秩

山东大学网络教育《线性代数》期末考试复习题

1 专科《线性代数》 模拟题1 一 填空题 1、设A,B 是两个3阶矩阵,且det A=-2,det B=-1,则det (-212-B A )=__32_. 2、如果向量α,β是正交的,则(α,β)=_0_. 3、若矩阵A 满足 __A T =A_ ,则称A 为对称矩阵. 4、设A 是m ×n 矩阵,B 是p ×m 矩阵,则T T B A 是_p n ?_矩阵. 5、若数00=λ为矩阵A 的特征值,则齐次线性方程组AX=0必有___非零___解. 6、二次型)(.,,.........2,1n x x x f ,如果对任意一组不全为零的实数n c c c ,......2,1,0),......,(21>n c c c f 则称)(.,,.........2,1n x x x f 为___正定__ . 二 单项选择题 t n s n t m n m B A B A T T t s n m ====?? ④ ③ ② ①则必须满足做乘积 由 ____,.1逆矩阵 矩阵 ③数量矩阵 ④ ①对称矩阵 ②对角的是则有阶矩阵,若都是设___,,.2A B E BA AB n B A ==④可能有解一解 ③有无穷多解 ①可能无解 ②有唯组则该线性方程零解的齐次线性方程组只有若某个线性方程组相应.___.,.3 向量一个向量 ④任何一个没有一个向量 ③至多 ①至少一个向量 ②量线性表出。可被该向量组内其余向线性相关,则向量组内αα若向量组α____,.....4,2,1s 三 是非题 。()个线性无关的特征向量有阶实对称矩阵也是对称矩阵。()阶对称矩阵,则为若n A 、n A n A 、512 的解。()的解之和不是的解与线性相关。()αα可知ααα由α。()有对方阵B AX AX B 、AX 、B A B A B A 、===-=+=+042det det )det(,33,2,1,213 四:解线性方程组: ② ② ④ √ √ X √ X ① 0 6745 229 638 52432143 24214321====+-+-+---+-+x x x x x x x x x x x x x x

线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D = (1)n D -。 3、设1101A ??= ??? , 则100A =110001?? ???。 23 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

山东省济南市山东建筑大学电气工程及其自动化2007-2008.1.A卷+答案

线性代数 一、单项选择题(每小题3分,共18分) 1、设矩阵333223???C B A ,,,则下列运算可行的是 【 】 .A AC , .B CB , .C ABC .D B A + 2、设, A B 为n 阶方阵,E 为n 阶单位矩阵, 则下列等式成立的是 【 】 . A ()()22 B A B A B A -=+- .B ()()E A E A E A -=+-2 .C BA AB = .D ()E B A E B A ++=+ 3、设方阵A 有特征值1、2,a 是与1 对应的特征向量,b 是与2对应的特征向量,下列判断正确的是 【 】 .A a 与b 线性无关 .B b a +是A 的特征向量 .C a 与b 线性相关 .D a 与b 正交 4、设4阶方阵A 的行列式为2,则A 的伴随矩阵*A 的行列式为 【 】 (A) 2; (B) 4; (C) 8; (D) 1 5、112012()2, 1012a A a r A a -?? ? =-= ? ?-?? 若矩阵的秩则的值为 【 】 (A)0(B)0 -1(C)-1 (D) 1 1 -或 或 6、A 与B 为同阶方阵,如果A 与B 具有相同的特征值,则 【 】 (A) A 与B 相似;(B) A 与B 合同;(C) A B =; (D) A B = 二、填空题(每小题3分,共18分) 7、0200003000045000 D =,则_______D =. 8、设3阶矩阵A ,且矩阵行列式3=A ,则矩阵行列式=A 2 . 9、设矩阵a a a a a a a a A a a a a a a a a ?? ? ? = ? ? ?? ? ,则A 的非零特征值为____________. 10、若方阵A 有一个特征值是1,则E A -= . 11、n 维向量空间的子空间121220(,, ,)0n n n x x x W x x x x x ??+++=?? ? =???++=???? ? 的维数是____ 12、设(,)E i j 表示由n 阶单位矩阵第i 行与第j 行互换得到的初等矩阵,则 E 1[(,)]E i j -=_________.

