pppd源代码分析

pppd源代码分析
pppd源代码分析

(一)PPP驱动程序的基本原理

PPP 协议之下是以太网和串口等物理层,之上是IP协议等网络层。这里,对于下层,我们只讨论串口的情况,对于上层,我们只讨论TCP/IP的情况。发送时,TCP/IP数据包经过PPP打包之后经过串口发送。接收时,从串口上来的数据经PPP解包之后上报给TCP/IP协议层。

pppd是一个后台服务进程(daemon),是一个用户空间的进程,所以把策略性的内容从内核的PPP协议处理模块移到pppd中是很自然的事了。pppd实现了所有鉴权、压缩/解压和加密/解密等扩展功能的控制协议。

在移动终端向监控中心发送定位信息的过程中,移动终端上的 GPRS 通信程序通过 socket 接口发送 TCP/IP 数据包,内核根据 IP 地址和路由表,找到 PPP 网络接口,然后调用函数 ppp_start_xmit( ),此时控制权就转移到了 PPP 协议模块。函数 ppp_start_xmit( ) 调用函数 ppp_xmit_process( ) 去发送队列中的所有数据包,而函数 ppp_xmit_process( ) 会进一步调用函数

ppp_send_frame( ) 去发送单个数据包。函数 ppp_send_frame( ) 根据前面pppd 对 PPP 协议模块的设置调用压缩等扩展功能之后,又经函数 ppp_push( ) 调用函数 pch->chan->ops->start_xmit( ) 发送数据包。函数

pch->chan->ops->start_xmit( ) 是具体的传输方式,对于串口发送方式,则是ppp_async.c:ppp_asynctty_open 中注册的函数 ppp_async_send( ),函数

ppp_async_send( ) 经函数 ppp_async_push( ) 调用函数

tty->driver->write( )(定义在低层驱动程序中)把数据发送到串口 2(GPRS 通信模块接在串口 2 上)。

ppp_async.c 在初始化时(ppp_async_init),调用函数

tty_register_ldisc( ) 向 tty 注册了行规程 N_PPP 的处理接口,也就是一组回调函数。在移动终端接收监控中心指令的过程中,当 GPRS 通信模块收到数据

时,就会回调 N_PPP 行规程中的函数 ppp_asynctty_receive( ) 来接收数据。函数 ppp_asynctty_receive( ) 调用函数 ppp_async_input( ) 把数据 buffer 转换成 sk_buff,并放入接收队列 ap->rqueue 中。ppp_async 另外有一个tasklet(ppp_async_process)专门处理接收队列 ap->rqueue 中的数据包,ppp_async_process 一直挂在接收队列 ap->rqueue 上,一旦被唤醒,它就调用函数 ppp_input( ) 让 PPP 协议模块处理该数据包。在函数 ppp_input( ) 中,数据被分成两路,一路是协议控制数据包,放入队列 pch->file.rqb 中,交给pppd 处理。另外一路是用户数据包,经函数 ppp_do_recv( )、

ppp_receive_frame( ) 进行 PPP 协议相关的处理后,再由函数 netif_rx( ) 提交给上层的 TCP/IP 协议模块进行处理,最后经 socket 接口传递给应用层的GPRS 通信程序。

=====================

1) ppp设备是指在点对点的物理链路之间使用PPP帧进行分组交换的内核网络接口设备,

由于Linux内核将串行设备作为终端设备来驱动,

于是引入PPP终端规程来实现终端设备与PPP设备的接口. 根据终端设备的物理传输特性的不同,

PPP规程分为异步规程(N_PPP)和同步规程(N_SYNC_PPP)两种, 对于普通串口设备使用异步PPP规程.

2) 在PPP驱动程序中, 每一tty终端设备对应于一条PPP传输通道(chanell),

每一ppp网络设备对应于一个PPP接口单元(unit).

从终端设备上接收到的数据流通过PPP传输通道解码后转换成PPP帧传递到PPP网络接口单元,

PPP接口单元再将PPP帧转换为PPP设备的接收帧.

反之, 当PPP设备发射数据帧时,发射帧通过PPP接口单元转换成PPP帧传递给PPP通道, PPP通道负责将PPP帧编码后写入终端设备.

在配置了多链路PPP时(CONFIG_PPP_MULTILINK), 多个PPP传输通道可连接到同一PPP接口单元. PPP接口单元将PPP帧分割成若干个片段传递给不同的PPP传输通道, 反之,

PPP传输通道接收到的PPP帧片段被PPP接口单元重组成完整的PPP帧.

3) 在Linux-2.4中, 应用程序可通过字符设备/dev/ppp监控内核PPP驱动程序.

用户可以用ioctl(PPPIOCATTACH)将文件绑定到PPP接口单元上, 来读写PPP接口单元的输出帧,

也可以用ioctl(PPPIOCATTCHAN)将文件绑定到PPP传输通道上, 来读写PPP传输通道的输入帧.

4) PPP传输通道用channel结构描述, 系统中所有打开的传输通道在all_channels链表中.

PPP接口单元用ppp结构描述, 系统中所有建立的接口单元在all_ppp_units链表中.

当终端设备的物理链路连接成功后, 用户使用ioctl(TIOCSETD)将终端切换到PPP规程.

PPP规程初始化时, 将建立终端设备的传输通道和通道驱动结构. 对于异步PPP规程来说,

通道驱动结构为asyncppp, 它包含通道操作表async_ops.

传输通道和接口单元各自包含自已的设备文件(/dev/ppp)参数结构(ppp_file).

/dev/ppp

设备文件/dev/ppp。通过read系统调用,pppd可以读取PPP协议处理模块的数据包,当然,PPP协议处理模块只会把应该由pppd处理的数据包发给pppd。通过write系统调用,pppd可以把要发送的数据包传递给PPP协议处理模块。通过ioctrl系统调用,pppd可以设置PPP协议的参数,可以建立/关闭连接。在pppd里,每种协议实现都在独立的C文件中,它们通常要实现protent接口,该接口主要用于处理数据包,和fsm_callbacks接口,该接口主要用于状态机的状态切换。数据包的接收是由main.c: get_input统一处理的,然后根据协议类型分发到具体的协议实现上。而数据包的发送则是协议实现者根据需要调用outp ut函数完成的。

static const struct file_operations ppp_device_fops = {

.owner = THIS_MODULE,

.read = ppp_read,

.write = ppp_write,

.poll = ppp_poll,

.unlocked_ioctl = ppp_ioctl,

.open = ppp_open,

.release = ppp_release

};

()ppp_init(void)

err = register_chr dev(PPP_MAJOR, "ppp", &ppp_device_fops);

()ppp_async_init(void)

tty_register_ldisc(N_PPP, &ppp_ldisc);

