高分子专业英语课文翻译

高分子专业英语课文翻译
高分子专业英语课文翻译

A 高分子化学和高分子物理

UNIT 1 What are Polymer?

第一单元什么是高聚物?

What are polymers? For one thing, they are complex and giant molecules and are different from low molecular weight compounds like, say, common salt. To contrast the difference, the molecular weight of common salt is only 58.5, while that of a polymer can be as high as several hundred thousand, even more than thousand thousands. These big molecules or ‘macro-molecules’are made up of much smaller molecules, can be of one or more chemical compounds. To illustrate, imagine that a set of rings has the same size and is made of the same material. When these things are interlinked, the chain formed can be considered as representing a polymer from molecules of the same compound. Alternatively, individual rings could be of different sizes and materials, and interlinked to represent a polymer from molecules of different compounds.

什么是高聚物?首先,他们是合成物和大分子,而且不同于低分子化合物,譬如说普通的盐。与低分子化合物不同的是,普通盐的分子量仅仅是58.5,而高聚物的分子量高于105,甚至大于106。这些大分子或“高分子”由许多小分子组成。小分子相互结合形成大分子,大分子能够是一种或多种化合物。举例说明,想象一组大小相同并由相同的材料制成的环。当这些环相互连接起来,可以把形成的链看成是具有同种分子量化合物组成的高聚物。另一方面,独特的环可以大小不同、材料不同,相连接后形成具有不同分子量化合物组成的聚合物。

This interlinking of many units has given the polymer its name, poly meaning ‘many’ and mer meaning ‘part’ (in Greek). As an example, a gaseous compound called butadiene, with a molecular weight of 54, combines nearly 4000 times and gives a polymer known as polybutadiene (a synthetic rubber) with about 200 000molecular weight. The low molecular weight compounds from which the polymers form are known as monomers. The picture is simply as follows: 许多单元相连接给予了聚合物一个名称,poly意味着“多、聚、重复”,mer意味着“链节、基体”(希腊语中)。例如:称为丁二烯的气态化合物,分子量为54,化合将近4000次,得到分子量大约为200000被称作聚丁二烯(合成橡胶)的高聚物。形成高聚物的低分子化合物称为单体。下面简单地描述一下形成过程:

butadiene + butadiene + ??? + butadiene--→polybutadiene

(4 000 time)

丁二烯+丁二烯+…+丁二烯——→聚丁二烯

(4000次)

One can thus see how a substance (monomer) with as small a molecule weight as 54 grow to become a giant molecule (polymer) of (54×4 000≈)200 000 molecular weight. It is essentially the ‘giantness’ of the size of the polymer molecule that makes its behavior different from that of a commonly known chemical compound such as benzene. Solid benzene, for instance, melts to become liquid benzene at 5.5℃ and , on further heating, boils into gaseous benzene. As against this well-defined behavior of a simple chemical compound, a polymer like polyethylene does not melt sharply at one particular temperature into clean liquid. Instead, it becomes increasingly softer and, ultimately, turns into a very viscous, tacky molten mass. Further heating of this hot, viscous, molten polymer does convert it into various gases but it is no longer polyethylene. (Fig. 1.1) .

因而能够看到分子量仅为54的小分子物质(单体)如何逐渐形成分子量为200000的大分子(高聚物)。实质上,正是由于聚合物的巨大的分子尺寸才使其性能不同于象苯这样的一般化合物。例如,固态苯,在5.5℃熔融成液态苯,进一步加热,煮沸成气态苯。与这类简单化合物明确的行为相比,像聚乙烯这样的聚合物不能在某一特定的温度快速地熔融成纯净的液体。而聚合物变得越来越软,最终,变成十分粘稠的聚合物熔融体。将这种热而粘稠的聚合物熔融体进一步加热,不会转变成各种气体,但它不再是聚乙烯(如图1.1)。

固态苯——→液态苯——→气态苯

加热,5.5℃加热,80℃

固体聚乙烯——→熔化的聚乙烯——→各种分解产物-但不是聚乙烯

加热加热

图1.1 低分子量化合物(苯)和聚合物(聚乙烯)受热后的不同行为

Another striking difference with respect to the behavior of a polymer and that of a low molecular weight compound concerns the dissolution process. Let us take, for example, sodium chloride and add it slowly to s fixed quantity of water. The salt, which represents a low molecular weight compound, dissolves in water up to s point (called saturation point) but, thereafter, any further quantity added does not go into solution but settles at the bottom and just remains there as solid. The viscosity of the saturated salt solution is not very much different from that of water. But if we take a polymer instead, say, polyvinyl alcohol, and add it to a fixed quantity of water, the polymer does not go into solution immediately. The globules of polyvinyl alcohol first absorb water, swell and get distorted in shape and after a long time go into solution.

Also, we can add a very large quantity of the polymer to the same quantity of water without the saturation point ever being reached. As more and more quantity of polymer is added to water, the time taken for the dissolution of the polymer obviously increases and the mix ultimately assumes a soft, dough-like consistency. Another peculiarity is that, in water, polyvinyl alcohol never retains its original powdery nature as the excess sodium chloride does in a saturated salt solution. In conclusion, we can say that (1) the long time taken by polyvinyl alcohol for dissolution, (2) the absence of a saturation point, and (3) the increase in the viscosity are all characteristics of a typical polymer being dissolved in a solvent and these characteristics are attributed mainly to the large molecular size of the polymer. The behavior of a low molecular weight compound and that of a polymer on dissolution are illustrated in Fig.1.2.

发现另一种不同的聚合物行为和低分子量化合物行为是关于溶解过程。例如,让我们研究一下,将氯化钠慢慢地添加到固定量的水中。盐,代表一种低分子量化合物,在水中达到点(叫饱和点)溶解,但,此后,进一步添加盐不进入溶液中却沉到底部而保持原有的固体状态。饱和盐溶液的粘度与水的粘度不是十分不同,但是,如果我们用聚合物替代,譬如说,将聚乙烯醇添加到固定量的水中,聚合物不是马上进入到溶液中。聚乙烯醇颗粒首先吸水溶胀,发生形变,经过很长的时间以后进入到溶液中。同样地,我们可以将大量的聚合物加入到同样量的水中,不存在饱和点。将越来越多的聚合物加入水中,认为聚合物溶解的时间明显地增加,最终呈现柔软像面团一样粘稠的混合物。另一个特点是,在水中聚乙烯醇不会像过量的氯化钠在饱和盐溶液中那样能保持其初始的粉末状态。总之,我们可以讲(1)聚乙烯醇的溶解需要很长时间,(2)不存在饱和点,(3)粘度的增加是典型聚合物溶于溶液中的特性,这些特性主要归因于聚合物大分子的尺寸。如图1.2说明了低分子量化合物和聚合物的溶解行为。

氯化钠晶体加入到水中——→晶体进入到溶液中.溶液的粘度不是十分不同于

充分搅拌

水的粘度——→形成饱和溶液.剩余的晶体维持不溶解状态.

加入更多的晶体并搅拌

氯化钠的溶解

聚乙烯醇碎片加入到水中——→碎片开始溶胀——→碎片慢慢地进入到溶液中

允许维持现状充分搅拌

——→形成粘稠的聚合物溶液.溶液粘度十分高于水的粘度

继续搅拌

聚合物的溶解

图1.2 低分子量化合物(氯化钠)和聚合物(聚乙烯醇)不同的溶解行为

——Gowariker VR, Viswanathan N V, Sreedhar J. Polymer Science. New York:

John Wiley & Sons, 1986.6

UNIT 2 Chain Polymerization

第二单元链式聚合反应

Many olefinic and vinyl unsaturated compounds are able to form chain-0like macromolecules through elimination of the double bond, a phenomenon first recognized by Staudinger. Diolefins polymerize in the same manner, however, only one of the two double bonds is eliminated. Such reactions occur through the initial addition of a monomer molecule to an initiator radical or an initiator ion, by which the active state is transferred from the initiator to the added monomer. In the same way by means of a chain reaction, one monomer molecule after the other is added (2000~20000 monomers per second) until the active state is terminated through a different type of reaction. The polymerization is a chain reaction in two ways: because of the reaction kinetic and because as a reaction product one obtains a chain molecule. The length of the chain molecule is proportional to the kinetic chain length.

Staudinger第一个发现一例现象,许多烯烃和不饱和烯烃通过打开双键可以形成链式大分子。二烯烃以同样的方式聚合,然而,仅限于两个双键中的一个。这类反应是通过单体分子首先加成到引发剂自由基或引发剂离子上而进行的,靠这些反应活性中心由引发剂转移到被加成的单体上。以同样的方式,借助于链式反应,单体分子一个接一个地被加成(每秒2000~20000个单体)直到活性中心通过不同的反应类型而终止。聚合反应是链式反应的原因有两种:因为反应动力学和因为作为反应产物它是一种链式分子。链分子的长度与动力学链长成正比。

One can summarize the process as follow (R. is equal to the initiator radical):

链式反应可以概括为以下过程(R·相当与引发剂自由基):略

One thus obtains polyvinylchloride from vinylchloride, or polystyrene from styrene, or polyethylene from ethylene, etc.

因而通过上述过程由氯乙烯得到聚氯乙烯,或由苯乙烯获得聚苯乙烯,或乙烯获得聚乙烯,等等。

The length of the chain molecules, measured by means of the degree of polymerization, can be varied over a large range through selection of suitable reaction conditions. Usually, with commercially prepared and utilized polymers, the degree of polymerization lies in the range of 1000 to 5000, but in many cases it can be below 500 and over 10000. This should not be interpreted to mean that all molecules of a certain polymeric material consist of 500, or 1000,

or 5000 monomer units. In almost all cases, the polymeric material consists of a mixture of polymer molecules of different degrees of polymerization.