线性代数重点难点

自考《线性代数》重难点解析 2011-02-17 11:09:49 | 作者: min | 来源: 考试大 | 查看: 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点 行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1、若A为n阶方阵,则│kA│= kn│A│ 2、若A、B均为n阶方阵,则│AB│=│A│。│B│ 3、若A为n阶方阵,则│A*│=│A│n-1 若A为n阶可逆阵,则│A-1│=│A│-1 4、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi 四、题型及解题思路 1、有关行列式概念与性质的命题 2、行列式的计算(方法)

1)利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D =│A│≠0,则Ax=b有唯一解,即 x1=D1/D,x2= D2/D,…,xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式│A│判别方程组解的问题 1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解) 2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法

昆明理工大学线性代数考试试题集及答案

《线性代数B 》 2010~ 2011 学年第 一 学期课程试卷A 一、填空 1. 125 642782516945 4321111= 12 . 2. 设A 、B 为4阶方阵,且,2||1 =-A 813=B ,则=||AB 1/2 . 3. 给定矩阵A ,且E A -可逆,满足B A E AB +=+2,则=B E A + . 4.设??????????=210110001A ,则=-1A ???? ??????--11012000 1 . 5.已知321,,ααα线性相关,3α不能由21,αα线性表示,则21,αα线性 相关 . 6.设???? ? ?????=??????????=??????????=120,61,321321αααt ,且1α,32αα,线性相关, 则=t 8 . 7.设A 是34?矩阵,且2)(=A R ,???? ? ?????=213010321B 则=)(AB R __2___ 8.设三阶方阵A 的每行元素之和均为零,又2)(=A R ,则齐次线性方程组O Ax =的通解为 )(111R k k ∈???? ?????? . 9. 向量组,11011????????????-=α,02132????????? ???-=α,31103????????????-=α???? ? ? ??????-=01014α的一个最大线性无关组为 421,,ααα . 10. 设A 为n 阶方阵,0=Ax 有非零解,则A 必有一个特征值为 0 . 二、单项选择

1..若=---+=--1 2 1 203242,112 2013z y x z y x 则( A ) )A ( 1- ; )B ( 2 ; )C ( 1 ; )D ( 0. 2.设C B A ,,均为二阶方阵,AC AB =,则当(C )时,可以推出C B =. .1111)D (;0110)C (;0011)B (;0101)A (? ? ? ???=? ?? ???=? ?? ???=? ?? ???=A A A A 3. 下列结论正确的是( A ) . )A ( s ααα,,,21 线性无关的充要条件是其中任意一个向量都不是其余向量的线性组合; )B ( 若向量321,,ααα线性相关,则21,αα线性相关; )C ( 若n 阶方阵A 与对角阵相似,则A 有n 个不同的特征值; )D ( 若方程组O Ax =有非零解,则b Ax =有无穷多解. 4. 已知321,,ηηη是四元方程组b Ax =的三个解,其中,3)(=A R ? ? ??? ???????=43211η,???? ????????=+444432ηη, 则以下不是方程组b Ax =的通解为( D ) . )A (;43214202???? ?? ??????+????????????--k )B ( ;43212101????????????+????????????--k )C (;22222101???? ????????+????????????--k )D (????? ? ??????+????????????43210123k . 5. 设向量组321,,ααα线性无关,则下列向量组中线性无关的是( B ) )A (133221,,αααααα--- ; )B (1321,,αααα+ ; )C (212132,,αααα- ; )D (32322,,αααα+. 6.若n 阶矩阵B A ,有共同的特征值,且各有n 个线性无关的特征向量,则(A )