(二)ppp相关数据结构

struct ppp {

struct ppp_file file; /* stuff for read/write/poll 0 */

struct file *owner; /* file that owns this unit 48 */

struct list_head channels; /* list of attached channels 4c */

int n_channels; /* how many channels are attached 54 */

spinlock_t rlock; /* lock for receive side 58 */

spinlock_t wlock; /* lock for transmit side 5c */

int mru; /* max receive unit 60 */

unsigned int flags; /* control bits 64 */

unsigned int xstate; /* transmit state bits 68 */

unsigned int rstate; /* receive state bits 6c */

int debug; /* debug flags 70 */

struct slcompress *vj; /* state for VJ header compression */

enum NPmode n pmode[NUM_NP]; /* what to do with each net proto 78 */ struct sk_buff *xmit_pending; /* a packet ready to go out 88 */

struct compressor *xcomp; /* transmit packet compressor 8c */

void *xc_state; /* its internal state 90 */

struct compressor *rcomp; /* receive decompressor 94 */

void *rc_state; /* its internal state 98 */

unsigned long last_xmit; /* jiffies when last pkt sent 9c */

unsigned long last_recv; /* jiffies when last pkt rcvd a0 */

struct net_device *dev; /* network interface device a4 */

int closing; /* is device closing down? a8 */

#ifdef CONFIG_PPP_MULTILINK

int nxchan; /* next channel to send something on */

u32 nxseq; /* next sequence number to send */

int mrru; /* MP: max reconst. receive unit */

u32 nextseq; /* MP: seq no of next packet */

u32 minseq; /* MP: min of most recent seqnos */

struct sk_buff_head mrq; /* MP: receive reconstruction queue */

#endif /* CONFIG_PPP_MULTILINK */

#ifdef CONFIG_PPP_FILTER

struct sock_filter *pass_filter; /* filter for packets to pass */

struct sock_filter *active_filter;/* filter for pkts to reset idle */

unsigned pass_len, active_len;

#endif /* CONFIG_PPP_FILTER */

struct net *ppp_net;/* the net we belong to */

};

struct channel {

struct ppp_file file; /* stuff for read/write/poll */

struct list_head list; /* link in all/new_channels list */

struct ppp_channel *chan; /* public channel data structure */

struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */

spinlock_t downl; /* protects `chan', file.xq dequeue */

struct ppp *ppp; /* ppp unit we're connected to */

struct net *chan_net; /* the net channel belongs to */

struct list_head clist; /* link in list of channels per unit */

rwlock_t upl; /* protects `ppp' */

#ifdef CONFIG_PPP_MULTILINK

u8 avail; /* flag used in multilink stuff */

u8 had_frag; /* >= 1 fragments have been sent */

u32 lastseq; /* MP: last sequence # received */

int speed; /* speed of the corresponding ppp channel*/

#endif /* CONFIG_PPP_MULTILINK */

};

struct ppp_file {

enum {

INTERFACE=1, CHANNEL

} kind;

struct sk_buff_head xq; /* pppd transmit queue */ /*传输队列*/

struct sk_buff_head rq; /* receive queue for pppd */ /*发送队列*/

wait_queue_head_t rwait; /* for poll on reading /dev/ppp */

atomic_t refcnt; /* # refs (incl /dev/ppp attached) */

int hdrlen; /* space to leave for headers */

int index; /* interface unit / channel number */

int dead; /* unit/channel has been shut down */

};

struct ppp_channel {

void *private; /* channel private data */

struct ppp_channel_ops *ops; /* operations for this channel */

int mtu; /* max transmit packet size */

int hdrlen; /* amount of headroom channel needs */

void *ppp; /* opaque to channel */

int speed; /* transfer rate (bytes/second) */

/* the following is not used at present */

int latency; /* overhead time in milliseconds */

};

struct ppp_channel_ops {

/* Send a packet (or multilink fragment) on this channel.

Returns 1 if it was accepted, 0 if not. */

int (*start_xmit)(struct ppp_channel *, struct sk_buff *);

/* Handle an ioctl call that has come in via /dev/ppp. */

int (*ioctl)(struct ppp_channel *, unsigned int, unsigned long);

};

static struct ppp_channel_ops async_ops = {

ppp_async_send,

ppp_async_ioctl

};

(三)ppp内核发送数据过程

应用程序通过socket 接口发送TCP/IP数据包,这些TCP/IP数据包如何流经PPP协议处理模块,然后通过串口发送出去呢?pppd在make_ppp_unit函数调用

ioctrl(PPPIOCNEWUNIT)创建一个网络接口(如ppp0),内核中的PPP协议模块在处理PPPIOCNEWUNIT时,调用register_netdev向内核注册ppp的网络接口,该网络接口的传输函数指向ppp_start_xmit。当应用程序发送数据时,内核根据IP地址和路由表,找到ppp网络接口,然后调用ppp_start_xmit函数,此时控制就转移到PPP协议处理模块了。

ppp_start_xmit调用函数ppp_xmit_process去发送队列中的所有数据包,

ppp_xmit_proces s又调用ppp_send_frame去发送单个数据包,

ppp_send_frame根据设置,调用压缩等扩展处理之后,又经ppp_push调用

pch->chan->ops->start_xmit发送数据包。pch->chan->ops->start_xmit是什么?它就是具体的传输方式了,比如说对于串口发送方式,则是ppp_async.c:

ppp_asynctty_open中注册的ppp_async_send函数,ppp_async_send经

ppp_async_push函数调用tty->driver->write把数据发送串口。

ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)

ppp_xmit_process(struct ppp *ppp)

ppp_push(struct ppp *ppp)

pch->chan->ops->start_xmit(pch->chan, skb)

ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb)

ppp_async_push(struct asyncppp *ap)

tty->ops->write(tty, ap->optr, avail)

(四)ppp内核接受数据过程

接收数据的情形又是如何的?ppp_async.c在初始化(ppp_async_init),调用

tty_register_ldisc向tty注册了行规程处理接口,也就是一组回调函数,当串口tty收到数据时,它就会回调ppp_ldisc的

ppp_asynctty_receive函数接收数据。ppp_asynctty_receive调用

ppp_async_input把数据buffer转换成sk_buff,并放入接收队列ap->rqueue中。ppp_async另外有一个tasklet(ppp_async_process)专门处理接收队列

ap->rqueue中的数据包,ppp_async_process一直挂在接收队列ap->rqueue

上,一旦被唤醒,它就调用ppp_input函数让PPP协议处理模块处理该数据包。

在ppp_input函数中,数据被分成两路,一路是控制协议数据包,放入

pch->file.rqb队列,交给pppd处理。另外一路是用户数据包,经

ppp_do_recv/ppp_receive_frame进行PPP处理之后,再由netif_rx提交给上层协议处理,最后经socket传递到应用程序。

ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf,

char *cflags, int count)

ppp_async_input(ap, buf, cflags, count);

ppp_async_process(unsigned long arg)

ppp_input(struct ppp_channel *chan, struct sk_buff *skb)

{

if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {

/* put it on the channel queue */

skb_queue_tail(&pch->file.rq, skb); //是控制协议数据包,放入pch->file.rqb队列,交给pppd处理。

/* drop old frames if queue too long */

while (pch->file.rq.qlen > PPP_MAX_RQLEN

&& (skb = skb_dequeue(&pch->file.rq)))

kfree_skb(skb);

wake_up_interruptible(&pch->file.rwait);