借助于聚合度估算的分子链长,在一个大范围内可以通过选择适宜的反应条件被改变。通常,通过大量地制备和利用聚合物,聚合度在1000~5000范围内,但在许多情况下可低于500、高于10000。这不应该把所有聚合物材料的分子量理解为由500,或1000,或5000个单体单元组成。在几乎所有的事例中,聚合物材料由不同聚合度的聚合物分子的混合物组成。

Polymerization, a chain reaction, occurs according to the same mechanism as the well-known chlorine-hydrogen reaction and the decomposition of phosegene.

聚合反应,链式反应,依照与众所周知的氯(气)-氢(气)反应和光气的分解机理进行。

The initiation reaction, which is the activation process of the double bond, can be brought about by heating, irradiation, ultrasonics, or initiators. The initiation of the chain reaction can be observed most clearly with radical or ionic initiators. These are energy-rich compounds which can add suitable unsaturated compounds (monomers) and maintain the activated radical, or ionic, state so that further monomer molecules can be added in the same manner. For the individual steps of the growth reaction one needs only a relatively small activation energy and therefore through a single activation step (the actual initiation reaction) a large number of olefin molecules are converted, as is implied by the term “chain reaction”. Because very small amounts of the initiator bring about the formation of a large amount of polymeric material (1:1000 to 1:1000), it is possible to regard polymerization from a superficial point of view as a catalytic reaction. For this reason, the initiators used in polymerization reactions are often designated as polymerization catalysts, even though, in the strictest sense, they are not true catalysts because the polymerization initiator enters into the reaction as a real partner and can be found chemically bound in the reaction product ,i.e. ,the polymer, In addition to the ionic and radical initiators there are now metal complex initiators (which can be obtained, for example, by the reaction of titanium tetrachloride or titanium trichloride with aluminum alkyls), which play an important role in polymerization reactions (Ziegler catalysts) ,The mechanism of their catalytic action is not yet completely clear.

双键活化过程的引发剂反应,可以通过热、辐射、超声波或引发剂产生。用自由基型或离子型引发剂引发链式反应可以很清楚地进行观察。这些是高能态的化合物,它们能够加成不饱和化合物(单体)并保持自由基或离子活性中心以致单体可以以同样的方式进一步加成。对于增长反应的各个步骤,每一步仅需要相当少的活化能,因此通过一步简单的活化反应(即引发反应)即可将许多烯类单体分子转化成聚合物,这正如连锁反应这个术语的内涵那样。因为少量的引发剂引发形成大量的聚合物原料(1:

1000~1:10000),从表面上看聚合反应很可能是催化反应。由于这个原因,通常把聚合反应的引发剂看作是聚合反应的引发剂,但是,严格地讲它们不是真正意义上的催化剂,因为聚合反应的催化剂进入到反应内部而成为一部分,同时可以在反应产物,既聚合物的末端发现。此外离子引发剂和自由基引发剂有的是金属络合物引发剂(例如,通过四氯化钛或三氯化钛与烷基铝的反应可以得到),Z引发剂在聚合反应中起到了重要作用,它们催化活动的机理还不是十分清楚。

UNIT 3 Step-Growth Polymerization

第三单元逐步聚合

Many different chemical reactions may be used to synthesize polymeric materials by step-growth polymerization. These include esterification, amidation, the formation of urethanes, aromatic substitution, etc. Polymerization proceeds by the reactions between two different functional groups, e.g., hydroxyl and carboxyl groups, or isocyanate and hydroxyl groups.

许多不同的化学反应通过逐步聚合可用于合成聚合材料。这些反应包括酯化、酰胺化、氨基甲酸酯、芳香族取代物的形成等。通过反应聚合反应在两种不同的官能团,如,羟基和羧基,或异氰酸酯和羟基之间。

All step-growth polymerization fall into two groups depending on the type of monomer(s) employed. The first involves two different polyfunctional monomers in which each monomer possesses only one type of functional group. A polyfunctional monomer is one with two or more functional groups per molecule. The second involves a single monomer containing both types of functional groups. The synthesis of polyamides illustrates both groups of polymerization reactions. Thus, polyamides can be obtained from the reaction of diamines with diacids 所有的逐步聚合反应根据所使用单体的类型可分为两类。第一类涉及两种不同的官能团单体,每一种单体仅具有一种官能团。一种多官能团单体每个分子有两个或多个官能团。第二类涉及含有两类官能团的单种单体。聚酰胺的合成说明了聚合反应的两个官能团。因此聚酰胺可以由二元胺和二元酸的反应或氨基酸之间的反应得到。

nH2N-R-NH2+nHO2C-R’-CO2H→

H-(-NH-R-NHCO-R’-CO-)n-OH+(2n-1)H2O (3.1)

or from the reaction of amino acids with themselves

nH2R-CO2H→ H-(-NH-R-CO-)n-OH+(n-1)H20 (3.2)

The two groups of reactions can be represented in a general manner by the equations as follows A+B-B →–[-A-A-B-B-]-A-B→–[-A-B-]-

两种官能团之间的反应一般来说可以通过下列反应式表示

反应式略

Reaction (3.1) illustrates the former, while (3.2) is of the latter type.

反应(3.1)说明前一种形式,而反应(3.2)具有后一种形式。

图3.1 逐步聚合的示意图

(a)未反应单体;(b)50%已反应;(c)83.3%已反应;(d) 100%已反应(虚线表示反应种类)Polyesterification, whether between diol and dibasic acid or intermolecularly between hydroxy acid molecules, is an example of a step-growth polymerization process. The esterification reaction occurs anywhere in the monomer matrix where two monomer molecules collide, and once the ester has formed, it, too, can react further by virtue of its still-reactive hydroxyl or carboxyl groups. The net effect of this is that monomer molecules are consumed rapidly without any large increase in molecular weight. Fig. 3.1 illustrates this phenomenon. Assume, for example, that each square in Fig. 3.a represents a molecule of hydroxy acid. After the initial dimmer molecules from (b), half the monomer molecules have been consumed and the average degree of polymerization (DP) of polymeric species is 2. As trimer and more dimer molecules form (c), more than 80% of the monomer molecules have reacted (d), DP is 4. But each polymer molecule that forms still has reactive end groups; hence the polymerization reaction will continue in a stepwise fashion, with each esterification of monomers. Thus, molecular weight increases slowly even at high levels of monomer conversion, and it will continue to increase until the viscosity build-up makes it mechanically too difficult to remove water of esterification or for reactive end groups to find each other.

聚酯化,是否在二元酸和二元醇或羟基酸分子间进行,是逐步聚合反应过程的一个例子。酯化反应出现在单体本体中两个单体分子相碰撞的位置,且酯一旦形成,依靠酯上仍有活性的羟基或羧基还可以进一步进行反应。酯化的结果是单体分子很快地被消耗掉,而分子量却没有多少增加。图3.1说明了这个现象。例如,假定图3.1中的每一个方格代表一个羟基酸分子。(b)中的二聚体分子,消耗二分之一的单体分子聚合物种类的聚合度(DP)是2。(c)中当三聚体和更多的二聚体形成,大于80%的单体分子已反应,但DP仅仅还是2.5。(d)中当所有的单体反应完,DP是4。但形成的每一种聚合物分子还有反应活性的端基;因此,聚合反应将以逐步的方式继续进行,其每一步酯化反应的反应速率和反应机理均与初始单体的酯化作用相同。因此,分子量缓慢增加直至高水平的单体转化率,而且分子量将继续增加直到粘度的增加使其难以除去酯化反应的水或难以找到相互反应的端基。

It can also be shown that in the A-A+B-B type of polymerization, an exact stoichiometric balance is necessary to achieve high molecular weights. If some monofunctional impurity is present, its reaction will limit the molecular weight by rendering a chain end inactive. Similarly, high-purity monomers are necessary in the A-B type of polycondensation and it follows

that high-yield reactions are the only practical ones for polymer formation, since side reactions will upset the stoichiometric balance.

在A-A+B-B的聚合反应中也可以看到,精确的当量平衡是获得高分子量所必需的。假如存在一些但官能团杂质,由于链的端基失活,反应将使分子量减少。同样,在A-B类的缩聚反应中高纯度的单体是必要的,而且可以归结高收率的反应仅是形成聚合物的实际反应,因为副反应会破坏当量平衡。

-------Stevens M P. Polymer Chemistry. London: Addison-Wesley Publishing Company, 1975. 13

UNIT 4 Ionic Polymerization

第四单元离子聚合反应

Ionic polymerization, similar to radial polymerization, also has the mechanism of a chain reaction. The kinetics of ionic polymerization are, however, considerably different from that of radical polymerization.

离子聚合反应,与自由基聚合反应相似,也有链反应的机理。但是,离子聚合的动力学明显地不同于自由基聚合反应。

(1) The initiation reaction of ionic polymerization needs only a small activation energy. Therefore, the rate of polymerization depends only slightly on the temperature. Ionic polymerizations occur in many cases with explosive violence even at temperature. below 50℃(for example, the anionic polymerization of styrene at –70℃ in tetrahydrofuran, or the cationic polymerization of isobutylene at –100℃ in liquid ethylene ).