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数易错点及重点知识点

线性代数易错及重点知识点 翔翔总结,不晓得大家看得懂不 3 24712432的余子式是327134722412,而不是23271 上三角和下三角行列式都是a1a2a3.....an=A 反三角行列式为A*(-1)^n(n-1)/2 行列式的一行的代数余子式分别乘以另一行元素,值为零。 正反三角行列式如果不记得公式了,可以通过上下换行的形式变成正三角行列式。 克莱姆法则D=222112 11a a a a ,D1=22 2121a b a b D2=22211211a a a a x1=D1/D 同理x2=D2/D 范德蒙法则:行列式的值=(x n -x n-1)(x n -x n-2)……(x n -x 1)(x n-1-x n-2……)(x 2-x 1) 若一个线性方程组有非零解,则它的行列式式值等于零。 行列式中行叫c ,列叫r 写行列式变换过程中要在等号上写变换方法,如c2-c3.不然老师看不懂步骤,无法给分 化三角行列式先化第一列,在化第二列,按顺序来化,这样才不会出现问题。 n 维向量分横向量和列向量。 写向量时一定要记得在上面加箭头 任意一个n 维向量都能由n 个n 维单位向量线性表示 如果b1=k1a1+k2a2+k3a3,线性表示不一定要求k1,k2,k3不全为零。 如果一个向量a 线性相关,则a=0 由一个非零向量构成的向量组一定线性无关。即a ≠0则a 这个向量组线性无关。 含有零向量的向量组一定线性相关 例a1=(1,1)a2=(2,3)求这两个向量组是否线性相关 解:k1a1+k2a2=0 k1(1,1)+k2(2,3)=0 K1+2k2=0 k1+3k2=0 3 121≠0所以k 全是零解,所以线性无关 a3=a1+a2,则a1,a2,a3线性相关 一个向量组中的一个向量可由其他向量线性表示,那么这个向量组线性相关,能线性表示不一定要k 不全为零,但是线性相关一定要不全为零 两个向量线性相关除非他们对应分量成比例。 如果一个向量组一部分向量线性相关,则,整个向量组线性相关。 一个向量组线性无关,那么它的一部分也线性无关 向量组线性相关,减少其中几维一样线性相关,向量组线性无关,增加几维向量一样无关。 应用:要证线性相关,则增加维,如果增加后相关,则原向量组相关。 要证线性无关,则减少维,如果减少后无关,则原向量组无关。 要证线性相关,则增加向量个数,如果增加后相关,则原向量组相关。 要证线性无关,则减少向量个数,如果减少后无关,则原向量组无关。 向量个数大于维数一定线性相关 一个向量组的每个最大线性无关组中的向量个数一定相等 向量空间:线性无关组ab ……n 若a+b ……n 属于v Ramada a 属于v 则v 为向量空间v 的维数就是向量组的秩,a b ……n 称为空间的基

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

山东建筑大学专升本学生学籍管理细则

山东建筑大学函授专升本学生学籍管理细则 为了全面贯彻执行党的教育方针,维护正常的教育教学秩序和生活秩序,树立勤奋、严谨、求实、创新的学风,不断提高教育和教学质量,保障学生的合法权益,促进学生的全面发展,依据中华人民共和国教育部《普通高等学院学生管理规定》,结合实际情况,制定本细则。 第一章注册与缴费 函授专升本学历的性质:专科学生经全国统一的成人高考专升本入学考试并被录取后参加相应专业本科课程的学习,修完该本科专业的全部课程,成绩合格,可获得国家教育部电子注册的本科毕业证书,如符合学位授予条件,可申请学位。 函授方式的成人专升本学历教育与全日制普通高等院校教育同属国民教育 系列,其学历国家承认,教育部电子注册,电子注册信息均可在教育部高等教育学生信息网站上查询。 第一条学生应缴的各项费用应在每学年第一学期开学前一次缴清,特殊情况应提出申请和完成补缴手续。 第二章学制、学习年限与学分 在籍专科生函授专升本课程班的学习方式:函授是以自学为主,面授为辅的一种学习形式。浙江建院与山东建筑大学联合举办的函授专升本课程班,专科毕业前可以修完“专升本”专业教学计划的所有课程。平时学生根据自己的情况安排自学,自学中碰到问题可与任课教师联系,面授和考试原则上安排在晚上、双休日等业余时间,不影响正常专科教学,面授结束后进行课程考试,课程考试由我校自行组织。课程成绩由山东建筑大学统一建立学籍成绩档案,专科毕业时修完所有课程且成绩合格者先发给专升本课程班结业证书。 在籍专科生函授专升本正式学籍的取得与毕业文凭发放:函授专升本属国家学历教育,参加课程班并结业的学生专科毕业当年须凭专科毕业证书报名参加全国统一的成人高考专升本入学考试并被录取后才能取得山东建筑大学专升本正式学籍(如当年因成绩原因未被正式录取可于次年再次报考),并按取得正式学籍的时间顺延3年换发毕业证书。未经成人高考或无法取得正式学籍,不能换发毕业证书。 第三章纪律与考勤