}

else {

ppp_do_recv(pch->ppp, skb, pch); //进行PPP处理之后,再由netif_rx提交给上层协议处理

}

}

(五)pppd代码整体框架流程

整个程序的主体实现是从主函数的LCP_OPEN()开始的,在这个函数里,调用了有限状态机FSM_OPEN(),而在FSM_OPEN()中,callback指针指向了starting,于是就到了LCP_STARTING()函数来实现一个OPEN 事件从而使得PPP状态准备从DEAD到ESTABLISHED的转变。接下来,回到主函数,下面一步是调用START_LINK(),在此函数中会把一个串口设备作为PPP的接口,并把状态转变为ESTABLISHED,然后调用lcp_lowerup()来告诉上层底层已经UP,lcp_lowerup()中调用FSM_LOWERUP()来发送一个configure-request请求,再把当前状态设置为REQSENT状态,至此,第一个LCP协商的报文已经发送出去。

接下来的流程实现主要就是在这个while循环中实现了。之前说过了我们已经发送了第一个配置协商报文,所以handle_events()主要就是做等待接收数据包的时间处理了,在handle_events()里主要调用了两个函数一个是wait_input(),他的任务是等待并判断是否超时。还有一个是calltimeout()他主要是做超时的处理。当等待并未超时而且有数据包过来,则调用整个PPPD中最重要的函数get_input()函数。他主要接收过来的数据包并做出相应的动作。接下来就get_input()函数进行详细的说明,首先对包进行判断,丢弃所有不在LCP阶段和没有OPENED状态的包,然后protop指针指向当前协议的input函数。于是就进入了

LCP_INPUT(),同理LCP_INPUT()调用了FSM_INPUT()对收到的包进行代码域的判断,判断收到的是什么包。假设比较顺利,我们收到的是CONFACK的包,于是调用fsm_rconack()函数,在此函数中根据当前自身的状态来决定下一步的状态如何改变,这里我们假设也很顺利,已经发送完了configure-ack,因此我们把FSM当前状态变成了OPENED状态,并把callback指针指向UP.所以我们马上就调用LCP_UP()在那里我们又调用了link_established()函数来进入认证的协商,或者如果没有认证则直接进入网络层协议。当然这里我们还是要认证的所有在LINK_ESTABLISHED()里我们选择是利用何种认证方式是PAP,还是EAP,还是CHAP.假设我们这里采用CHAP而且是选择CHAP WITH PEER,意思是等待对端先发送CHALLENGE挑战报文。于是我们又调用了chap_auth_peer()函数,并等待接收挑战报文。于是从新又来到handle_events()等待接收。再利用get_input()来接收包,在get_input()里这次调用chap_input(),再调用FSM_INPUT(),在那里我们再对包的代码域进行判断,这次判断出是CHAP_CHALLENGE包,则我们要调用chap_respond()函数来回应对端,继续等待对方的报文,再次利用CHAP_INPUT(),FSM_INPUT()来判断,如果是SUCCESS,则调用chap_handle_status(),在这个函数里调用auth_withpeer_success 函数,从而进入网络层阶段,调用network_phase()函数。网络层的互动是从start_networks()开始的,如果在网络层阶段同时有CCP协议(压缩控制协议)则进行压缩控制协议的协商,然后再进入正式的IPCP的协商,而IPCP的协商主要也是通过protop指针指向IPCP_OPEN()开始的。而IPCP_OPEN()则是调用了FSM_OPEN(),在这里,首先发送一个configure-request包,然后和之前一样等待接收。经过几个交互后最后调用NP_UP()完成网络层的协商,至此PPP链路可以承载网络层的数据包了。

(六)pppd程序接受数据过程

Example:

get_input()

read_packet (unsigned char *buf) //get a PPP packet from the serial device read(ppp_fd, buf, len);

(*protp->input)(0, p, len);-------》lcp_input(unit, p, len)

fsm_input(f, inpacket, l)

(七)pppd程序发送数据过程

Example:

start_link(unit)

lcp_lowerup(0);

fsm_lowerup(f)

fsm_sdata(f, code, id, data, datalen)

output (int unit, unsigned char *p, int len)

write(fd, p, len)

(八)pppoe内核接受数据过程

(九)pppoe内核发送数据过程

(十)pppoe程序接受数据过程

(十一)pppoe程序发送数据过程

discovery(conn);

sendPADI(conn);

waitForPADO(conn, timeout);

parsePacket(&packet, parsePADOTags, &pc);

sendPADR(conn);

waitForPADS(conn, timeout);

receivePacket(conn->discoverySocket, &packet, &len);

parsePacket(&packet, parsePADSTags, conn)

(十二)chat工具分析

启动命令:/usr/sbin/chat -s -v -d /dev/ttyUSB1 –f /etc/ppp/peers/ZTE_LTE_connect_AT

gcc编译器使用简明指南

gcc编译器使用简明指南 gcc对文件的处理需要经过预处理->编译->汇编->链接的步骤,从而产生一个可执行文件,各部分对应不同的文件类型,具体如下: file.c c程序源文件 file.i c程序预处理后文件 file.cxx c++程序源文件,也可以是https://www.360docs.net/doc/6617687725.html, / file.cpp / file.c++ file.ii c++程序预处理后文件 file.h c/c++头文件 file.s 汇编程序文件 file.o 目标代码文件 gcc [选项]文件列表 -ansi 强制完全ANSI一致 -c 仅编译或汇编,生成目标代码文件,将.c、.i、.s等文件生成.o文件,其余文件被忽略 -S 仅编译,不进行汇编和链接,将.c、.i等文件生成.s文件,其余文件被忽略 -E 仅预处理,并发送预处理后的.i文件到标准输出,其余文件被忽略 -o file 创建可执行文件并保存在file中,而不是默认文件a.out -g 产生用于调试和排错的扩展符号表,用于GDB调试,切记-g和-O通常不能一起使用 -w 取消所有警告 -W 给出更详细的警告 -O [num]优化,可以指定0-3作为优化级别,级别0表示没有优化 -x language 默认为-x none,即依靠后缀名确定文件类型,加上-x lan确定后面所有文件类型,直到下一个-x出现为止 -D macro[=]类似于源程序里的#define,在-D macro中的macro可被源程序识别,例如gcc -D NUM -D FILE=\"bbs.txt\" hello.c -o hello,第一个-D选项定义宏NUM,在程序中可以使用#ifdef来检查是否被设置,第二个-D定义宏FILE,在源程序中可用 -U macro 类似于源程序开头定义#undef macro,也就是取消源程序中的某个宏定义

词法分析器实验报告及源代码

数学与软件科学学院实验报告 学期:13至14__ 第_2 学期 2014年3月17 日 课程名称:编译原理专业:2011级5_班 实验编号:01 实验项目:词法分析器指导教师_王开端 姓名:张世镪学号: 2011060566 实验成绩: 一、目的 学习编译原理,词法分析是编译的第一个阶段,其任务是从左至右挨个字符地对源程序进行扫描,产生一个个单词符号,把字符串形式的源程序改造成单词符号串形式的中间程序。执行词法分析的程序称为词法分析程序,也称为词法分析器或扫描器。词法分析器的功能是输入源程序,输出单词符号 做一个关于C的词法分析器,C++实现 二、任务及要求 1.词法分析器产生下述C的单词序列 这个C的所有的单词符号,以及它们的种别编码和内部值如下表: -* / & <<=>>===!= && || , : ; { } [ ] ( ) ID和NUM的正规定义式为: ID→letter(letter | didit)* NUM→digit digit* letter→a | … | z | A | … | Z

digit→ 0 | … | 9 如果关键字、标识符和常数之间没有确定的算符或界符作间隔,则至少用一个空格作间隔。空格由空白、制表符和换行符组成。 三、大概设计 1. 设计原理 词法分析的任务:从左至右逐个字符地对源程序进行扫描,产生一个个单词符号。 理论基础:有限自动机、正规文法、正规式 词法分析器又称扫描器:执行词法分析的程序 2. 词法分析器的功能和输出形式 功能:输入源程序、输出单词符号 程序语言的单词符号一般分为以下五种:关键字、标识符、常数、运算符、界符。3. 输出的单词符号的表示形式: (单词种别,单词符号的属性值) 单词种别用整数编码,关键字一字一种,标识符统归为一种,常数一种,各种符号各一种。 4. 状态转换图实现