(1)离子聚合的引发反应仅需要很小的活化能。因此,聚合反应的速率仅对温度有较少的依赖性。在许多情况下离子聚合猛烈地发生甚至低于50℃(例如,苯乙烯的阴离子聚合反应在-70℃在四氢呋喃中,或异丁烯的阳离子聚合在-100℃在液态乙烯中)。

(2) With ionic polymerization there is no compulsory chain termination through recombination, because the growing chains can not react with each other. Chain termination takes place only through impurities, or through the addition of certain compounds such as water, alcohols, acids, amines, or oxygen, and in general through compounds which can react with polymerization ions under the formation of neutral compounds or inactive ionic species. If the initiators are only partly dissociated, the initiation reaction is an equilibrium reaction, where reaction in one direction gives rise to chain initiation and in the other direction to chain termination.

(2)对于离子聚合来说,不存在通过再结合反应而进行的强迫链终止,因为生长链之间不能发生链终止。链终止反应仅仅通过杂质而发生,或者说通过和某些像水、醇、酸、胺或氧这样的化合物进行加成而发生,且一般来说(链终止反应)可通过这样的化合物来进行,这种化合物在中性聚合物或没有聚合活性的离子型聚合物生成的过程中可以和活性聚合物离子进行反应。如果引发剂仅仅部分地离解,引

发反应即为一个平衡反应,在出现平衡反应的场合,在一个方向上进行链引发反应,而在另一个方向上则发生链终止反应。

In general ionic polymerization polymerization can be initiated through acidic or basic

compounds. For cationic polymerization, complexes of BF3, AlCl

3, TiCl

4

, and SnCl

4

with water,

or alcohols, or tertiary oxonium salts have shown themselves to be particularly active. The positive ions are the ones that cause chain initiation. For example:

通常离子聚合反应能通过酸性或碱性化合物被引发。对于阳离子聚合反应来说,BF

3,AlCl

3

,TiCl

4

SnCl

4

与水、或乙醇,或叔烊盐的络合物提供了部分活性。正离子是产生链引发的化合物。例如:(反应略)

三乙基硼氟酸烊

However, also with HCl, H

2SO

4

, and KHSO

4

, one can initiate cationic polymerization. Initiators

for anionic polymerization are alkali metals and their organic compounds, such as phenyllithium, butyllithium, phenyl sodium, and triphenylmethyl potassium, which are more or less strongly dissociated in different solvents. To this group belong also the so called Alfin catalysts, which are a mixture of sodium isopropylate, allyl sodium, and sodium chloride.

然而,BF

3也可以与HCl、H

2

SO

4

和KHSO

4

引发阳离子聚合反应。阴离子聚合反应的引发剂是碱金属和

它们的有机金属化合物,例如苯基锂、丁基锂和三苯甲基锂,它们在不同的溶剂中或多或少地强烈分解。所谓的Alfin催化剂就是属于这一类,这类催化剂是异丙醇钠、烯丙基钠和氯化钠的混合物。

With BF

3

(and isobutylene as the monomer), it was demonstrated that the polymerization is possible only in the presence of traces of traces of water or alcohol. If one eliminates the

trace of water, BF

3

alone does not give rise to polymerization. Water or alcohols are necessary

in order to allow the formation of the BF

3

-complex and the initiator cation according to the above reactions. However, one should not describe the water or the alcohol as a “cocatalyst”.

BF

3

为引发剂(异丁烯为单体),证明仅在痕量水或乙醇的存在下聚合反应是可以进行的。如果消除

痕量的水,单纯的BF

3不会引发聚合反应。按照上述反应为了能形成BF

3

-络合物和引发剂离子水或乙醇是

必需的。但是不应将水或乙醇描述成“助催化剂”。

Just as by radical polymerization, one can also prepare copolymers by ionic polymerization, for example, anionic copolymers of styrene and butadiene, or cationic copolymers of isobutylene and styrene, or isobutylene and viny ethers, etc. As has been described in detail with radical

polymerization, one can characterize each monomer pair by so-called reactivity ratios r

1

and

r

2

. The actual values of these two parameters are, however, different from those used for radical

copolymerization.

正与自由基聚合反应一样,通过离子聚合反应也能制备共聚物,例如,苯乙烯-丁二烯阴离子共聚物,或异丁烯-苯乙烯阳离子共聚物,或异丁烯-乙烯基醚共聚物,等等。正如对自由基型聚合已经详细

描述过那样,人们可以用所谓的竞聚率r

1和r

2

来表征每单体对。然而,这两个参数的实际意义不同于那

些用于自由基共聚合反应的参数。

---Vollmert B. Polymer Chemistry. Berlin: Sping-Verlag, 1973.163

PART B 聚合反应工程

UNIT 11 Reactor types

第十一单元反应器类型

Reactors may be categorized in a variety of ways, each appropriate to a particular perspective. For example, Henglein (1969) chooses a breakdown based on the source of energy used to initiate the reaction (i.e., thermal, electrochemical, photochemical, nuclear). More common breakdowns are according to the types of vessels and flows that exist.

反应器可以用许多方法分类,各自适用于特定的目的。例如,Henglein(1969)基于用于产生反应的能量来源,即,热量,电化学,光化学,原子核,选择了一种细目分类。更多普通的细目分类是按照所存在的容器和流量的类型。

1.Batch Reactors

1. 间歇反应器

The batch reactor (BR) is the almost universal choice in the chemist’s laboratory where most chemical processes originate. The reason is the simplicity and versatility of the batch reactor, whether it be a test tube, a three-neck flask, an autoclave, or a cell in a spectroscopic instrument. Regardless of the rate of the reaction, these are clearly low production rate devices. As scale up is desired, the most straightforward approach is to move to a larger batch reactor such as a large vat or tank.

间歇反应器在化学实验室几乎是一般的选择,大多数的化学过程在那里产生。间歇反应器的原理具简单性和通用性,不管它是一支试管,一个三颈瓶,一个高压釜,还是一个光谱仪器的比色皿。不管反应比例,很清楚这些是低产率设备。当要求放大反应器时,大多直截了当的途径是移至一个较大的间歇反应器如一个较大的大桶或罐。

Commercial batch reactors can be huge, 100 000 gal or more. The cycle time, often a day or more, typically becomes longer as reactor volume increases in order to achieve a substantial

production rate with an inherently slow reaction. Fabrication, shipping, or other factors place a limit the size of a batch reactor. For example, transportation capacity can limit the size of a batch reactor for which shop, as opposed to on-site, fabrication of the heat exchange surface is required. This limits the production rates for which batch reactors may be economically utilized. Also, batch reactors must be filled, emptied, and cleaned. For fast reactions these unproductive operations consume far more time than the reaction itself and continuous processes can become more attractive.

商业化的间歇反应器是庞大的,10万加仑或更大。对于慢化学反应,为提高生产率必须增加反应器体积,而这往往导致反应器的循环周期变长,常常以天计算。制造、运输以及其他因素限制了反应器的规模,如热传递能力会限制间歇反应器的尺寸,热交换器必须在制造厂而不是在现场加工。这限制了产率由于这间歇反应器可以被经济地利用。间歇反应器也必须装料、卸料和清洗。为了加快反应这些非生产性的操作消耗了多于反应本身的时间,连续化过程可能更有吸引力。

2. Semibatch Reactors (SBR)

2.半间歇反应器

Some reactions may yield a product in a different phase from the reaction mixture. Examples would be liberation of a gas from a liquid-phase reaction or the formation of a precipitate in a fluid-phase reaction. To drive the reaction to completion, it may be desirable to continuously separate the raw product phase. A semibatch operation may result as well from differing modes of feeding the individual reactants. For reasons we will discuss later, it may be desirable to charge one reactant to the reactor at the outset and bleed a second reactant in continuously over time. Such reactors have both a batch and a flow character and, like batch reactors, are useful for slow reactions and low production rates.

一些反应器可以从反应混合物的不同相态中生产出某种产品。例如液相反应中气体的释放,或流动相反应中沉淀的生成。为了驱使反应完全,希望继续分离粗产物相。个别反应物的不同加入方式也导致半连续操作。原因我们以后讨论,可希望一开始加入一种反应物以后连续加入第二种反应物。这类反应器同时具有一个间歇和一个流动的特征,像间歇反应器,适用于慢反应和低产率。

3. Continuous Stirred Tank Reactors (CSTR)

3. 连续流动搅拌反应器

It is a small step from the batch reactor to the CSTR. The same stirred vessel may be used with only the addition of piping and storage tanks to provide for the continuous in-and outflow. Faster reactions can be accommodated and larger production rates can be achieved because of the uninterrupted operation. CSTRs are most often used for liquid-phase reactions, such as

nitration and hydrolysis, and multiphase reactions involving liquid with gases and/or solids. Examples would be chlorination and hydrogenation.

从间歇反应器到连续流动搅拌反应器是小小的一步。同样的搅拌式容器的使用可仅仅添加管道和储罐以提供连续进料和出料。因为连续操作可加快反应并提高产率。通常大多数连续流动搅拌反应器用于液相反应,例如硝化和水解,多相反应器涉及液-气和/或液-固。例如氯化和加氢。

4. CSTR in Series

4.多级串联连续流动搅拌反应器

It was shown that considerable gains in production rate and economics can be achieved by passing the reacting mixture through a series of CSTRs. Again, we see how easy it is to achieve a gradual scale up, say for a specialty chemical for which is increasing. CSTRs in series are usually used for liquid-phase reactions.

事实证明通过一系列多级串联连续流动搅拌反应器的混合能够获得高产率和重大的经济效益。再者,这种反应器容易放大,例如某种化学品的需求逐步增加时常这样做。多级串联连续流动搅拌反应器通常用于液相反应。

5.Tubular Reactors

5.管式反应器

As the production rate requirement increases, batteries of CSTRs become increasingly complex and tubular reactors become attractive. With the transition to tubular reactors, some versatility is lost and more process integration is required. Nevertheless, tubular reactors find extensive application in liquid-phase reactions, for example, polymerization, and are almost always the continuous reactor of choice for gas-phase reactions, for example, pyrolysis. Exceedingly high production rates can be achieved with tubular reactors either by increasing the diameter of the tube or more commonly by using a sufficient number of tubes in parallel.