自考《线性代数》重难点解析与全真练习

自考《线性代数》重难点解析与全真练习 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1若A为n阶方阵,则|kA| = kn | A I 2、若A、B均为n阶方阵,AB丨=| A |。丨B丨 3、若A为n阶方阵,则|A* | = | A | n-1 若A为n阶可逆阵,则|A-1 | = | A | -1 4、若A为n阶方阵,入i (i=1 , 2,…,n)是A的特征值,| A | =口入i 四、题型及解题思路 1 、有关行列式概念与性质的命题 2、行列式的计算(方法) 1 )利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D = | A |丰0,则Ax=b有解,即 x1=D1/D, x2= D2/D ,…, xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式A 判别方程组解的问题 1)当| A | = 0时,齐次方程组Ax= 0有非零解;非齐次方程组解,也可 能有无穷多解) 2)当| A |丰0时,齐次方程组Ax= 0仅有零解;非齐次方程组克莱姆法则求出。 、重点 1 、理解:矩阵的定义、性质, 几种特殊的矩阵(零矩阵,上(下)对角矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵) 2、掌握: 1)矩阵的各种运算及运算规律 2)矩阵可逆的判定及求逆矩阵的各种方法Ax= b 不是解(可能无Ax= b 有解,此解可由三角矩阵,对称矩阵,

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

山大2017春季班期末考试 线性代数二(答案)

线性代数二 一.单选题. 1. 若)541()1(l k N -55 443211a a a a a l k 是五阶行列式ij a 的一项,则k 、l 的值及该项符号为( A ). (A )2=k ,3=l ,符号为负; (B) 2=k ,3=l 符号为正; (C) 3=k ,2=l ,符号为负; (D) 1=k ,2=l ,符号为正. 2. 下列行列式( A )的值必为零. (A) n 阶行列式中,零元素个数多于n n -2个; (B) n 阶行列式中,零元素个数小于n n -2个; (C) n 阶行列式中,零元素个数多于n 个; (D) n 阶行列式中,零元素的个数小于n 个. 3. 设A ,B 均为n 阶方阵,若()()2 2B A B A B A -=-+,则必有( D ). (A )I A =; (B)O B =; (C)B A =; (D)BA AB =. 4. 设A 与B 均为n n ?矩阵,则必有( C ). (A )B A B A +=+;(B )BA AB =;(C )BA AB =;(D )()111 ---+=+B A B A . 5. 如果向量β可由向量组s ααα,....,,21线性表出,则( D ) (A) 存在一组不全为零的数s k k k ,....,,21,使等式 s s k k k αααβ+++=....2211成立 (B) 存在一组全为零的数s k k k ,....,,21,使等式 s s k k k α ααβ+++=....2211成立 (C) 对β的线性表示式不唯一 (D) 向量组s αααβ,....,,,21线性相关 6. 齐次线性方程组0=Ax 有非零解的充要条件是( C ) (A)系数矩阵A 的任意两个列向量线性相关 (B) 系数矩阵A 的任意两个列向量线性无关 (C )必有一列向量是其余向量的线性组合 (D)任一列向量都是其余向量的线性组合 7. 设n 阶矩阵A 的一个特征值为λ,则(λA -1)2+I 必有特征值( C ) (a)λ2+1 (b)λ2-1 (c)2 (d)-2 8. 已知 ???? ? ??-=00000 123a A 与对角矩阵相似,则a =( A ) (a) 0 ; (b) -1 ; (c) 1 ; (d) 2 9. 设A ,B ,C 均为n 阶方阵,下面( D )不是运算律. (A )()A B C C B A ++=++)( ; (B )BC AC C B A +=+)(; (C ))()(BC A C AB =; (D )B AC C AB )()(=. 10. 下列矩阵( B )不是初等矩阵.