GCC常见错误解析

GCC常见错误解析 一、错误类型 第一类∶C语法错误 错误信息∶文件source.c中第n行有语法错误(syntex errror)。 这种类型的错误,一般都是C语言的语法错误,应该仔细检查源代码文件中第n行及该行之前的程序,有时也需要对该文件所包含的头文件进行检查。 有些情况下,一个很简单的语法错误,gcc会给出一大堆错误,此时要保持清醒的头脑,不要被其吓倒,必要的时候再参考一下C语言的基本教材。 第二类∶头文件错误 错误信息∶找不到头文件head.h(Can not find include file head.h)。 这类错误是源代码文件中的包含头文件有问题,可能的原因有头文件名错误、指定的头文件所在目录名错误等,也可能是错误地使用了双引号和尖括号。 第三类∶档案库错误 错误信息∶连接程序找不到所需的函数库,例如∶ld: -lm: No such file or directory. 这类错误是与目标文件相连接的函数库有错误,可能的原因是函数库名错误、指定的函数库所在目录名称错误等,检查的方法是使用find命令在可能的目录中寻找相应的函数库名,确定档案库及目录的名称并修改程序中及编译选项中的名称。第四类∶未定义符号 错误信息∶有未定义的符号(Undefined symbol)。 这类错误是在连接过程中出现的,可能有两种原因∶一是使用者自己定义的函数或者全局变量所在源代码文件,没有被编译、连接,或者干脆还没有定义,这需要使用者根据实际情况修改源程序,给出全局变量或者函数的定义体;二是未定义的符号是一个标准的库函数,在源程序中使用了该库函数,而连接过程中还没有给定相应的函数库的名称,或者是该档案库的目录名称有问题,这时需要使用档案库维护命令ar检查我们需要的库函数到底位于哪一个函数库中,确定之后,修改gcc 连接选项中的-l和-L项。 排除编译、连接过程中的错误,应该说这只是程序设计中最简单、最基本的一个步骤,可以说只是开了个头。这个过程中的错误,只是我们在使用C语言描述一个算法中所产生的错误,是比较容易排除的。我们写一个程序,到编译、连接通过为止,应该说刚刚开始,程序在运行过程中所出现的问题,是算法设计有问题,说得更玄点是对问题的认识和理解不够,还需要更加深入地测试、调试和修改。一个程序,稍为复杂的程序,往往要经过多次的编译、连接和测试、修改。 二、常见错误信息解析与处理 1

1、GCC编译器的使用

linux下gcc编译器的使用 1、文件后缀名 .c C 源程序 .C C++ 源程序 .cc C++ 源程序 .cxx C++ 源程序 .m Objective –C源程序 .i 预处理过的c源程序 .ii 预处理过的C++源程序 .s 组合语言源程序 .S 组合语言源程序 .h 头文件 .o 目标文件 .a 存档文件 2、GCC常用选项 -c 通知GCC取消链接步骤,即编译源码并在最后生成目标文件; -Dmacro定义指定的宏,使它能够通过源码中的#ifdef进行检验 #define -static 指定程序编译时采用静态编译的方法; -E 不经过编译预处理程序的输出而输送至标准输出; -g获得有关调试程序的详细信息,它不能与-o选项联合使用; -Idirectory在包含文件搜索路径的起点处添加指定目录; -llibrary提示链接程序在创建最终可执行文件时包含指定的库; -O、-O2、-O3将优化状态打开,该选项不能与-g选项联合使用; -S要求编译程序生成来自源代码的汇编程序输出; -v启动所有警报; -Wall发生警报时取消编译操作,即将警报看作是错误; -Werror在发生警报时取消编译操作,即把报警当作是错误; -w 禁止所有的报警。 目前Linux下最常用的C语言编译器是GCC(GNU Compiler Collection),它是GNU项目中符合ANSI C标准的编译系统,能够编译用C、C++和Object C等语言编写的程序。GCC不仅功能非常强大,结构也异常灵活。最值得称道的一点就是它可以通过不同的前端模块来支持各种语言,如Java、 Fortran、Pascal、Modula-3和Ada等。开放、自由和灵活是Linux的魅力所在,而这一点在GCC上的体现就是程序员通过它能够更好地控制整个编译过程。

语法分析器源代码

#include #include #include #define HIGHER 1 #define LOWER -1 #define EQUAL 0 #define TRUE 1 #define FALSE 0 #define OPER_NUM 50 //默认算符数目 #define VN_NUM 50 //默认非终结符数目#define MAX_BUFFER 128 //每行输入行最大长度 #define MAX_GRA_NUM 20 //最大文法数目#define EMPTY -2 //算符优先表初始值,表示这对算符没有优先关系 #define STACK_SIZE 64 typedef struct { char c; //非终极符符号 int firstvt[OPER_NUM]; //firstvt集,保存算符在oper_list中的下标 int fir_n,last_n; int lastvt[OPER_NUM]; }vn_t; int prior_table[OPER_NUM][OPER_NUM]; char oper_list[OPER_NUM]; int oper_num = 0; vn_t vn_list[VN_NUM]; int vn_num = 0; char *grammar[MAX_GRA_NUM][2]; int gra_num = 0; char start_vn; char stack[STACK_SIZE]; int top = 0; void get_input(char *buf); int buf_deal(char* buf); void get_FIRVT_LASTVT(int vn_n);

GCC编译选项

Linux中gcc,g++常用编译选项 -x language filename 设定文件所使用的语言,使后缀名无效,对以后的多个有效.也就是根据约定,C语言的后缀名称是.c的,而C++的后缀名是.C或者.cpp,如果你很个性,决定你的C代码文件的后缀名是. pig 哈哈,那你就要用这个参数,这个参数对他后面的文件名都起作用,除非到了下一个参数的使用。可以使用的参数有下面的这些: `c', `objective-c', `c-header', `c++', `cpp-output', `assembler', and `a ssembler-with-cpp'. 看到英文,应该可以理解的。 例子用法: cd.. gcc -x c hello.pig -x none filename 关掉上一个选项,也就是让gcc根据文件名后缀,自动识别文件类型 例子用法: gcc -x c hello.pig -x none hello2.c -c 只激活预处理,编译,和汇编,也就是他只把程序做成obj文件 例子用法: gcc -c hello.c 他将生成.o的obj文件 -S 只激活预处理和编译,就是指把文件编译成为汇编代码。 例子用法 gcc -S hello.c 他将生成.s的汇编代码,你可以用文本编辑器察看 -E 只激活预处理,这个不生成文件,你需要把它重定向到一个输出文件里面. 例子用法: gcc -E hello.c > pianoapan.txt gcc -E hello.c | more 慢慢看吧,一个hello word 也要预处理成800行的代码 -o 制定目标名称,缺省的时候,gcc 编译出来的文件是a.out,很难听,如果你和我有同感,改掉它,哈哈 例子用法 gcc -o hello.exe hello.c (哦,windows用习惯了) gcc -o hello.asm -S hello.c -pipe 使用管道代替编译中临时文件,在使用非gnu汇编工具的时候,可能有些问题 gcc -pipe -o hello.exe hello.c