当产率需要增加时,增加许多套连续搅拌式反应器变得复杂,而管式反应器变得诱人。转化成管式反应器失去了一些通用性并要求综合许多操作。尽管如此,管式反应器在液相反应中起着广泛作用,例如,聚合反应,气-液反应几乎总是选择连续反应器,例如,高温裂解。采用管式反应器能够获得非常高的产率,要么增加管的直径要么通过使用充足数量的并列管提高更大的通用性。

6. Recycle reactors

6. 循环反应器

Recycle reactor can be batch, CSTR, tubular, and so on in nature with the purpose of the recycle varying from one case to the next. Many large-scale commercial processes incorporate the recycle of one or more streams back to an earlier point in the process to conserve raw

materials. This practice often results in the accumulation of impurities, which in turn requires separation. Usually it is not simply the reactor outlet stream that is recycled back to the reactor inlet, but it can be. For example in a batch reactor the reacting mixture can be recycled, or pumped around, through a heat exchanger to provide thermal control.

循环反应器出于从一种情况到下一种情况循环变化的目的,在种类上可以是间歇反应器、连续流动搅拌反应器、管式反应器等等。回到较早的观点,在节省粗原料的过程中,许多大规模的商业操作合并了一个或多个循环。这一实践通常导致了杂质的累积,它们依次需要分离。通常不是简单地将反应器的出料返回到入口,当然也可以这样做。例如,在间歇反应器中反应混合物可以回收,或用泵打循环,通过热交换器控制热。

Recycle reactor have also found valuable application in the laboratory and pilot plant because of their special characteristics. At one extreme, in which all of the product is recycled (no net flow), the reactor is the exact equivalent of the well-stirred batch reactor. At the other extreme of no recycle, the reactor is simply the tubular variety. If there is some net flow but the recycle rate is high, the overall reactor performs like a CSTR. Yet the reaction tube itself behaves like differential tubular reactor. This versatility of the recycle reactor can be exploited to great advantage in research and development.

循环反应器由于其特殊的特性在实验室和中试车间也发现了应用价值。一个极端是将所有的产物循环(没有净的流出),此时循环反应器严格等效于全混间歇反应器。另一个极端是没有循环,反应器是简单的管式类。假如有一些净的流出但循环率很高,所有的反应器运行类似于连续流动搅拌反应器。然而反应器本身的类似于不同的管式反应器。在研究和发展中循环反应器的通用性能够开发出更大的优点(势)。

——Bisio A. , Kabel R L. Scaleup of Chemical Processes. New York: John Wiley & Sons Inc. , 1985. 255~257

T 14 Styrene-Butadiene Copolymer

第十四单元丁二烯-苯乙烯共聚物

The synthetic rubber industry, based on the free-radical emulsion process, was created almost overnight during World War II. Styrene-butadiene (GR-S) rubber crated at that time gives such good tire treads that natural rubber has never regained this market.

合成橡胶工业,以自由基乳液过程为基础,在第二次世界大战期间几乎很快地形成。那时,丁苯橡胶制造的轮胎性能相当优越,使天然橡胶在市场黯然失色。

The GR-S standard recipe is

丁苯橡胶的标准制法是

组分重量分数组分重量分数

丁二烯72 过硫酸钾0.3

苯乙烯25 肥皂片 5.0 十二烷基硫醇0.5 水180

This mixture is heated with stirring and at 50℃ gives conversions of 5%~6% per hour. Polymerization is terminated at 70%~75% conversion by addition of a “short-stop”, such as hydroquinone (approximately 0.1 part), to quench radicals and prevent excessive branching and microgel formation. Unreacted butadiene is removed by flash distillation, and syrene by steam-stripping in a column. After addition of an antioxidant, such as N-phenyl-β-naphthylamine (PBNA) (1.25 parts), the latex is coagulated by the addition of brine, followed by dilute sulfuric acid or aluminum sulfate. The coagulated crumb is washed, dried, and baled for shipment.

混合物在搅拌下50℃加热,每小时转化5%~6%,在转化率达70%~75%时通过加入“终止剂”聚合反应终止,例如对苯二酚(大约0.1的重量百分含量),抑制自由基并避免过量支化和微凝胶形成。未反应的丁二烯通过闪蒸去除,苯乙烯在萃取塔中通过蒸汽萃取(剥离)。在加入抗氧剂后,例如N-甲基-β-萘胺(1.25的重量百分含量),加入盐水,其次加入稀释的硫酸或硫酸铝后乳液凝胶。凝胶碎片被洗涤、干燥并包装装运。

Fig.14.1 SBR plant flow diagram Courtesy of Hydrocarbon Processing and Petroleum Refiner.

图14.1 丁苯橡胶厂流程图取自烃类加工和石油产品精制

This procedure is still the basis for emulsion polymerization today. An important improvement is continuous processing illustrated in Fig. 14.1; computer modeling has also been described.

今天这种生产过程仍是胶体聚合反应的基础。如图14.1所示一个重要的进步是连续操作;也采用计算机模型描述。

In the continuous process, styrene, butadiene, soap, initiator, and activator (an auxiliary initiating agent) are pumped continuously form storage tanks through a series of agitated reactors at such a rate that the desired degree of conversion is reached at the last reactor. Shortstop is added, the latex warmed with steam, and the unreacted butadiene flashed off. Excess styrene is steam-stripped, and the latex finished as shown in Fig. 14.1.

在连续操作中,苯乙烯、丁二烯、肥皂、引发剂和活化剂(一种助引发剂)用泵从储罐通过一系列的混合反应器,泵送流率根据末釜的转化率控制。加入终止剂,乳液用蒸气加热,未反应的丁二烯被闪蒸。剩余的苯乙烯被蒸气剥离,如图14.1表示乳液完成。

表14.1 冷丁苯胶的典型配方

组分配方1 配方2

丁二烯72 71

苯乙烯28 29

特十二烷基硫醇0.2 0.18

过氧化二异丙苯0.08

过氧化薄荷烷0.08

硫酸亚铁七水合物0.14 0.03

焦磷酸钾0.18

磷酸钠十水合物0.5

乙二胺四乙酸钠0.035

甲醛次硫酸钠0.08

松香酸 4.0 4.5

水180 200

SBR prepared from the original GR-S recipe is often called hot rubber; cold rubber is made at 5℃ by using a more active initiator system. Typical recipes are given in Table 14.1 At 5℃ ,60% conversion to polymer occurs in 12~15h.

由常规丁苯制法制备的丁苯胶常称作热胶;冷胶通过使用一种更高活性的引发体系在5℃制成。典型的配方在表14.1中给出。5℃、60%转化率、12~15 h聚合物形成。

Cold SBR tire treads are superior to those of hot SBR. Polymers with abnormally high molecular weight (and consequently too tough to process by ordinary factory equipment) can be processed after the addition of up to 50 parts of petroleum-base oils per hundred parts of rubber (phr). These oil extenders make the rubbers more processible at lower cost and with little sacrifice in properties; they are usually emulsified and blended with the latex before coagulation.

冷丁苯橡胶轮胎优于那些热丁苯胶。具有异常高的分子量的聚合物(因此采用常规的工厂设备由于太粘稠而难以加工)在每一百份的橡胶中加入大于50份的石油基础油后能够加工。这些油添加剂使橡胶更易加工体现在低成本和性能方面低损耗;他们在凝胶之前通常乳化并与胶乳混合。

Recent trends have been toward products designed for specific uses. The color of SBR, which is important in many nontire uses, has been improved by the use of lighter-colored soaps, shortstops, antioxidants, and extending oils. For example, dithiocarbamates are substituted for hydroquinone as shortstop; the latter is used on hot SBR where dark color is not objectionable.

A shortstop such as sodium dimethyldithiocarbamate is more effective in terminating radicals and destroying peroxides at the lower temperatures employed for the cold rubbers.

最近倾向于设计特殊用途的产品。丁苯橡胶的颜色,在许多非轮胎使用中十分重要,通过使用浅色的肥皂、终止剂、抗氧剂和扩展油加以改进。例如,二硫化氨基甲酸盐替代对苯二酚作为终止剂;后者适用于不被人反对的黑色丁苯橡胶。在冷胶的制备中如二硫化氨基甲酸钠的终止剂在低温情况下对终

止自由基和消灭过氧化物更有效。

Free-radical dissociative initiators that function by dissociation of a molecule or ion into two radical species are normally limited to inorganic persulfates in the case of butadiene polymerization.

在丁二烯聚合反应过程中自由基分解的引发剂即一分子分解或离子成两个自由基物种的引发剂通常限制于过硫酸盐。

The other important class of free-radical initiators, redox systems, contain two or more components that react to produce free radicals. Dodecyl mercaptan added to control molecular weight also appears to aid free-radical formation by reaction with persulfate. The commercial importance of such chain-transfer agents or modifiers cannot be overemphasized. Without molecular weight control the rubbers would be too tough to process.

其他重要的自由基引发剂类别,氧化还原体系,包含反应产生自由基的两种或多种组分。加入控制分子量的十二烷基硫醇与过硫酸盐反应也出现了助自由基的形成。这种链转移剂或调节剂具有极其重要的商业价值。不控制分子量橡胶将过于粘稠难以加工。

--------Tate D p , Bechea T W. Encyclopedia of Polymer Science and Engineering, 2nd ed.