山东建筑大学线性代数试卷及答案

· ··········································································································装 订 线·································································································· 山 东 建 筑 大 学 试 卷 共 4 页 第 1 页 班级 _________ 姓名 _________学号 ______________

) · ··········································································································装 订 线··································································································

订线 ································································································· ·

···········································································································装订 线 ································································································· ·

土木工程线性代数山东大学网络教育考试模拟题及答案

09年11月期末本科《线性代数》参考解答 线性代数模拟题1 一.单选题. 1.下列( )是4级偶排列. (A ) 4321; (B) 4123; (C) 1324; (D) 2341. 答:A 2. 如果133 32 31 232221 131211 ==a a a a a a a a a D ,33 32 3131 23222121 13 1211111324324324a a a a a a a a a a a a D ---=,那么=1D ( ). (A ) 8; (B) 12-; (C) 24; (D) 24-. 答:D 3. 设A 与B 均为n n ?矩阵,满足O AB =,则必有( ). 答:C (A )O A =或O B =; (B )O B A =+; (C )0=A 或0=B ; (D ) 0=+B A . 4. 设A 为n 阶方阵)3(≥n ,而*A 是A 的伴随矩阵,又k 为常数,且1,0±≠k ,则 必 有 ()* kA 等于 ( ). 答:B (A )*kA ; (B )*1A k n -; (C )*A k n ; (D )*1A k -. 5.向量组s ααα,....,,21线性相关的充要条件是( ) 答:C (A )s ααα,....,,21中有一零向量 (B) s ααα,....,,21中任意两个向量的分量成比例 (C) s ααα,....,,21中有一个向量是其余向量的线性组合 (D) s ααα,....,,21中任意一个向量都是其余向量的线性组合 6. 已知21,ββ是非齐次方程组b Ax =的两个不同解,21,αα是0=Ax 的基础

线性代数经管类——重点难点总结

4184线性代数(经管类)——重点难点总结 1、设n 阶矩阵A 的各行元素之和均为0,且A 的秩为n -1,则齐次线性方程组Ax =0的通解为_K(1,1,1….1)T 2、设A 是n m ?矩阵,已知0=Ax 只有零解,则以下结论正确的是(A ) A .n m ≥ B .b Ax =(其中b 是m 维实向量)必有唯一解 C .m A r =)( D .0=Ax 存在基础解系 解:αααααααααααααααα 100 101 101)())(()())(()(T T T T T T T T ==, 由于)13(23)2,3(=??? ? ??=T αα, 所以10010010113)13()(==ααααT T ??? ? ??=???? ??=466913)2,3(2313100 100ααT (标准答案). 6、已知4321,,,αααα线性无关,证明:21αα+,32αα+,43αα+,14αα-线性无关. 证:设0)()()()(144433322211=-++++++ααααααααk k k k , 即0)()()()(443332221141=++++++-ααααk k k k k k k k ,

因为4321,,,αααα线性无关,必有??? ?? ??=+=+=+=-000043322141 k k k k k k k k , 只有04321====k k k k ,所以21αα+,32αα+,43αα+,14αα-线性无关. 7、设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则() A.A =0/A/=0? B.A =E C.r (A )=n D.0

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

相关文档
最新文档