编译原理课程设计-词法分析器(附含源代码)

编译原理-词法分析器的设计 一.设计说明及设计要求 一般来说,编译程序的整个过程可以划分为五个阶段:词法分析、语法分析、中间代码生成、优化和目标代码生成。本课程设计即为词法分析阶段。词法分析阶段是编译过程的第一个阶段。这个阶段的任务是从左到右一个字符一个字符地读入源程序,对构成源程序的字符流进行扫描和分解,从而识别出一个个单词(也称单词符号或符号)。如保留字(关键字或基本字)、标志符、常数、算符和界符等等。 二.设计中相关关键字说明 1.基本字:也称关键字,如C语言中的 if , else , while , do ,for,case,break, return 等。 2.标志符:用来表示各种名字,如常量名、变量名和过程名等。 3.常数:各种类型的常数,如12,6.88,和“ABC” 等。 4.运算符:如 + ,- , * , / ,%, < , > ,<= , >= 等。5.界符,如逗点,冒号,分号,括号,# ,〈〈,〉〉等。 三、程序分析 词法分析是编译的第一个阶段,它的主要任务是从左到右逐个字符地对源 程序进行 扫描,产生一个个单词序列,用以语法分析。词法分析工作可以是独立的一遍,把字符流的源程序变为单词序列,输出在一个中间文件上,这个文件做为语法分析程序的输入而继续编译过程。然而,更一般的情况,常将

词法分析程序设计成一个子程序,每当语法分析程序需要一个单词时,则 调用该子程序。词法分析程序每得到一次调用,便从源程序文件中读入一 些字符,直到识别出一个单词,或说直到下一个单词的第一个字符为止。 四、模块设计 下面是程序的流程图 五、程序介绍 在程序当前目录里建立一个文本文档,取名为infile.txt,所有需要分析的程序都写在此文本文档里,程序的结尾必须以“@”标志符结束。程序结果输出在同一个目录下,文件名为outfile.txt,此文件为自动生成。本程序所输出的单词符号采用以下二元式表示:(单词种别,单词自身的值)如程序输出结果(57,"#")(33,"include")(52,"<")(33,"iostream") 等。 程序的功能:(1)能识别C语言中所有关键字(共32个)(单词种别分别为1 — 32 ,详情见程序代码相关部分,下同) (2)能识别C语言中自定义的标示符(单词种别为 33) (3)能识别C语言中的常数(单词种别为0) (4)能识别C语言中几乎所有运算符(单词种别分别为41 — 54) (5)能识别C语言中绝大多数界符(单词种别分别为 55 — 66)六、运行结果 输入文件infile.txt 运行结果(输出文件 outfile.txt)

arm-linux-gcc 常用参数讲解 gcc编译器使用方法

arm-linux-gcc常用参数讲解gcc编译器使用方法 我们需要编译出运行在ARM平台上的代码,所使用的交叉编译器为arm-linux-gcc。下面将arm-linux-gcc编译工具的一些常用命令参数介绍给大家。 在此之前首先介绍下编译器的工作过程,在使用GCC编译程序时,编译过程分为四个阶段: 1. 预处理(Pre-Processing) 2. 编译(Compiling) 3. 汇编(Assembling) 4. 链接(Linking) Linux程序员可以根据自己的需要让GCC在编译的任何阶段结束,以便检查或使用编译器在该阶段的输出信息,或者对最后生成的二进制文件进行控制,以便通过加入不同数量和种类的调试代码来为今后的调试做好准备。和其它常用的编译器一样,GCC也提供了灵活而强大的代码优化功能,利用它可以生成执行效率更高的代码。 以文件example.c为例说明它的用法 0. arm-linux-gcc -o example example.c 不加-c、-S、-E参数,编译器将执行预处理、编译、汇编、连接操作直接生成可执行代码。 -o参数用于指定输出的文件,输出文件名为example,如果不指定输出文件,则默认输出 a.out 1. arm-linux-gcc -c -o example.oexample.c -c参数将对源程序example.c进行预处理、编译、汇编操作,生成example.0文件 去掉指定输出选项"-o example.o"自动输出为example.o,所以说在这里-o加不加都可以 2.arm-linux-gcc -S -o example.sexample.c -S参数将对源程序example.c进行预处理、编译,生成example.s文件 -o选项同上 3.arm-linux-gcc -E -o example.iexample.c -E参数将对源程序example.c进行预处理,生成example.i文件(不同版本不一样,有的将预处理后的内容打印到屏幕上) 就是将#include,#define等进行文件插入及宏扩展等操作。 4.arm-linux-gcc -v -o example example.c 加上-v参数,显示编译时的详细信息,编译器的版本,编译过程等。 5.arm-linux-gcc -g -o example example.c -g选项,加入GDB能够使用的调试信息,使用GDB调试时比较方便。 6.arm-linux-gcc -Wall -o example example.c -Wall选项打开了所有需要注意的警告信息,像在声明之前就使用的函数,声明后却没有使用的变量等。 7.arm-linux-gcc -Ox -o example example.c -Ox使用优化选项,X的值为空、0、1、2、3 0为不优化,优化的目的是减少代码空间和提高执行效率等,但相应的编译过程时间将较长并占用较大的内存空间。 8.arm-linux-gcc -I /home/include -o example example.c -Idirname: 将dirname所指出的目录加入到程序头文件目录列表中。如果在预设系统及当前目录中没有找到需要的文件,就到指定的dirname目录中去寻找。 9.arm-linux-gcc -L /home/lib -o example example.c

最新GCC编译器选项及优化提示

G C C编译器选项及优 化提示

GCC编译器选项及优化提示 GCC编译器选项及优化提示2010-08-01 19:41很多弟兄可能都很关心如何优化编译自己的程序,虽然本人不赞成"骨灰"玩法,却也不得不承认这是掌握gcc的绝佳途径; 因此献上此帖,以供各位玩家参考,绝对原创噢 = 大多数程序和库在编译时默认的优化级别是"2"(使用gcc选项:"-O2")并且在Intel/AMD平台上默认按照i386处理器来编译。 如果你只想让编译出来的程序运行在特定的平台上,就需要执行更高级的编译器优化选项,以产生只能运行于特定平台的代码。 一种方法是修改每个源码包中的Makefile文件,在其中寻找CFLAGS和CXXFLAGS变量(C和C++编译器的编译选项)并修改它的值。 一些源码包比如binutils,gcc,glibc等等,在每个子文件夹中都有Makefile文件,这样修改起来就太累了! 另一种简易做法是设置CFLAGS和CXXFLAGS环境变量。大多数configure 脚本会使用这两个环境变量代替Makefile文件中的值。 但是少数configure脚本并不这样做,他们必须需要手动编辑才行。 为了设置CFLAGS和CXXFLAGS环境变量,你可以在bash中执行如下命令(也可以写进.bashrc以成为默认值): export CFLAGS="-O3-march="&&CXXFLAGS=$CFLAGS 这是一个确保能够在几乎所有平台上都能正常工作的最小设置。