Vol. 2. Editor-in-chilf Kroschwitz JI. New York: John wiley & Sons, 1985. 553~555

C 聚合物材料的加工、性能和应用

UNIT 21 Polymer Processing

第二十一单元聚合物加工

Polymer processing , in its most general context , involves the transformation of a solid ( sometimes liquid ) polymeric resin , which is in a random form (e. g. powder, pellets , beads ), to a solid plastics product of specified shape , dimensions , and properties. This is achieved by means of a transformation process: extrusion, molding, calendering , coating , thermoforming , etc. The process, in order to achieve the above objective, usually involves the following operations: solid transport , compression, heating, melting, mixing, shaping, cooling, solidification, and finishing . Obviously, these operations do not necessarily occur in sequence, and many of them take place simultaneously.

在其最一般的情况下,聚合物加工涉及固体(有时侯是液体)聚合物树脂以一种不规则的形式(例如粉末、颗粒、珠子)转化成一种具有特殊形状、尺寸和性能的固体塑料产品。这借助于转换加工:挤出、模塑、压延、涂敷、热成型等。为了获得上述目的,加工通常涉及下述操作:固体输送、压缩、加热、混合、成型、冷却、固化并完成。显然,这些操作不必按序发生,而许多可以同时发生。

Shaping is required in order to impart to the material the desired geometry and dimensions. It involves combinations of viscoelastic deformations and heat transfer, which are generally associated with solidification of the product from the melt. 成型是为了给予材料所需要的几何形状和尺寸。它涉及粘弹形变和热传递,这种粘弹形变和热传递是和产品从熔体的固化(或冷却)相联系的。

Shaping includes : (1) two-dimensional operations , e.g. dieforming, calendering and coating , and (2) three-dimensional molding and forming operations. Two-dimensional processes are either of the continuous , steady state type )e.g. film and sheet extrusion , wire coating , paper and sheet coating ,calendering ,fiber spinning , pipe and profile extrusion , etc. ) or intermittent as in the case of extrusions associated with intermittent extrusion blow moulding. Generally, moulding operations are intermittent, and, thus, they tend to involve unsteady state conditions. Thermoforming, vacuum forming, and similar processes may be considered as secondary shaping operations, since they usually involve the reshaping of an already shaped form. In some cases, like blow molding, the process involve primary shaping (parison formation) and secondary shaping (parison inflation ).

成型包括:(1)二元操作,例如,口模成型、压延和涂敷,(2)三元的模型和成型操作。二元的操作要么是连续的,固定形状(例如薄膜和板材,电线涂布,纸和平面涂布,压延,纤维拉伸,管材和型材挤出等等。)要么是间歇式的,在挤出的情况下伴有间歇挤出吹膜。通常,模塑操作是间歇的,然而同时倾向于非固定条件。热成型,真空成型,和相似的加工可以认为是二次成型操作,因为它们通常包括已成型形状的再次成型。在某些情况下像吹模,加工包括首次成型(型胚成型)和二次成型(型胚膨胀)。

Shaping operations involve simultaneous or staggered fluid flow and heat transfer. In two-dimensional processes, solidification usually follows the shaping process, whereas solidification and shaping tend to take place simultaneously inside the mold in three dimensional processes. Flow regimes, depending on the nature of the material, the equipment, and the processing conditions, usually involve combinations of shear, extensional, and squeezing flows in conjunction with enclosed (contained) or free surface flows.

成型操作包括同时或交叉的液体流动和热传递。在二元加工中,固化(或冷却)伴随着成型加工,反之在三元加工的模塑中固化(或冷却)和成型倾向于同时发生。根据材料的性质、设备和加工条件,流动状态以及根据流动面的自由与否,通常包括剪切、延伸和挤压流动。

The thermo-mechanical history experienced by the polymer during flow and solidification

results in the development of microstructure (morphology, crystallinity, and orientation distributions) in the manufactured article. The ultimate properties of the article are closely related to the microstructure. Therefore, the control of the process and product quality must be based on an understanding of the interactions between resin properties, equipment design, operating conditions, thermo-mechanical history, microstructure, and ultimate product properties. Mathematical modeling and computer simulation have been employed to obtain an understanding of these interactions. Such an approach has gained more importance in view of the expanding utilization of computer aided design/computer assisted manufacturing/computer aided engineering (CAD/CAM/CAE) systems in conjunction with plastics processing.

经历了流动和固化(或冷却)的聚合物热机械过程导致了制造业微结构的变革(形态学、结晶学和取向分布)。最终产品的性能与微结构紧密相关。因此,加工和产品质量的控制必须基于树脂性能、设备设计、操作条件、热机械过程、微结构和最终产品性能之间相互作用的理解。数学模型和计算机被同时用于获得这些相互作用的理解。鉴于进一步利用计算机辅助设计/计算机辅助制造/计算机辅助工程(CD/CAM/CAE)系统协同塑料加工诸如这一趋近获得了更多的重要性。

The following discussion will highlight some of the basic concepts involved in plastics shaping operations. It will emphasize recent developments relating to the analysis and simulation of some important commercial processes, with due consideration to elucidation of both thermo-mechanical history and microstructure development. More extensive reviews of the subject can be found in standard references on the topic (1~6).

下面的讨论将重点放在包括塑料成型操作一些基本概念上。适当考虑说明热机械过程和微结构发展,将强调最近关于分析和一些重要商品加工模型的进展。在上端(1~6)的标准参考中能够找到本主题更广泛的综述。

As mentioned above, shaping operations involve combinations of fluid flow and heat transfer, with phase change, of a visco-elastic polymer melt. Both steady and unsteady state processes are encountered. A scientific analysis of operations of this type requires solving the relevant equations of continuity, motion, and energy (i.e. conservation equations).

如上面提到的,成型操作包括液体流动和热传递,对于相态变化,还包括粘弹性聚合物的熔融。稳定和非稳定状态加工是相冲突的。这种典型操作的科学分析需要解决相关连续、运转和能量平衡(如守恒方程)。

——

Austarita G , Nicolas L. Polymer prscessing and properties

New York: Plenum press 1984, 1~3

UNIT 29 Synthetic Plastics

第二十九单元合成塑料

It would be difficult to visualise our modern world without plastics. Today they are an integral part of everyones lifestyle with applications varying from commonplace articles to sophisticated scientific and medical instruments. Nowadays designers and engineers readily turn to plastics because they offer combinations of properties not available in any other materials. Plastics offer advantages such as lightness , resilience , resistance to corrosion , colour fastness , transparency , ease of processing , etc. , and although they also have their limitations , their exploitation is limited only by the ingenuity of the designer.

现代社会没有塑料真是难以想象。今天它们是组成每个人生活的必备部分,从不断变化的平凡物品到尖端科技的医学仪器。当今的设计师和工程师已开始着手塑料的研究,因为它们提供了不能应用于任何其它材料的综合性能。塑料所呈现的优点诸如质轻、弹性、防腐、不易褪色、透明性、易于加工等等,尽管也有它们的制约,它们的开发仅因设计师的创造力受到限制。

It is usual to think that plastics are a relatively recent development but in fact, as part of the larger family called “polymers”, they are a basic ingredient of plant and animal life. Polymers are materials which consist of very long chain-like molecules. Natural materials such as silk, shellac, bitumen, rubber and cellulose have this type of structure. However, it was not until the 19th century that attempts were made to develop a synthetic polymeric material and the first success was based on cellulose. This was a material called “Parkesine”, after its inventor Alexander Parkes, and although it was not a commercial success it was a start and eventually led to the development of “Celluoid”. This material was an important break-through because it became established as a good replacement of natural materials which were in short supply .

通常认为塑料是一种相对新的发展,但事实上作为“聚合物”大家族的成员,它们是动植物生活的一个基本组成部分。聚合物是由象链一样非常长的分子组成的材料。象丝、虫胶、沥青、橡胶和纤维素之类的天然材料有这种类型的结构。然而,直到19世纪才尝试开发了一种合成聚合物材料,首次成功基于赛璐珞。这是一种叫做“硝化纤维素塑料”的材料,它的发明者是Alexander Parkes ,尽管不是一种开始的商业成功,最终导致了“赛璐珞”的发展。这种材料是一个重要的突破因为它成为了供应短缺的天然材料的良好替代品。

During the early twentieth century there was considerable interest in these new synthetic materials. Phenol-formaldehyde (“bakelite”) was introduced in 1905 and about the time of the

化学专业英语(修订版)翻译

01 THE ELEMENTS AND THE PERIODIC TABLE 01 元素和元素周期表 The number of protons in the nucleus of an atom is referred to as the atomic number, or proton number, Z. The number of electrons in an electrically neutral atom is also equal to the atomic number, Z. The total mass of an atom is determined very nearly by the total number of protons and neutrons in its nucleus. This total is called the mass number, A. The number of neutrons in an atom, the neutron number, is given by the quantity A-Z. 质子的数量在一个原子的核被称为原子序数,或质子数、周淑金、电子的数量在一个电中性原子也等于原子序数松山机场的总质量的原子做出很近的总数的质子和中子在它的核心。这个总数被称为大量胡逸舟、中子的数量在一个原子,中子数,给出了a - z的数量。 The term element refers to, a pure substance with atoms all of a single kind. T o the chemist the "kind" of atom is specified by its atomic number, since this is the property that determines its chemical behavior. At present all the atoms from Z = 1 to Z = 107 are known; there are 107 chemical elements. Each chemical element has been given a name and a distinctive symbol. For most elements the symbol is simply the abbreviated form of the English name consisting of one or two letters, for example: 这个术语是指元素,一个纯物质与原子组成一个单一的善良。在药房“客气”原子的原子数来确定它,因为它的性质是决定其化学行为。目前所有原子和Z = 1 a到Z = 107是知道的;有107种化学元素。每一种化学元素起了一个名字和独特的象征。对于大多数元素都仅仅是一个象征的英文名称缩写形式,一个或两个字母组成,例如: oxygen==O nitrogen == N neon==Ne magnesium == Mg