"-march"选项表示为特定的cpu类型编译二进制代码(不能在更低级别的cpu上运行), Intel通常是: pentium2,pentium3,pentium3m,pentium4,pentium4m,pentium- m,prescott,nocona 说明:pentium3m/pentium4m是笔记本用的移动P3/P4;pentium-m是迅驰I/II代笔记本的cpu; prescott是带SSE3的P4(以滚烫到可以煎鸡蛋而闻名);nocona则是最新的带有EMT64(64位)的P4(同样可以煎鸡蛋) AMD通常是:k6,k6-2,k6-3,athlon,athlon-tbird,athlon-xp,athlon-mp,opteron,athlon64,athlon-fx 用AMD的一般都是DIYer,就不必解释了吧。 如果编译时没有抱怨"segmentation fault,core dumped",那么你设定的"-O"优化参数一般就没什么问题。 否则请降低优化级别("-O3"-"-O2"-"-O1"-取消)。 个人意见:服务器使用"-O2"就可以了,它是最安全的优化参数(集合);桌面可以使用"-O3"; 不鼓励使用过多的自定义优化选项,其实他们之间没什么明显的速度差异(有时"-O3"反而更慢)。 编译器对硬件非常敏感,特别是在使用较高的优化级别的时候,一丁点的内存错误都可能导致致命的失败。 所以在编译时请千万不要超频你的电脑(我编译关键程序时总是先降频然的)。

vi编辑器及GCC编译器的使用

实验三vi编辑器及GCC编译器的使用 【实验目的】 一、掌握文本编辑器vi的使用方法 二、了解GNU gcc编译器 三、掌握使用GCC编译C语言程序的方法 【实验内容】 一、vi的三种工作模式: 1、命令模式:执行相关文本编辑命令 2、输入模式:输入文本 3、末行模式:实现查找、替换、保存、多文件操作等等功能 二、进入vi,直接在Shell提示符下键入vi [文件名称],如果该文件在当前目录不存在,则vi创建之。 三、退出vi 1、在命令模式下输入“:wq”,保存文件并退出vi 2、若不需要保存文件,输入“:q” 3、若文件已修改,但不保存,输入“:q!”强制退出vi 4、其它一些不常用的方法在此省略。 四、命令模式下的常用编辑命令 1、启动vi后,进入的是vi的命令模式 2、按i键,进入输入模式,可以进行文本的编辑,在输入模式下,按esc 键,可切换回命令模式 i:光标位置不变,可在光标左侧插入正文 a:光标位置向后退一格,可在光标左侧插入正文 o:在光标所在行的下一行增添新行 O:在光标所在行的上一行增添新行 I:光标跳到当前行的开头 A:光标跳到当前行的末尾 3、光标的移动 k、j、h、l分别等同于上、下、左、右箭头键 Ctrl+b,向上翻一页 Ctrl+f,向下翻一页 nH,将光标移到屏幕的第n行 nL,将光标移到屏幕的倒数第n行 4、删除文本 nX,删除光标所指向的前n个字符 D,删除光标右侧的所有字符(包括光标所指向的字符) db,删除光标左侧的全部字符 ndd,删除当前行和当前行以后的n行内容 5、粘贴和复制 p,将缓冲区的内容粘贴到当前字符的右侧

P,将缓冲区的内容粘贴到当前字符的左侧 yy,复制当前行到内存缓冲区 nyy,复制n行内容到内存缓冲区 6、搜索字符串 /str1,正向搜索字符串str1 n,继续搜索 ?str2,反向搜索字符串str2 7、撤销和重复 u,撤销前一条命令的执行结果 .,重复最后一条命令 五、末行模式下的命令 :n,将光标移动到第n行 :nw file,将第n行写入file文件 :n,mw file,将第n行至第m行写入file文件 :w,将编辑的内容写入原始文件 :wq,将编辑的内容写入原始文件并退出编辑程序 :w file,将编辑的内容写入file文件,保持原有文件的内容不变 :f file,将当前文件重命名为file :e file,编辑新文件file代替原有内容 :f,打印当前文件的状态,如文件的行数,光标所在的行号等 :!<命令>,执行相应shell命令 六、三种工作模式的切换 1、在Linux shell下,键入vi或vi <文件名>进入命令模式 2、在命令模式下,键入:进入末行模式 3、在命令模式下,键入文本编辑命令如i,a,o等进入文本输入模式 4、在文本输入模式下,按esc键进入命令模式 5、在末行模式下,按backspace键或del键进入命令模式 6、在末行模式下,键入q或wq,退出vi,饭后到Linux shell下 GCC编译器的使用 一、使用vi或其它文本编辑器,输入C语言程序,并保存为test.c 二、在Linux shell下,输入命令gcc –o test test.c 三、编译正确后,输入命令./test运行程序,观察程序运行结果 四、若编译错误,根据提示信息,进入程序查错,再回到第二步,直至程序 语法无误。 附:GCC使用方法和常用选项 使用GCC编译C程序生成可执行文件需要经历4个步骤: 1、预处理,这一步需要分析各种命令,如#define、#include、#ifdef 等。Gcc调用cpp程序来进行预处理 2、编译,这一步将根据输入文件产生汇编语言,gcc调用ccl进行编 译工作

实验一、词法分析器(含源代码)

词法分析器实验报告 一、实验目的及要求 本次实验通过用C语言设计、编制、调试一个词法分析子程序,识别单词,实现一个C语言词法分析器,经过此过程可以加深对编译器解析单词流的过程的了解。 运行环境: 硬件:windows xp 软件:visual c++6.0 二、实验步骤 1.查询资料,了解词法分析器的工作过程与原理。 2.分析题目,整理出基本设计思路。 3.实践编码,将设计思想转换用c语言编码实现,编译运行。 4.测试功能,多次设置包含不同字符,关键字的待解析文件,仔细察看运行结果,检测该分析器的分析结果是否正确。通过最终的测试发现问题,逐渐完善代码中设置的分析对象与关键字表,拓宽分析范围提高分析能力。 三、实验内容 本实验中将c语言单词符号分成了四类:关键字key(特别的将main说明为主函数)、普通标示符、常数和界符。将关键字初始化在一个字符型指针数组*key[]中,将界符分别由程序中的case列出。在词法分析过程中,关键字表和case列出的界符的内容是固定不变的(由程序中的初始化确定),因此,从源文件字符串中识别出现的关键字,界符只能从其中选取。标识符、常数是在分析过程中不断形成的。 对于一个具体源程序而言,在扫描字符串时识别出一个单词,若这个单词的类型是关键字、普通标示符、常数或界符中之一,那么就将此单词以文字说明的形式输出.每次调用词法分析程序,它均能自动继续扫描下去,形成下一个单词,直到整个源程序全部扫描完毕,从而形成相应的单词串。 输出形式例如:void $关键字

流程图 、程序 流程图: 开始 输入源文件路径 路径是否有 效 是初始化文件指针 否 将字符加入字符数 组Word[] 是空格,空白或换 行吗 是字母吗是数字吗否否是界符吗否打开源文件 跳过该字符 是是 文件结束? 否 将字符加入字符数 组Word[] 否 将字符加入字符数组Word[] 是 指向下一字符识别指针内容 指向下一字符 是字母惑数字 吗 是 将word 与关键字表key 进行匹 配 否匹配?是输出word 为关键字 输出word 为普通标示符 否将字符加入字符数组Word[] 指向下一字符输出word 为常数 识别指针内容 回退 是数字吗 是 否输出word 为界符 指向下一字符 结束 是输出Word 内容为不可识别 将字符加入字符数组Word[]

词法分析器源代码

词法分析器源代码 #include #include #include #include /*单词种别码*/ #define _CHAR 1 #define _INT 2 #define _SHORT 3 #define _LONG 4 #define _SIGNED 5 #define _UNSIGNED 6 #define _FLOAT 7 #define _DOUBLE 8 #define _CONST 9 #define _VOID 10 #define _VOLATILE 11 #define _ENUM 12 #define _STRUCT 13 #define _UNION 14 #define _TYPEDEF 15 #define _AUTO 16 #define _EXTERN 17 #define _STATIC 18 #define _REGISTER 19 #define _IF 20 #define _ELSE 21 #define _SWITCH 22 #define _CASE 23 #define _DEFAULT 24 #define _WHILE 25 #define _DO 26 #define _FOR 27 #define _BREAK 28 #define _CONTINUE 29 #define _GOTO 30 #define _RETURN 31 #define _SIZEOF 32 #define _INCLUDE 33 #define _DEFINE 34 /* 以上为关键字的种别码 */ #define _ID 40 //标识符 #define _NUM 50 //数 #define _AS 51 //= #define _PLUS 52 //+ #define _SUB 53 //- #define _TIMES 54 // * #define _DIV 55 // / #define _LP 56 // ( #define _RP 57 // ) #define _LB1 58 // [ #define _RB1 59 // ] #define _LB2 60 // { #define _RB2 61 // } #define _COM 62 // , #define _COL 63 // : #define

gcc编译器 CFLAGS 标志参数说明

gcc编译器 CFLAGS 标志参数说明2012-11-14 15:10:28 分类:LINUX CFLAGS = -g -O2 -Wall -Werror -Wno-unused 编译出现警告性错误unused-but-set-variable,变量定义但没有使用,解决方法: 增加CFLAGS 或CPPFLAGS参数如下: CPPFLAGS=" -Werror -Wno-unused-but-set-variable" || exit 1 Gcc总体选项列表 后缀名所对应的语言 -S只是编译不汇编,生成汇编代码 -E只进行预编译,不做其他处理 -g在可执行程序中包含标准调试信息 -o file把输出文件输出到file里 -v打印出编译器内部编译各过程的命令行信息和编译器的版本 -I dir在头文件的搜索路径列表中添加dir目录 -L dir在库文件的搜索路径列表中添加dir目录 -static链接静态库 -llibrary连接名为library的库文件 ·“-I dir” 正如上表中所述,“-I dir”选项可以在头文件的搜索路径列表中添加dir目录。由于Linux 中头文件都默认放到了“/usr/include/”目录下,因此,当用户希望添加放置在其他位置的头文件时,就可以通过“-I dir”选项来指定,这样,Gcc就会到相应的位置查找对应的目录。 比如在“/root/workplace/Gcc”下有两个文件: #include int main() { printf(“Hello!!\n”); return 0; } #include

这样,就可在Gcc命令行中加入“-I”选项: [root@localhost Gcc] Gcc hello1.c –I /root/workplace/Gcc/ -o hello1 这样,Gcc就能够执行出正确结果。 小知识 在include语句中,“<>”表示在标准路径中搜索头文件,““”” 表示在本目录中搜索。故在上例中,可把hello1.c的“#include” 改为“#include “my.h””,就不需要加上“-I”选项了。 ·“-L dir” 选项“-L dir”的功能与“-I dir”类似,能够在库文件的搜索路径列表中添加dir目录。 例如有程序hello_sq.c需要用到目录“/root/workplace/Gcc/lib”下的一个动态库 libsunq.so,则只需键入如下命令即可: [root@localhost Gcc] Gcc hello_sq.c –L /root/workplace/Gcc/lib –lsunq –o hello_sq 需要注意的是,“-I dir”和“-L dir”都只是指定了路径,而没有指定文件,因此不能在 路径中包含文件名。 另外值得详细解释一下的是“-l”选项,它指示Gcc去连接库文件libsunq.so。由于在Linux 下的库文件命名时有一个规定:必须以lib三个字母开头。因此在用-l选项指定链接的库 文件名时可以省去lib三个字母。也就是说Gcc在对”-lsunq”进行处理时,会自动去链接 名为 libsunq.so的文件。 (2)告警和出错选项 Gcc的告警和出错选项如表3.8所示。 Gcc总体选项列表 选项含义 -ansi 支持符合ANSI标准的C程序 -pedantic 允许发出ANSI C标准所列的全部警告信息 -pedantic-error 允许发出ANSI C标准所列的全部错误信息 -w 关闭所有告警 -Wall 允许发出Gcc提供的所有有用的报警信息 -werror 把所有的告警信息转化为错误信息,并在告警发生时终止编译过程 下面结合实例对这几个告警和出错选项进行简单的讲解。 如有以下程序段: #include void main() { long long tmp = 1; printf(“This is a bad code!\n”);

编译原理 LL(1)语法分析器java版 完整源代码

public class Accept2 { public static StringBuffer stack=new StringBuffer("#E"); public static StringBuffer stack2=new StringBuffer("i+i*#"); public static void main(String arts[]){ //stack2.deleteCharAt(0); System.out.print(accept(stack,stack2)); } public static boolean accept(StringBuffer stack,StringBuffer stack2){//判断识别与否 boolean result=true; outer:while (true) { System.out.format("%-9s",stack+""); System.out.format("%9s",stack2+"\n"); char c1 = stack.charAt(stack.length() - 1); char c2 = stack2.charAt(0); if(c1=='#'&&c2=='#') return true; switch (c1) {

case'E': if(!E(c2)) {result=false;break outer;} break; case'P': //P代表E’if(!P(c2)) {result=false;break outer;} break; case'T': if(!T(c2)) {result=false;break outer;} break; case'Q': //Q代表T’if(!Q(c2)) {result=false;break outer;} break; case'F': if(!F(c2)) {result=false;break outer;} break; default: {//终结符的时候 if(c2==c1){ stack.deleteCharAt(stack.length()-1); stack2.deleteCharAt(0); //System.out.println(); } else{