高分子材料与工程专业英语翻译

A 高分子化学和高分子物理 UNIT 1 What are Polymer? 第一单元什么是高聚物? What are polymers? For one thing, they are complex and giant molecules and are different from low molecular weight compounds like, say, common salt. To contrast the difference, the molecular weight of common salt is only 58.5, while that of a polymer can be as high as several hundred thousand, even more than thousand thousands. These big molecules or ‘macro-molecules’are made up of much smaller molecules, can be of one or more chemical compounds. To illustrate, imagine that a set of rings has the same size and is made of the same material. When these things are interlinked, the chain formed can be considered as representing a polymer from molecules of the same compound. Alternatively, individual rings could be of different sizes and materials, and interlinked to represent a polymer from molecules of different compounds. 什么是高聚物?首先,他们是合成物和大分子,而且不同于低分子化合物,譬如说普通的盐。与低分子化合物不同的是,普通盐的分子量仅仅是58.5,而高聚物的分子量高于105,甚至大于106。这些大分子或“高分子”由许多小分子组成。小分子相互结合形成大分子,大分子能够是一种或多种化合物。举例说明,想象一组大小相同并由相同的材料制成的环。当这些环相互连接起来,可以把形成的链看成是具有同种分子量化合物组成的高聚物。另一方面,独特的环可以大小不同、材料不同,相连接后形成具有不同分子量化合物组成的聚合物。 This interlinking of many units has given the polymer its name, poly meaning ‘many’and mer meaning ‘part’(in Greek). As an example, a gaseous compound called butadiene, with a molecular weight of 54, combines nearly 4000 times and gives a polymer known as polybutadiene (a synthetic rubber) with about 200 000molecular weight. The low molecular weight compounds from which the polymers form are known as monomers. The picture is simply as follows: 许多单元相连接给予了聚合物一个名称,poly意味着“多、聚、重复”,mer意味着“链节、基体”(希腊语中)。例如:称为丁二烯的气态化合物,分子量为54,化合将近4000次,得到分子量大约为200000被称作聚丁二烯(合成橡胶)的高聚物。形成高聚物的低分子化合物称为单体。下面简单地描述一下形成过程: butadiene + butadiene + ???+ butadiene--→polybutadiene (4 000 time) 丁二烯+丁二烯+…+丁二烯——→聚丁二烯 (4000次) One can thus see how a substance (monomer) with as small a molecule weight as 54 grow to become a giant molecule (polymer) of (54×4 000≈)200 000 molecular weight. It is essentially the ‘giantness’of the size of the polymer molecule that makes its behavior different from that of a commonly known chemical compound such as benzene. Solid benzene, for instance, melts

新编英语教程unit1,2,3,4,5,8,9,10,11 课文翻译

翻译 Unit11 1、他暗示John是肇事者的企图是徒劳的。(insinuate,futile)暗示,无用的;无效的 His attempt at insinuating that John was the culprit turned out to be futile. 2、当他未能完成期望他做的事时,他很善于临时找个借口来为自己开脱。(improvise)临时做 He is very clever at improvising excuses when he fails to do what is expected of him. 3、他此行去西藏可以满足他想参观布达拉宫的愿望了。(gratify)使满足;使满意,使高兴 His trip to Tibet will gratify his desire to see Potala. (the Potala Palace) 4、这个公司拥有雄厚的人力资源。(command)命令,指挥;控制 This corporation commands excellent/rich/abundant human resources. 5、另外想个办法去款待你的客人。不要老是请他们看影视光碟。(alternative)二中择一;供替代的选择Think of an alternative way of entertaining your guests. Don’t always show them VCDs. 6、沉溺于胡思乱想和心血来潮是有害的。(caprice)任性,反复无常;随想曲 It is harmful to indulge in whims and caprices. 7、不属于你的东西不要作非分之想。(lay one’s hands on,be entitled to)2有权;有…的资格 Try not to lay your hands on anything that you are not entitled to. 8、他没有来参加竞赛。很可能他把这件事全部忘记了。(it may well be that)可能会是 He did not come to the competition. It may well be that he had forgotten all about it. Unit10 1、他奇特的行为与对良好举止的一般观念背道而驰。(run counter to)违反;与…背道而驰 His peculiar behavior runs counter to the popular concept of good conduct. 2、相对论对现代科学产生了巨大影响。(impact)对…造成影响; 产生影响 The theory of relativity made a great impact on modern science. 3、任何人都没有权利嘲笑残疾人的不利条件。(deride)vt. 嘲笑;嘲弄 No one has the right to deride the disadvantages of handicapped people. 4、在她毕业典礼哪天,Judy的叔叔婶婶以丰盛的晚餐来款待她。(sumptuous)华丽的,豪华的;奢侈的 On her graduation day, Judy was treated to a sumptuous dinner by her uncle and aunt. 5、关于他过去在公司的经历,没有什么人有不满。(with respect to)关于,至于;就…而言 With respect to his past record in the firm, no one has anything to complain about. 6、她深深地陷入反对校董会的密谋之中。(inextricably)adv. 逃不掉地;解不开地;解决不了地He is inextricably involved in the plot against the school board. 7、我年迈的叔祖母很不习惯那些充斥市场的一次性物品。(disposable)用完即可丢弃的 My aged great-aunt is not used to the disposable goods which flood the market today. 8、他在考试作弊被发现后,他的名字马上从应试者的名单上删去了。(eliminate)vt. 消除;排除His name was immediately eliminated from the list of candidates after he was caught cheating in the exam. Unit 9 1、如果对这器械有什么不清楚的地方,你可以写信到我们总公司去询问。(address) If there is anything you are not clear about the device, address your inquiry to your head office. 2、在执行计划之前,我们最好把它的每一个方面仔细考虑,看看是否切实可行。(scrutinize)vt. 详细检查;细看 Before we put the new plan into practice, we had bitter scrutinize every aspect of it to make sure that it is practicable.

大学英语精读1课文翻译

大学英语精读1课文翻译 Unit1 Some Strategies or Learning English 学习英语绝非易事。它需要刻苦和长期努力。 虽然不经过持续的刻苦努力便不能期望精通英语,然而还是有各种有用的学习策略可以用来使这一任务变得容易一些。以下便是其中的几种。 1. 不要以完全同样的方式对待所有的生词。你可曾因为简直无法记住所学的所有生词而抱怨自己的记忆力太差?其实,责任并不在你的记忆力。如果你一下子把太多的生词塞进头脑,必定有一些生词会被挤出来。你需要做的是根据生词日常使用的频率以不同的方式对待它们。积极词汇需要经常练习,有用的词汇必须牢记,而在日常情况下不常出现的词只需见到时认识即可。你会发现把注意力集中于积极有用的词上是扩大词汇量最有效的途径。 2.密切注意地道的表达方式。你可曾纳闷过,为什么我们说 "我对英语感兴趣"是"I'm interested in English",而说"我精于法语"则是"I'm good at French"?你可曾问过自己,为什么以英语为母语的人说"获悉消息或秘密"是"learn the news or secret",而"获悉某人的成功或到来"却是"learn of someone's success or arrival"?这些都是惯用法的例子。在学习英语时,你不仅必须注意词义,还必须注意以英语为母语的人在日常生活中如何使用它。 3.每天听英语。经常听英语不仅会提高你的听力,而且有助你培养说的技能。除了专为课程准备的语言磁带外,你还可以听英语广播,看英语电视和英语电影。第一次听录好音的英语对话或语段,你也许不能听懂很多。先试着听懂大意,然后再反复地听。你会发现每次重复都会听懂更多的东西。 4.抓住机会说。的确,在学校里必须用英语进行交流的场合并不多,但你还是可以找到练习讲英语的机会。例如,跟你的同班同学进行交谈可能就是得到一些练习的一种轻松愉快的方式。还可以找校园里以英语为母语的人跟他们随意交谈。或许练习讲英语最容易的方式是高声朗读,因为这在任何时间,任何地方,不需要搭档就可以做到。例如,你可以看着图片或身边的物件,试着对它们详加描述。你还可以复述日常情景。在商店里购物或在餐馆里吃完饭付过账后,假装这一切都发生在一个讲英语的国家,试着用英语把它表演出来。

《化学工程与工艺专业英语》课文翻译 完整版

Unit 1 Chemical Industry 化学工业 1.Origins of the Chemical Industry Although the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin‘s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939). 1.化学工业的起源 尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。可以认为它起源于工业革命其间,大约在1800年,并发展成为为其它工业部门提供化学原料的产业。比如制肥皂所用的碱,棉布生产所用的漂白粉,玻璃制造业所用的硅及Na2CO3. 我们会注意到所有这些都是无机物。有机化学工业的开始是在十九世纪六十年代以William Henry Perkin 发现第一种合成染料—苯胺紫并加以开发利用为标志的。20世纪初,德国花费大量资金用于实用化学方面的重点研究,到1914年,德国的化学工业在世界化学产品市场上占有75%的份额。这要归因于新染料的发现以及硫酸的接触法生产和氨的哈伯生产工艺的发展。而后者需要较大的技术突破使得化学反应第一次可以在非常高的压力条件下进行。这方面所取得的成绩对德国很有帮助。特别是由于1914年第一次世界大仗的爆发,对以氮为基础的化合物的需求飞速增长。这种深刻的改变一直持续到战后(1918-1939)。 date bake to/from: 回溯到 dated: 过时的,陈旧的 stand sb. in good stead: 对。。。很有帮助

高分子专业英语课文翻译

高分子专业英语课文翻译 高分子专业英语选讲课文翻译资料 A 高分子化学和高分子物理 UNIT 1 What are Polymer? 第一单元什么是高聚物, What are polymers? For one thing, they are complex and giant molecules and 什么是高聚物, 首先,他们是合成物和大分子,而且不同于低分子化合物,譬are different from low molecular weight compounds like, say, common salt. To 如说普通的盐。 contrast the difference, the molecular weight of common salt is only 58.5, while 与低分子化合物不同的是,普通盐的分子量仅仅是58.5, that of a polymer can be as high as several hundred thousand, even more than thousand 而高聚物的分子量高于105,甚至大于106。 thousands. These big molecules or ‘macro-molecules’ are made up of much smaller 这些大分子或“高分子”由许多小分子组成, 小分子相互结合形成大分子,molecules, can be of one or more chemical compounds. To illustrate, imagine that 大分子能够是一种或多种化合物。举例说明, a set of rings has the same size and is made of the same material. When these things 想象一组大小相同并由相同的材料制成的环。当这些环相互连接are

[实用参考]大学英语精读第三版第四册课文及课文翻译.doc

Unit1 Twocollege-ageboPs,unawarethatmakingmonePusuallPinvolveshardwork,aretemptedbPanadvertis ementthatpromisesthemaneasPwaPtoearnalotofmoneP.TheboPssoonlearnthatifsomethingseemstog oodtobetrue,itprobablPis. 一个大学男孩,不清楚赚钱需要付出艰苦的劳动,被一份许诺轻松赚大钱的广告吸引了。男孩们很快就明白,如果事情看起来好得不像真的,那多半确实不是真的。BIGBUCKSTHEEASPWAP轻轻松松赚大钱"Pououghttolookintothis,"Isuggestedtoourtwocollege-agesons."ItmightbeawaPtoavoidtheindignitP ofhavingtoaskformonePallthetime."Ihandedthemsomemagazinesinaplasticbagsomeonebadhungon ourdoorknob.AmessageprintedonthebagofferedleisurelP,lucrativework("BigBuckstheEasPWaP!")o fdeliveringmoresuchbags. “你们该看看这个,”我向我们的两个读大学的儿子建议道。“你们若想避免因为老是向人讨钱而有失尊严的话,这兴许是一种办法。”我将挂在我们门把手上的、装在一个塑料袋里的几本杂志拿给他们。塑料袋上印着一条信息说,需要招聘人投递这样的袋子,这活儿既轻松又赚钱。(“轻轻松松赚大钱!”) "Idon'tmindtheindignitP,"theolderoneanswered.“我不在乎失不失尊严,”大儿子回答说。"Icanlivewithit,"hisbrotheragreed.“我可以忍受,”他的弟弟附和道。"Butitpainsme,"Isaid,"tofindthatPoubothhavebeenpanhandlingsolongthatitnolongerembarrassesPou."“看到你们俩伸手讨钱讨惯了一点也不感到尴尬的样子,真使我痛心,”我说。TheboPssaidthePwouldlookintothemagazine-deliverPthing.Pleased,Ilefttownonabusinesstrip.BPmi dnightIwascomfortablPsettledinahotelroomfarfromhome.Thephonerang.ItwasmPwife.Shewantedt oknowhowmPdaPhadgone.孩子们说他们可以考虑考虑投递杂志的事。我听了很高兴,便离城出差去了。午夜时分,我已远离家门,在一家旅馆的房间里舒舒服服住了下来。电话铃响了,是妻子打来的。她想知道我这一天过得可好。 "Great!"Ienthused."HowwasPourdaP?"Iinquired.“好极了!”我兴高采烈地说。“你过得怎么样?”我问道。 "Super!"Shesnapped."Justsuper!Andit'sonlPgettingstarted.Anothertruckjustpulledupoutfront."“棒极了!”她大声挖苦道。“真棒!而且这还仅仅是个开始。又一辆卡车刚在门前停下。”"Anothertruck?"“又一辆卡车?” "Thethirdonethisevening.ThefirstdeliveredfourthousandMontgomerPWards.Thesecondbroughtfour thousandSears,Roebucks.Idon'tknowwhatthisonehas,butI'msureitwillbefourthousandofsomething.S incePouareresponsible,IthoughtPoumightliketoknowwhat'shappening.“今晚第三辆了。第一辆运来了四千份蒙哥马利-沃德百货公司的广告;第二辆运来四千份西尔斯-罗伯克百货公司的广告。我不知道这一辆装的啥,但我肯定又是四千份什么的。既然这事是你促成的,我想你或许想了解事情的进展。” WhatIwasbeingblamedfor,itturnedout,wasanewspaperstrikewhichmadeitnecessarPtohand-deliverth eadvertisinginsertsthatnormallPareincludedwiththeSundaPpaper.ThecompanPhadpromisedourboPs $600fordeliveringtheseinsertsto4,000housesbPSundaPmorning.我之所以受到指责,事情原来是这样:由于发生了一起报业工人罢工,通常夹在星期日报纸里的广告插页,必须派人直接投送出去。公司答应给我们的孩子六百美金,任务是将这些广告插页在星期天早晨之前投递到四千户人家去。 "Pieceofcake!"ouroldercollegesonhadshouted.“不费吹灰之力!”我们上大学的大儿子嚷道。"SiGhundredbucks!"Hisbrotherhadechoed,"Andwecandothejobintwohours!"“六百块!”他的弟弟应声道,“我们两个钟点就能干完!” "BoththeSearsandWardadsarefournewspaper-sizepages,"mPwifeinformedme."TherearethirtP-twot housandpagesofadvertisingonourporch.Evenaswespeak,twobigguPsarecarrPingarmloadsofpaperup thewalk.Whatdowedoaboutallthis?"“西尔斯和沃德的广告通常都是报纸那么大的四页,”妻子告诉我说,“现在我们门廊上堆着三万二千页广告。就在我们说话的当儿,两个大个子正各抱着一大捆广告走过来。这么多广告,我们可怎么办?”"JusttelltheboPstogetbusP,"Iinstructed."TheP'recollegemen.TheP'lldowhatthePhavetodo."“你让孩子们快干,”我指示说。“他们都是大学生了。他们自己的事得由他们自己去做。”AtnoonthefollowingdaPIreturnedtothehotelandfoundanurgentmessagetotelephonemPwife.Hervoic

高分子材料工程专业英语翻译(最新修正稿)

UNIT 1 What Are Polymers? 第一单元什么是高聚物? 什么是高聚物?首先,他们是络合物和大分子,而且不同于低分子化合物,譬如说普通的盐。与低分子化合物不同的是,普通盐的分子量仅仅是58.5,而高聚物的分子量高于105,甚至大于106。这些大分子或“高分子”由许多小分子组成。小分子相互结合形成大分子,大分子能够是一种或多种化合物。举例说明,想象一组大小相同并由相同的材料制成的环。当这些环相互连接起来,可以把形成的链看成是具有同种(分子量)化合物组成的高聚物。另一方面,独立的环可以大小不同、材料不同,相连接后形成具有不同(分子量)化合物组成的聚合物。 许多单元相连接给予了聚合物一个名称,poly意味着“多、聚、重复”,mer意味着“链节、基体”(希腊语中)。例如:称为丁二烯的气态化合物,分子量为54,化合将近4000次,得到分子量大约为200000被称作聚丁二烯(合成橡胶)的高聚物。形成高聚物的低分子化合物称为单体。下面简单地描述一下形成过程: 丁二烯+丁二烯+…+丁二烯——→聚丁二烯 (4000次) 因而能够看到分子量仅为54的小分子物质(单体)如何逐渐形成分子量为200000的大分子(高聚物)。实质上,正是由于聚合物的巨大的分子尺寸才使其性能不同于像苯这样的一般化合物(的性能)。1例如,固态苯,在5.5℃熔融成液态苯,进一步加热,煮沸成气态苯。与这类简单化合物明确的行为相比,像聚乙烯这样的聚合物不能在某一特定的温度快速地熔融成纯净的液体。而聚合物变得越来越软,最终,变成十分粘稠的聚合物熔融体。将这种热而粘稠的聚合物熔融体进一步加热,不会转变成各种气体,但它不再是聚乙烯(如图1.1)。 固态苯——→液态苯——→气态苯 加热,5.5℃加热,80℃ 固体聚乙烯——→熔化的聚乙烯——→各种分解产物-但不是聚乙烯 加热加热 图1.1 低分子量化合物(苯)和聚合物(聚乙烯)受热后的不同行为发现另一种不同的聚合物行为和低分子量化合物行为是关于溶解过程。例如,让我们研究一下,将氯化钠慢慢地添加到固定量的水中。盐,代表一种低分子量化合物,在水中达到点(叫饱和点)溶解,但,此后,进一步添加盐不进入溶液中却沉到底部而保持原有的固体状态。饱和盐溶液的粘度与水的粘度不是十分不同,但是,如果我们用聚合物替代,譬如说,将聚乙烯醇添加到固定量的水中,聚合物不是马上进入到溶液中。聚乙烯醇颗粒首先吸水溶胀,发生形变,经过很长的时间以后,(聚乙烯醇分子)进入到溶液中。2同样地,我们可以将大量的聚合物加入到同样量的水中,不存在饱和点。将越来越多的聚合物加入水中,认为聚合物溶解的时间明显地增加,最终呈现柔软像面团一样粘稠的混合物。另一个特点是,在水中聚乙烯醇不会像过量的氯化钠在饱和盐溶液中那样能保持其初始的粉末状态。3总之,我们可以讲(1)聚乙烯醇的溶解需要很长时间,(2)不存在饱和点,(3)粘度的增加是典 型聚合物溶于溶液中的特性,这些特性主要归因于聚合物大分子的尺寸。 如图1.2说明了低分子量化合物和聚合物的溶解行为。 氯化钠晶体加入到水中→晶体进入到溶液中.溶液的粘度不是十分不同于充分搅拌 水的粘度→形成饱和溶液.剩余的晶体维持不溶解状态.加入更多的晶体并搅拌氯化钠的溶 解 聚乙烯醇碎片加入到水中→碎片开始溶胀→碎片慢慢地进入到溶液中允许维持现状 充分搅拌→形成粘稠的聚合物溶液.溶液粘度十分高于水的粘度继续搅拌聚合物的溶解