gcc编译器使用说明

要想读懂本文,你需要对C语言有基本的了解,本文将介绍如何使用gcc编译器。首先,我们介绍如何在命令行方式下使用编译器编译简单的C源代码。然后,我们简要介绍一下编译器究竟作了那些工作,以及如何控制编译过程。我们也简要介绍了调试器的使用方法。 GCC rules 你能想象使用封闭源代码的私有编译器编译自由软件吗?你怎么知道编译器在你的可执行文件中加入了什么?可能会加入各种后门和木马。Ken Thompson是一个著名的黑客,他编写了一个编译器,当编译器编译自己时,就在'login'程序中留下后门和永久的木马。请到这里阅读他对这个杰作的描述。幸运的是,我们有了gcc。当你进行 configure; make; make install 时, gcc在幕后做了很多繁重的工作。如何才能让gcc为我们工作呢?我们将开始编写一个纸牌游戏,不过我们只是为了演示编译器的功能,所以尽可能地精简了代码。我们将从头开始一步一步地做,以便理解编译过程,了解为了制作可执行文件需要做些什么,按什么顺序做。我们将看看如何编译C程序,以及如何使用编译选项让gcc按照我们的要求工作。步骤(以及所用工具)如下:预编译 (gcc -E),编译 (gcc),汇编 (as),和连接 (ld)。 开始... 首先,我们应该知道如何调用编译器。实际上,这很简单。我们将从那个著名的第一个C程序开始。(各位老前辈,请原谅我)。 #include int main() { printf("Hello World!\n"); } 把这个文件保存为 game.c。你可以在命令行下编译它: gcc game.c 在默认情况下,C编译器将生成一个名为 a.out 的可执行文件。你可以键入如下命令运行它:a.out Hello World 每一次编译程序时,新的 a.out 将覆盖原来的程序。你无法知道是哪个程序创建了 a.out。

语法分析器(含完整源码)教学文稿

语法分析器(含完整源 码)

语法分析实验报告 一、实验目的: 1. 了解单词(内部编码)符号串中的短语句型结构形成规律。 2. 理解和掌握语法分析过程中语法分析思想(LL,LR)的智能算法化方法。 二、实验内容: 构造自己设计的小语言的语法分析器: 1. 小语言的语法描述(语法规则)的设计即文法的设计; 2. 把文法形式符号中所隐含的信息内容挖掘出来并用LL或LR 的资料形式(分析表)表示出来; 3. 语法分析的数据输入形式和输出形式的确定; 4. 语法分析程序各个模块的设计与调试。 主要设备和材料:电脑、winxp操作系统、VC语言系统 三、实验分工:

081 四、实验步骤: 1、语法规则 ①<程序>::= {<变量定义语句>|<赋值语句>|<条件语句> |<循环语句> } ②<变量定义语句>::=var 变量{,变量}; ③<赋值语句>::=变量:= <表达式>; ④<表达式>::=标识符{运算符标识符}; ⑤<标识符>::=变量|常量 ⑥<运算符>::=+ | - | * | / | >= | <= ⑦<条件语句>::=[] ⑧::= if(表达式) then[begin] {赋值语句|条件语句| 循环语句}[end] ⑨::= [begin] {赋值语句|条件语句| 循环语句} [end] ⑩<循环语句>::=while(表达式) [begin] {赋值语句| 条件语句| 循环语句} [end] <输出语句>::=prn 表达式 --注1:若if语句、else语句、循环语句中出现begin,后面的end必须出现,即begin与end同对出现 --注2:if、while后的"(",")"表示终结符,而不是定义成分优先的说明符号

C++语言实现词法分析器设计例题参考

给同学们的一段话 《编译原理》计算机软件专业的一门重要专业课程。该课程系统地向学生介绍编译程序的结构、工作流程及编译程序各组成部分的设计原理和实现技术。由于该课程理论性和实践性都比较强,内容较为抽象复杂,涉及到大量的软件设计算法,因此,一直是一门比较难学的课程。为了使学生更好地理解和掌握编译技术的基本概念、基本原理和实现方法,实践环节非常重要,只有通过上机进行程序设计,才能使学生对比较抽象的教学内容产生具体的感性认识,增强学生综合分析问题、解决问题的能力,并对提高学生软件设计水平大有益处。 编译原理涉及词法分析,语法分析,语义分析及优化设计等各方面。词法分析阶段是编译过程的第一个阶段,是编译的基础。这个阶段的任务是从左到右一个字符一个字符地读入源程序,即对构成源程序的字符流进行扫描然后根据构词规则识别单词(也称单词符号或符号)。从左到右逐个字符对构成源程序的字符串进行扫描,依据词法规则,识别出一个一个的标记(token),把源程序变为等价的标记串序列。执行词法分析的程序称为词法分析器,也称为扫描器。本例题是一个词法分析的设计,采用C++代码实现。 希望大家复习回顾以前学习的《C++程序设计》课程相关知识。 一、设计内容和要求 1、设计内容 对C语言的一个子集设计并实现一个简单的词法分析器,掌握利用状态转换图设计词法分析器的基本方法。 2、设计要求 利用该词法分析器完成对源程序字符串的词法分析。输出形式是源程序的单词符号二元式的代码,并保存到文件中。 (1) 假设该语言中的单词符号及种别编码如下表所示。 单词符号及种别编码 单词符号种别编码单词符号种别编码 main 1 [ 28 int 2 ] 29 char 3 { 30

GCC编译器选项及优化提示12页word

GCC编译器选项及优化提示 GCC编译器选项及优化提示2010-08-01 19:41很多弟兄可能都很关心如何优化编译自己的程序,虽然本人不赞成"骨灰"玩法,却也不得不承认这是掌握gcc的绝佳途径; 因此献上此帖,以供各位玩家参考,绝对原创噢 大多数程序和库在编译时默认的优化级别是"2"(使用gcc选项:"-O2")并且在Intel/AMD平台上默认按照i386处理器来编译。 如果你只想让编译出来的程序运行在特定的平台上,就需要执行更高级的编译器优化选项,以产生只能运行于特定平台的代码。 一种方法是修改每个源码包中的Makefile文件,在其中寻找CFLAGS和CXXFLAGS变量(C和C++编译器的编译选项)并修改它的值。 一些源码包比如binutils,gcc,glibc等等,在每个子文件夹中都有Makefile文件,这样修改起来就太累了! 另一种简易做法是设置CFLAGS和CXXFLAGS环境变量。大多数configure脚本会使用这两个环境变量代替Makefile文件中的值。 但是少数configure脚本并不这样做,他们必须需要手动编辑才行。 为了设置CFLAGS和CXXFLAGS环境变量,你可以在bash中执行如下命令(也可以写进.bashrc以成为默认值): export CFLAGS="-O3-march="&&CXXFLAGS=$CFLAGS 这是一个确保能够在几乎所有平台上都能正常工作的最小设置。 "-march"选项表示为特定的cpu类型编译二进制代码(不能在更低级别的cpu上运行), Intel通常是: pentium2,pentium3,pentium3m,pentium4,pentium4m,pentium- m,prescott,nocona 说明:pentium3m/pentium4m是笔记本用的移动P3/P4;pentium-m 是迅驰I/II代笔记本的cpu; prescott是带SSE3的P4(以滚烫到可以煎鸡蛋而闻名);nocona则是最新的带有EMT64(64位)的P4(同样可以煎鸡蛋)

相关文档
最新文档