大学英语精读课文翻译

大学英语精读课文翻译 Unit 1 How to Improve Your Study Habits 你也许是个智力一般的普通学生。你在学校的学习成绩还不错,可你也许会觉得自己永远也成不了优等生。然而实际情况未必如此。你要是想取得更好的分数,也还是能做到的。是的,即使中等智力水平的学生,在不增加学习负担的情况下,也能成为优等生。其诀窍如下:1.仔细安排你的时间。把你每周要完成的任务一一列出来,然后制定一张时间表或时间分配图。先把用于吃饭、睡觉、开会、听课等这样一些非花不可的时间填上,然后再选定合适的固定时间用于学习。一定要留出足够的时间来完成正常的阅读和课外作业。当然,学习不应把作息表上的空余时间全都占去,还得给休息、业余爱好和娱乐活动留出一定的时间,这一点很重要。这张周作息表也许解决不了你所有的问题,但是它会使你比较清楚地了解你是怎样使用你的时间的。此外,它还能让你安排好各种活动,既有足够的时间工作,也有足够的时间娱乐。 2.寻找一个合适的地方学习。选定某个地方作为你的“学习区”。这可以是家里或者学校图书馆里的一张书桌或者一把椅子,但它应该是舒适的,而且不该有干扰。在你开始学习时,你应能够全神贯注于你的功课。 3.阅读之前先略读。这就是说,在你仔细阅读一篇文章之前,先把它从头至尾迅速浏览一遍。在预习材料时,你就对它的内容及其结构有了大致的了解。随后在你正式开始阅读时,你就能辨认出不太重要的材料,并且可以略去某些章节不读。略读不仅使你的阅读速度提高一倍,还有助于提高你的理解能力。< 4.充分利用课堂上的时间。上课时注意听讲意味着课后少花力气。要坐在能看得见、听得清的地方。要作笔记来帮助自己记住老师讲课的内容。 5.学习要有规律。课后要及早复习笔记。重温课堂上提到的要点,复习你仍然混淆不清的

应用化学专业英语翻译完整篇

1 Unit5元素周期表 As our picture of the atom becomes more detailed 随着我们对原子的描述越来越详尽,我们发现我们陷入了进退两难之境。有超过100多中元素要处理,我们怎么能记的住所有的信息?有一种方法就是使用元素周期表。这个周期表包含元素的所有信息。它记录了元素中所含的质子数和电子数,它能让我们算出大多数元素的同位素的中子数。它甚至有各个元素原子的电子怎么排列。最神奇的是,周期表是在人们不知道原子中存在质子、中子和电子的情况下发明的。Not long after Dalton presented his model for atom( )在道尔顿提出他的原子模型(原子是是一个不可分割的粒子,其质量决定了它的身份)不久,化学家门开始根据原子的质量将原子列表。在制定像这些元素表时候,他们观察到在元素中的格局分布。例如,人们可以清楚的看到在具体间隔的元素有着相似的性质。在当时知道的大约60种元素中,第二个和第九个表现出相似的性质,第三个和第十个,第四个和第十一个等都具有相似的性质。 In 1869,Dmitri Ivanovich Mendeleev,a Russian chemist, 在1869年,Dmitri Ivanovich Mendeleev ,一个俄罗斯的化学家,发表了他的元素周期表。Mendeleev通过考虑原子重量和元素的某些特性的周期性准备了他的周期表。这些元素的排列顺序先是按原子质量的增加,,一些情况中, Mendeleev把稍微重写的元素放在轻的那个前面.他这样做只是为了同一列中的元素能具有相似的性质.例如,他把碲(原子质量为128)防在碘(原子质量为127)前面因为碲性质上和硫磺和硒相似, 而碘和氯和溴相似. Mendeleev left a number of gaps in his table.Instead of Mendeleev在他的周期表中留下了一些空白。他非但没有将那些空白看成是缺憾,反而大胆的预测还存在着仍未被发现的元素。更进一步,他甚至预测出那些一些缺失元素的性质出来。在接下来的几年里,随着新元素的发现,里面的许多空格都被填满。这些性质也和Mendeleev所预测的极为接近。这巨大创新的预计值导致了Mendeleev的周期表为人们所接受。 It is known that properties of an element depend mainly on the number of electrons in the outermost energy level of the atoms of the element. 我们现在所知道的元素的性质主要取决于元素原子最外层能量能级的电子数。钠原子最外层能量能级(第三层)有一个电子,锂原子最外层能量能级(第二层)有一个电子。钠和锂的化学性质相似。氦原子和氖原子外层能级上是满的,这两种都是惰性气体,也就是他们不容易进行化学反应。很明显,有着相同电子结构(电子分布)的元素的不仅有着相似的化学性质,而且某些结构也表现比其他元素稳定(不那么活泼) In Mendeleev’s table,the elements were arranged by atomic weights for 在Mendeleev的表中,元素大部分是按照原子数来排列的,这个排列揭示了化学性质的周期性。因为电子数决定元素的化学性质,电子数也应该(现在也确实)决定周期表的顺序。在现代的周期表中,元素是根据原子质量来排列的。记住,这个数字表示了在元素的中性原子中的质子数和电子数。现在的周期表是按照原子数的递增排列,Mendeleev的周期表是按照原子质量的递增排列,彼此平行是由于原子量的增加。只有在一些情况下(Mendeleev注释的那样)重量和顺序不符合。因为原子质量是质子和中子质量的加和,故原子量并不完全随原子序数的增加而增加。原子序数低的原子的中子数有可能比原子序数高的原

高分子英语课文翻译()

unit1 1.Not all polymers are built up from bonding together a single kind of repeating unit. At the other extreme ,protein molecules are polyamides in which n amino acide repeat units are bonded together. Although we might still call n the degree of polymerization in this case, it is less usefull,since an amino acid unit might be any one of some 20-odd molecules that are found in proteins. In this case the molecular weight itself,rather than the degree of the polymerization ,is generally used to describe the molecule. When the actual content of individual amino acids is known,it is their sequence that is of special interest to biochemists and molecular biologists.并不是所有的聚合物都是由一个重复单元链接在一起而形成的。在另一个极端的情形中,蛋白质分子是由n个氨基酸重复单元链接在一起形成的聚酰胺。尽管在这个例子中,我们也许仍然把n称为聚合度,但是没有意义,因为一个氨基酸单元也许是在蛋白质中找到的20多个分子中的任意一个。在这种情况下,一般是分子量本身而不是聚合度被用来描述这个分子。当知道了特定的氨基酸分子的实际含量,它们的序列正是生物化学家和分子生物学家特别感兴趣的地方。 1,题目:Another striking ...答案:.that quantity low saturation bottom much absorb 2. 乙烯分子带有一个双键,为一种烯烃,它可以通过连锁聚合大量地制造聚乙烯,目前,聚乙烯已经广泛应用于许多技术领域和人们的日常生活中,成为一种不可缺少的材料。 Ethylene molecule with a double bond, as a kind of olefins, it can make chain polymerization polyethylene, at present, polyethylene has been widely used in many fields of technology and People's Daily life, become a kind of indispensable materials. Unit3 1 The polymerization rate may be experimentally followed by measuring the changes in any of several properties of the system such as density,refractive index,viscosity, or light absorption. Density measurements are among the most accurate and sensitive of the techniques. The density increases by 20-25 percent on polymerization for many monomers. In actual practice the volume of the polymerizing system is measured by carrying out the reaction in a dilatometer. This is specially constructed vessel with a capillary tube which allows a highly accurate measurement of small volume changes. It is not uncommon to be able to detect a few hundredths of a percent polymerization by the dilatometer technique. 聚合速率在实验上可以通过测定体系的任一性质的变化而确定,如密度、折射率、黏度、或者吸光性能。密度的测量是这些技术中最准确最敏感的。对许多单体的聚合来说,密度增加了20%-25%。在实际操作中,聚合体系的体积是通过在膨胀计中进行反应测定的。它被专门设计构造了毛细导管,在里面可以对微小体积变化进行高精确度测量。通过膨胀计技术探测聚合过程中万分之几的变化是很常见的。 Unti4 2 合成聚合物在各个领域中起着与日俱增的重要作用,聚合物通常是由单体通过加成聚合与缩合聚合制成的。就世界上的消耗量而论,聚烯烃和乙烯基聚合物居领先地位,聚乙烯、聚丙烯等属聚烯烃,而聚氯乙烯、聚苯乙烯等则为乙烯基聚合物。聚合物可广泛地用作塑料、橡胶、纤维、涂料、粘合剂等The synthetic polymers play an increasingly

相关文档
最新文档